Worksheet #14

Practice problems for the exam

Topology I - Fall 2024

Problem 1. Indicate whether the statements that follow are true or false. If true, provide a proof. If false, provide an explanation or a counter-example. Below (X, τ_X) and (Y, τ_Y) are topological spaces.

- (1) If $A \subset X$ and $B \subset Y$ are closed subsets, then $A \times B$ is closed in $X \times Y$, where on $X \times Y$ we consider the product topology.
- (2) Let $f: X \to Y$ be a continuous map. If X is path-connected and compact then so is f(X).
- (3) Let A and B be subsets of X. If A and B are connected, then so is $A \cap B$ and $cl(A) \cup cl(B)$.
- (4) If X is Hausdorff, then $X \times X$ is Hausdorff when given the product topology.
- (5) For any $A \subset X$ we have that $\operatorname{cl}(X \setminus A) = X \setminus \operatorname{cl}(A)$.
- (6) The interior of any finite subset $A \subset X$ is always empty.
- (7) For any $x \in X$ the singleton $\{x\}$ is closed.
- (8) If τ_X is the discrete topology, then X is disconnected.
- (9) If τ_X is the indiscrete topology, then any sequence in X converges.
- (10) If c > b, $X = [a, b] \cup [c, d]$ and τ_X is the usual topology, then $[a, b] \in \tau_X$.
- (11) If $A \subset X$, then int(cl(A)) = A.
- (12) If $f: X \to Y$ is continuous, and $x_n \to x$ in X, then $f(x_n) \to f(x)$ in Y.
- (13) If $f: X \to Y$ is continuous at a point $x \in X$ and $V \in \tau_Y$ contains f(x), then $f^{-1}(V) \in \tau_X$.
- (14) If τ_X is not the discrete topology, then there cannot exist $A \subset X$ such that the subspace topology on A is the discrete topology (on A).
- (15) If (X, τ_X) is disconnected, then any subspace of X is also disconnected.
- (16) If (X, τ_X) is compact, then any closed subspace of X is also compact.

- (17) If A and B are connected subspaces of X and $A \cap B \neq \emptyset$, then $A \cup B$ is connected.
- (18) If A and B are connected subspaces of X and $A \cap B \neq \emptyset$, then $A \cap B$ is connected.
- (19) If $X = \mathbb{Z}$, $Y = \mathbb{Z}^2$ and τ_X and τ_Y are the corresponding discrete topologies, then (X, τ_X) and (Y, τ_Y) are homeomorphic.
- (20) If $f: X \to Y$ is continuous and X is compact and connected, then f(X) can be non-compact and it can also be disconnected.
- (21) If $X = \mathbb{R}$ and τ_X is the cofinite topology, then the function $f: X \to X$ given by $f(x) = \sin(x)$ is continuous.
- (22) If $A \subset X$ is closed, then A will also be closed with respect to any topology that is coarser (smaller) than τ_X .
- (23) If X is Hausdorff, then limits of sequences in X are unique.
- (24) If τ_X and τ_Y are the discrete topologies on X and Y, respectively, then (X, τ_X) and (Y, τ_Y) are homeomorphic if and only if |X| = |Y|.
- (25) If $A \subset X$ is such that cl(A) is connected, then int(A) is connected.
- (26) If X is connected, then X will also be connected with respect to any topology that is coarser than τ_X .
- (27) If (X, τ_X) is path-connected, then we can always find a continuous surjection

$$f: (X, \tau_X) \to (\{0, 1\}, \tau_{\text{disc}}).$$

- (28) If τ_X is the cofinite topology, then X is compact.
- (29) If τ_X is the indiscrete topology and $\emptyset \neq A \subset X$, then A is dense.
- (30) If τ_X is the discrete topology, then (X, τ_X) is not compact.
- (31) If there exists a metric d on X such that the induced metric topology is τ_X , then all Cauchy sequences converge in (X, τ_X) .
- (32) If $X = \mathbb{R}^n$ and τ_X is the usual topology, then (X, τ_X) is a Baire space.
- (33) If there exists a metric d on X such that the induced metric topology is τ_X and X is compact, then (X, d) is a Baire space.
- (34) If $f: X \to Y$ is continuous with τ_X the discrete topology, then the subspace topology on $f(X) \subset Y$ is the discrete topology.
- (35) If there exists a metric d on X such that the induced metric topology is τ_X , then every compact subset of X is closed and bounded.

Problem 2. In this problem, you must justify your answers, and your examples should be explicit. Please provide an example of each of the following.

- (1) A topological space (X, τ) which is not Hausdorff and such that it has a point p satisfying that $X \setminus \{p\}$ is Hausdorff.
- (2) A metric space (M, d) which is sequentially compact.
- (3) A path-connected topological space that is not simply connected.
- (4) A pair of topological spaces, say (X, τ_X) and (Y, τ_Y) , and a function $f: X \to Y$ such that $f(\tau_X) \subset \tau_Y$ and f is not continuous.
- (5) A topological space (X, τ) which is not locally compact.
- (6) A topological space (X, τ) which is not locally path-connected.
- (7) A topological space (X, τ) which is not first countable.
- (8) A metric space (M, d) which is not complete.
- (9) A metric space (M,d) and a subset $A \subset M$ which is nowhere dense and not closed.
- (10) A metric space (M, d) and a subset $A \subset M$ which is dense and meagre.

Problem 3. Let (M, d) be a metric space.

- (i) Assume that M with the metric topology is connected and that |X| > 1. Prove that M is uncountable.
- (ii) Pick $A \subset M$ complete (w.r.t. the induced metric) and show that A is closed in M.

Problem 4. Let X and Y be topological spaces, $f, g: X \to Y$ continuous maps, and assume that Y is Hausdorff.

- (i) Prove that $\{x \in X ; f(x) = g(x)\}\$ is closed in X.
- (ii) Further assume that f is injective and X is compact. Prove that X is homeomorphic to f(X).

Problem 5. Recall that X/A denotes the quotient space where the subspace $A \subset X$ is identified with a point. Let X = [0,1] and A = (a,b), where 0 < a < b < 1. Prove that X/A is connected and compact. Is it Hausdorff?

Problem 6. In this exercise, we consider the usual topologies. Using the fact that $\pi_1(S^1) = \mathbb{Z}$ and $\pi_1(S^n) = \{0\}$ for n > 1 prove that \mathbb{R} and \mathbb{R}^n are not homeomorphic.