Worksheet #13

Topology I - point set topology

December 17, 2024

Problem 1. Let (X, τ) be a topological space. Prove that the statements below about a subset $A \subset X$ are all equivalent.

- (i) A is nowhere dense, i.e. $int(cl(A)) = \emptyset$.
- (ii) For every $U \in \tau$ non-empty, there exists $V \in \tau$ non-empty such that $V \subset U$ and $V \cap A = \emptyset$.
- (iii) cl(A) is nowhere dense.
- (iv) $int(X \setminus A) = X \setminus cl(A)$ is dense in X.

Problem 2. Let (X, τ) be a topological space. Prove that a closed subset of X is nowhere dense if and only if it has an empty interior.

Problem 3. Prove that a finite union of nowhere-dense sets is nowhere-dense.

Problem 4. Let (X, τ) be a topological space. Prove that the statements below about subsets of X are all equivalent.

- (i) The complement of every meagre subset is dense.
- (ii) The interior of every meagre subset is empty.
- (iii) The empty set is the only subset that is both open and meagre.
- (iv) A countable intersection of dense open subsets is dense.
- (v) A countable union of nowhere-dense closed subsets has no interior point.

Problem 5. Prove that a closed proper subspace of a normed vector space is always nowhere dense.

Problem 6. Let $f:[0,\infty)\to\mathbb{R}$ be a continuous function such that $\lim_{n\to\infty}f(nx)=0$ for all $x\in[0,\infty)$. Prove that $\lim_{x\to\infty}f(x)=0$.