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This course is about topology. The word "topology" comes from Greek, where "topos"
means place or space, and "logos" means study or science. 1 Poincaré has said that geometry
is often called the art of reasoning about badly drawn figures. In topology this is even more
true, as for a topologist all triangles are equal, a triangle and an octagon are equal, even a
triangle and a circle are the same.

The most basic mathematical object is a set - just a list of distinct elements. A set has
basically no geometry, no relation between its elements - its only characteristic property is
its size. Topology is the weakest structure that one can attach to the set in order to give it
some geometric content, to turn it into something that feels like a space. In a topological
space one can already give a meaning to intuitive concepts like continuity and connectedness.
Our basic questions will be:

• What can I say about a given topological space?
• How are the different properties of a topological spaces related between each other?
• Given two topological spaces, how can we decide if they are the same or different?

(Recall that we cannot draw them!)
It might be helpful to think of the following table, where the geometric structure is in-

creasingly detailed from left to right. Each next column is a specific case of the more general
notion (e.g. metric spaces form a specific subclass of topological spaces) and thus each next
column also contains all the structure and notions from the previous column:

Set Topological
space

Metric space Normed vector
space

Geometric
structure:

none nearness distance func-
tion

norm, linear
structure

Geometric
notions:

size continuity, con-
nectedness, com-
pactness...

balls, bounded-
ness, complete-
ness...

straight line,
convexity, ori-
gin...

Each class (column) comes with a notion of equivalence that says when two spaces are
equal: roughly this is the case when all intrinsic properties of the spaces are the same. This
is usually expressed by saying that two objects A and B are equivalent, if there is a function
f : A → B (often called a map) with special properties, guaranteeing that the structure of
A carries over unchanged to B.

In the case of sets, two sets are called equivalent if there is a bijection between them.
For normed vector spaces equivalence means the existence of a bijective linear map that
preserves the norm. For topological spaces such a map will be called a homeomorphism, for
metric spaces an isometry. We will see for example that the usual R and (0, 1) are equivalent
as sets or topological spaces, but different as metric spaces. We will also see that R and R2

differ as topological spaces.
1Historically, topology carried a second name, analysis situs, but this got lost over time. Interestingly,

this is also the name of an article by Poincaré in 1895 where he introduced several fundamental concepts of
algebraic topology, like the fundamental group.
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In fact, the description we have given fits into a more general theory of mathematical
structures, called category theory. In this language such objects - sets with some structure
together with structure-preserving maps - are called concrete categories. This notion is more
general than just geometric structure, also groups with group homomorphism form a con-
crete category, or measure spaces with measurable maps, that we will meet in the probability
theory course.

The aim of this course is to on the one hand see how the notion of topology gives the right
context for basic concepts of analysis like continuity and connectedness. In fact, several
notions of topology were introduced late 19th century to better understand analysis. We
will for example revisit:

• Bolzano Weierstrass theorem on existence of convergent subsequences in bounded
domains;
• Heine-Borel theorem on closed and bounded subsets of Rn;
• Intermediate value theorem.
• Extreme value theorem.

On the other hand we will also look at a topological space as an interesting object on its own
- by now topology has become a branch independent of analysis, has given rise to important
subbranches like algebraic topology and has many applications in physics, biology, data
science.

The course will consist of four chapters:
(1) Topology and continuity - here we introduce the basic formalism of topology in terms

of open sets, and see how to formulate some basic notions like convergence and
continuity.

(2) Connectedness - we discuss the abstract way to determine whether a space is con-
nected or not, we also see a way to distinguish between R and R2 as topological
spaces, and between R2 and R3.

(3) Compactness - compactness is the generalization of closed and bounded sets in Rn,
and is one of the most important and powerful concepts in topology. On compact
intervals continuous functions are bounded and attain extrema.

(4) Metric spaces - metric spaces are a special subclass of topological spaces, where a
distance function is defined between points. We will see that in this context, some
notions have easier, more intuitive definitions. We study in some detail the space of
continuous functions on a compact metric space, but also notions of separability. We
touch upon the question - when can one construct a metric on a topological space?

We will begin though with a short reminder of basic set theory.

3



Section 0

Basics on set theory and functions
Axiomatic set theory, the so called Zermelo-Fraenkel (ZF) axioms form the foundation of

mathematics. In this course we will not study this foundation, but take intuitive statements
about sets for granted; only at some rare times will stop to ponder upon them. An axiomatic
treatment can be found for example in the book of Munkres.

