Worksheet #3

Topology I - point set topology

September 24, 2024

Problem 1. Consider \mathbb{N} with its cofinite topology. Give an example of a sequence that converges simultaneously to all $n \in \mathbb{N}$.

Problem 2. Let $f:(X,\tau_X) \to (Y,\tau_Y)$ be a function between two topological spaces. Prove that f is continuous if and only if for any subset $A \subseteq X$, we have that $f(cl(A)) \subset cl(f(A))$.

Problem 3. Consider $X = \{0,1\}$ with the topology $\tau = \{\emptyset, \{1\}, \{0,1\}\}$. Given any subset $A \subset X$, define the function $f_A : X \to \{0,1\}$ to be equal to 1 if $x \in A$ and equal to 0 otherwise. Prove that f_A is continuous if and only if A is open.

Problem 4. Let $\emptyset \neq X$ be a set, and endow it with the discrete metric $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$. Prove that the topology induced by such metric is the discrete topology.

Problem 5. Let $X = \{1, 2, 3, 4\}$ and consider the topology (on X) given by $\{\emptyset, X, \{1\}, \{2, 3, 4\}\}$. Consider the function $f: X \to X$ given by f(2) = f(3) = f(4) = 1 and f(1) = 4. Prove that f is continuous.

Problem 6. Let τ_E (resp. τ_d) be the Euclidean (resp. discrete) topology on \mathbb{R} . Prove that the function $f:(\mathbb{R},\tau_E)\to(\mathbb{R},\tau_d)$ given by $x\mapsto x^2$ is not continuous.

Problem 7. Consider \mathbb{R} and \mathbb{R}^2 with the usual Euclidean topology and pick $f: \mathbb{R}^2 \to \mathbb{R}$ continuous. Let $A = \{x \in R^2 ; f(x) < 0\}$ and $B = \{x \in R^2 ; f(x) \leq 0\}$. Prove that $cl(A) \subset B$ and $A \subset int(B)$.

Problem 8. Let $f:(X_1,\tau_1)\to (X_2,\tau_2)$ be a homeomorphism and pick $\emptyset\neq A\subset X_1$. Prove that $x\in int(A)\iff f(x)\in int(f(A))$.