Worksheet #6

Topology I - point set topology

October 15, 2024

Problem 1. Consider \mathbb{R}^2 with its standard Euclidean topology.

- (a) Let $S \subset \mathbb{R}^2$ be finite and prove that $A = \mathbb{R}^2 \backslash S$ is path-connected.
- (b) Give an example of a subset $S \subset \mathbb{R}^2$ such that $\mathbb{R}^2 \backslash S$ is not connected.
- (c) Give an example of a path-connected subset $S \subset \mathbb{R}^2$ such that cl(S) is not path-connected.

Problem 2. Consider \mathbb{R} and \mathbb{R}^2 with their standard Euclidean topology. Prove that $\mathbb{R}\setminus \{*\}$ is disconnected, while $\mathbb{R}^2\setminus \{*\}$ is connected. Deduce that \mathbb{R} and \mathbb{R}^2 are not homeomorphic. Here $\{*\}$ simply means a point.

Problem 3. Justify the following assertion: "Every open interval $I \subset \mathbb{R}$ is connected since it is homeomorphic to \mathbb{R} "

Problem 4. Let $f:[a,b] \to \mathbb{R}$ be a continuous function such that $f([a,b]) \subset [a,b]$. Prove that the line y=x intersects the graph of f at least once. Here, we are considering the usual Euclidean topology.

Problem 5. Let (X, τ_X) and (Y, τ_Y) be two topological spaces such that (X, τ_X) is connected and let $f: (X, \tau_X) \to (Y, \tau_Y)$ be a continuous function. Consider $X \times Y$ with its product topology. Prove that $G = \{(x, f(x)) : x \in X\} \subseteq X \times Y$ is connected with the subspace topology.

Problem 6. Let (X,τ) be a topological space. Let $A \subset X$ be a connected subset and $B \subset X$ be a subset both open and closed. Assume that $A \cap B \neq \emptyset$. Prove that $A \subset B$.

Problem 7. Prove that the cylinder $C = \{(x, y, z) \in \mathbb{R}^3 ; x^2 + y^2 = 1\}$ is a connected subspace of \mathbb{R}^3 (usual Euclidean topology on \mathbb{R}^3).

Problem 8. Let (X,τ) be a topological space. Define a relation on X by setting $x \sim y$ if and only if there exists a path (on X) from x to y. Prove that this defines an equivalence relation. Conclude that (X,τ) is path-connected if and only if the quotient (X/\sim) consists of a single point.