The following basic notions and results, that you have met in school / in the first year of
EPFL will be used throughout the course:

(1) A set A is a collection of elements a ∈ A.
(2) For two sets A,B:

• we say that A is a subset of B, denoted A ⊆ B, iff ∀a ∈ A, it holds that a ∈ B;
• we say that A and B are equal, denoted A = B, iff A ⊆ B and B ⊆ A:
• we say that A is a proper subset of B if A ⊆ B, but A ̸= B;

(3) Some useful set identities:
• (A ∪B) ∩ (C ∪D) = (A ∩ C) ∪ (A ∩D) ∪ (B ∩ C) ∪ (B ∩D);
• (A ∩B) ∪ (A ∩ C) = A ∩ (B ∪ C);

(4) De Morgan’s laws on taking complements. Suppose A,B ⊆ D and let Ac = D\A
denote the complement. Then:
• (A ∩B)c = Ac ∪Bc;
• (A ∪B)c = Ac ∩Bc.

(5) The (Cartesian) product of sets A × B, is defined as the set of ordered pairs (a, b).
The square of a set A2 denotes the product of A with itself.

(6) A subset R of A×A is called a relation. If (a, b) ∈ R, we say that a ∼ b. A relation
is symmetric if a ∼ b iff b ∼ a, reflexive if ∀a ∈ A, a ∼ a and transitive if a ∼ b
and b ∼ c imply that a ∼ c. If a relation satisfies all these three properties, then it
is an equivalence relation. An equivalence class of an element a, usually denoted [a]
contains all elements b ∈ A such that a ∼ b. Naturally, equivalence classes partition
the set A. Similar definition of an equivalence relation can be given even if A is too
big to be a set, e.g. if A correspond to all possible sets.

(7) A function f : A→ B
• is called injective if f(a) = f(a′) implies a = a′;
• is called surjective if ∀b ∈ B, there is some a ∈ A with f(a) = b;
• is called bijective if it is injective and surjective. A function is bijective if and

only if f−1 can be defined everywhere. In this case both f and f−1 are bijections
and f−1 ◦ f(a) = a. An injection f : A → B, always gives rise to a bijection
f : A→ f(A).

(8) For function f : A → B, and some sets A0 ⊆ A, B0 ⊆ B we define f(A0) = {f(a) :
a ∈ A0}, and f−1(B0) = {a : f(a) ∈ B0}. Notice that the latter is defined even if
f−1 is not defined as a function.

(9) If f : A→ B, IA, IB are some sets of indexes, (Ai)i∈IA is any collection of subsets of
A, and (Bi)i∈IB is any collection of subsets of B, then:
• f(∪i∈IAAi) = ∪i∈IAf(Ai);
• f(∩i∈IAAi) ⊆ ∩i∈IAf(Ai);

4



• f−1(∪i∈IBBi) = ∪i∈IBf−1(Bi);
• f−1(∩i∈IBBi) = ∩i∈IBf−1(Bi).

Exercise 0.1. Prove the above identities for sets and functions. Prove that being in bijection
induces an equivalence relation between sets.

From the point of view of set theory all sets that are in bijection are the same. For
example, for set theory sets {1, 2, 3}, {A,B,C} and {John, Jack, Tom} are all the same. If
A and B are in bijection, we sometimes say that they are equivalent and write that A ∼= B
- that this is really an equivalence relation was the content of the exercise just above.

A natural question to ask is when exactly are two sets equivalent, i.e. when is there
a bijection between them? Is there some easy criteria for that? This would help us also
somehow classify all possible sets. Let us start from finite sets.

0.1 Finite sets
Definition 0.1. If a set A is in bijection with {1, . . . , n} for some n ∈ N, then we say that
A is finite and define its size |A| by |A| := n. By definition an empty set is also finite and
has size 0. All other sets are called infinite.

But why is the size well-defined? Why couldn’t there be two different sets {1, . . . , n} and
{1, . . . ,m} in bijection with a finite set A?

One would like to argue as follows: Suppose that there are bijections f : A → {1, . . . , n}
and g : A→ {1, . . . ,m}. Then g ◦ f−1 is a bijection from {1, . . . , n} → {1, . . . ,m}, but this
is possible only if n = m.

But why is this final step true? Why can {1, . . . , n} not be in bijection with {1, . . . ,m}
for some m ̸= n? It would be very odd if a finite set is in bijection with its subset, so this
statement is very intuitive, but is it mathematically true? We will for example see that in
the case of infinite sets this is well possible!

The axiomatic setting of mathematics is exactly there to stop such discussions and to
establish a firm answer to these questions, starting from the axioms. In other words, one
just agrees on some set of axioms, on rules of logic and sees whether this is true or not in
this system.

For example, in our case, let’s agree (or if you wish, take as an "axiom") that an empty
set cannot be in bijection with a non-empty set.2 Agreed on this, we can prove a slight
generalization of the above statement:

Lemma 0.2. For any n ∈ N, the set {1, . . . , n} cannot be in bijection with any of its proper
subsets.

