Worksheet #1

Topology I - point set topology

September 10, 2024

Problem 1. 1 Let A, B and C be arbitrary subsets of an arbitrary set U. Are the statements below true or false? If true, provide proof, and if false, provide a counter-example.

(i)
$$(A \backslash B) \cap (A \backslash C) = A \backslash (B \cup C)$$

(ii)
$$A \cup B = A \cup C \Rightarrow B = C$$

Problem 2. Prove a function $f: A \to B$ is bijective if and only if $f(X^c) = (f(X))^c$ for any $X \subset A$.

Problem 3. If $f: X \to Y$ is any function and $A \subset X, B \subset Y$ are arbitrary subsets, prove $f^{-1}(Y \backslash B) = X \backslash f^{-1}(B)$.

Problem 4. Prove the set of all functions $f : \mathbb{N} \to \mathbb{N}$ is uncountable.

Problem 5. Let A be any collection of disjoint open intervals in \mathbb{R} . Prove A is countable.

Problem 6. Prove the following are equivalence relations and describe the quotient.

(i) The relation \sim on the set $\mathbb C$ given by

$$(x+iy) \sim (u+iv) \iff x=u$$

(ii) The relation * on the set \mathbb{Q} given by

$$p*q\iff p-q\in\mathbb{Z}$$

(iii) The relation \star on the set \mathbb{R}^2 given by

$$(x_1, y_1) \star (x_2, y_2) \iff x_1 y_1 = x_2 y_2$$

Problem 7. Show the relation on the set \mathbb{N} given by " $n \mid m \iff \exists k \in \mathbb{Z}$ such that $m = k \cdot n$ " is an order relation.