I may to skip this proof in the first read, as it is not that interesting nor important, but I
still wanted to give it for completeness...and of course I hope your curiosity still brings you
to read it! Other proofs are possible too!

[⋆ This proof is non-examinable ⋆]

2In fact, this "axiom" follows directly from the ZF axioms as in this axiomatic set-up, by definitions there
is no function from the 1-element set to the empty set.
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Proof. The case m = 1 follows from our "axiom": the only proper subset of {1} is the empty
set, and the empty set is not in bijection with the non-empty set {1}

Next, we use mathematical induction. So suppose the statement of the claim holds for
any set {1, . . . , k} for k ≤ n. Now, consider the set A := {1, . . . , n+ 1}.

Suppose for contradiction that B ⊆ A is some proper subset of A and that there is a
bijection f : A→ B. As B is a proper subset of A, there exists some a ∈ A but a /∈ B. We
define the sets A′ = A\{a} and B′ = B\{f(a)}. Then f : A′ → B′ is still a bijection and
B′ ⊆ A′ is still a proper inclusion.

We will now draw a contradiction from this, by looking at different cases.
• If n+1 /∈ B, we can take a = n+1. In this case A′ = {1, . . . , n} and B′ ⊆ {1, . . . , n}

is a proper subset of A′. But this is in contradiction with the induction hypothesis.
• So suppose n+ 1 ∈ B. We will have two sub-cases here.

(1) If f(a) = n+1, then B′ is a proper subset of {1, . . . , n}. On the other hand, B′ is
also in bijection with {1, . . . , n}: indeed, consider the function h : {1, . . . , n} →
A′ given by h(b) = b if b ̸= a and h(a) = n+ 1. The function h is both injective
and surjective, and thus bijective. Hence f ◦ h : {1, . . . , n} → B′ is a bijection
as a composition of bijections and we get a contradiction with the induction
hypothesis.

(2) So suppose f(a) ̸= n + 1 and consider B′′ := (B′\{n + 1}) ∪ {a}. Then by
definition B′′ is a proper subset of {1, . . . , n}. To draw a contradiction, let us
show that {1, . . . , n} is in bijection with B′′. Indeed, let h : {1, . . . , n} → A′ be
as in the point above. Similarly, consider g : B′ → B′′ given g(b) = b if b ̸= n+1
and g(n+1) = a, which is also a bijection. Then g ◦ f ◦h : {1, . . . , n} → B′′ is a
bijection as a composition of bijections. But B′′ is a proper subset of {1, . . . , n},
and thus we again obtain a contradiction with the induction hypothesis.

□

[⋆ End of the non-examinable proof ⋆]

From this we can easily establish the corollary that the size of a finite set is well-defined,
we can take a good breath and move on:

Corollary 0.3. Each finite set A has a well-defined size.

Proof. Suppose that there are bijections f : A → {1, . . . , n} and g : A → {1, . . . ,m}. Then
g ◦f−1 is a bijection from {1, . . . , n} → {1, . . . ,m} and thus we deduce from the claim above
that n = m. □

A very similar argument now shows that for finite sets size is really the only characterizing
property:

Lemma 0.4. Two finite sets are in bijection if and only if they have the same size.

Proof. Denote these two sets by A,B.
By definition, if A,B have finite and equal size, then for some n ∈ N, there exists bijections

f : A→ {1, . . . , n}, g : B → {1, . . . , n}. Then by composition law for bijections, f−1 ◦ g is a
bijection from B → A.
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In the other direction, by assumption there is a bijection ϕ : A → B. But as A is finite,
there is some n ∈ N and a bijection f : A → {1, . . . , n}. Thus, by composition law for
bijections, ϕ ◦ f−1 is a bijection from {1, . . . , n} to B, showing that B has also size n.

□

0.2 Infinite sets
But you already know that not all sets are finite, you have already met many "infinite" sets

like N, Z, Q, R, Rn. We should still check that they are infinite according to the definition
above: for example,

Lemma 0.5. N is infinite.

Proof. Suppose for a contradiction that N is finite. Then for some n ∈ N , there should
be a bijection f : N → {1, . . . , n}. But then there would in particular exist an injection
from {1, . . . n + 1} → {1, . . . , n}, and hence (as an injection is in bijection with its image)
a bijection of {1, . . . , n + 1} to its proper subset, which we know is impossible by Lemma
0.2. □

A natural question is how do the sizes of these infinite sets compare between each other?

Definition 0.6 (Countable/uncountable). If a set A is in bijection with N then it is called
countably infinite. If a set is finite or countably infinite, then it is called countable. All other
sets are called uncountable.

One can verify that another way to say this is the following:

Exercise 0.2. Prove that a non-empty set A is countable if and only if there is an injection
f : A→ N.

In particular this means that any subset of N is countable, and thus either in bijection
with N or with some {1, . . . , n} for some n ∈ N. In plain words, any such set can be counted
as 1, 2, . . . , ... (possibly stopping at a finite number), thus the name countable. The whole
numbers, the pairs of whole numbers and rationals are all countable:

Lemma 0.7. The set Z is countably infinite.

Proof. Consider the function f : Z → N defined by f(m) = 2m + 1, if m ≥ 0, and f(m) =
−2m, if m < 0. It is then easy to check that this is a bijection. □

Exercise 0.3. Prove that Z2 and Q are countably infinite. What about Q100?

The real numbers, however, are not countable:

Proposition 0.8 (V). The set R is uncountable.

Proof. This proof is called Cantor’s diagonal argument. R is not finite by a similar argument
that we gave for N. We suppose by contradiction that there is a bijection from N→ R, and
then show that we can construct some element of R without a preimage.

Indeed, suppose for contradiction that there is a bijection f : N→ R. Write the fractional
part of f(n) in its decimal expansion 0.x1(n)x2(n) . . . .

Our aim is now to define define a number y ∈ R that is not in the list f(1), f(2), . . . .
We will define this number using its decimal expansion: y = 0.y1y2y3 . . . as follows: for
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each i ∈ N just pick the digit yi different from xi(i), say concretely yi := xi(i) + 1 mod 10.
Moreover, to guarantee that we are not producing an alternative decimal representation of
a number (which, recall, is possible only if the decimal expansion ends with 99999 . . . or
with 000000 . . . ) we further choose yi different from yi−1, for example in such a case set
yi = xi(i) + 2 mod 10. Then we know that there is no n such that f(n) = x, and thus f
cannot be a bijection. □

A very similar argument gives the following result:

Exercise 0.4. Prove that a set A cannot be in bijection with the set of its subsets. [Hint: It
might be a good idea to start from taking A = N and think of the Cantor argument.] Deduce
that there are sets that are bigger than R, i.e. that there exist sets A such that there is an
injection R→ A, but no bijection.

We have now shown that R is not in bijection with Q or Z, it is in some sense "bigger".
But what about for example R2. Or what about comparing (0, 1) and [0, 1]? Or R and
the set of continuous functions on [0, 1]? Are they in bijection? In other words, are there
uncountable sets that are not in bijection with R? For example, are there sets of size between
N and R? 3

0.3 Schröder-Bernstein theorem
To answer these questions, we need to know the existence of bijections. But how to

construct a bijection between (0, 1) and [0, 1]. The next theorem is very helpful in saying
that the existence of a bijection can be deduced from just the existence of injections. It some
sense it is similar to deducing that a = b from knowing that a ≤ b and b ≤ a.

Theorem 0.9 (Schroder-Bernstein). If there is injection f : A → B and an injection
g : B → A, then there is a bijection between A and B.

Corollary 0.10. There is a bijection between [0, 1] and (0, 1).

Proof. We want to apply Schroder-Bernstein theorem, so we need to prove the existence of
an injection from (0, 1) to [0, 1] and vice-versa. Now, the identity map f(x) = x gives the
injection from (0, 1)→ [0, 1]. On the other hand the map x→ x/2 + 1/3 gives the injection
from [0, 1] to (0, 1) and thus we are done. □

Exercise 0.5. Prove that R and R2 are in bijection. What about R and the set of irrational
numbers?

The proof of Schroder-Bernstein is short, but a clever and tricky, and thus for the curious!
[⋆ The proof of Schroder-Bernstein theorem is for fun and non-examinable ⋆]

Proof. Notice that if b ∈ f(A), then f−1(b) is well-defined as f is injective. Similarly, if
a ∈ g(B), then g−1(a) is well defined.

Thus, for any a ∈ A, we can consider the sequence of a, g−1(a), f−1 ◦ g−1(a), . . . ..., where
we apply in turns g−1 and f−1 as long as it is possible, i.e. the functions are defined. For
example, the sequence would stop at the first step if a /∈ g(B), as then g−1(a) is not defined.
Notice that for any a ∈ A, there are three options:

3It’s good to think about it, but not for too long - the Continuum hypothesis says that there is no such
set, but in fact it cannot be proved from ZF axioms! It’s independent of these axioms.
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(1) Either this sequence continues infinitely;
(2) this sequence ends with an element a in A;
(3) or the sequence ends with an element b in B;

This trichotomy decomposes A into a disjoint union A = A1 ∪ A2 ∪ A3, each corresponding
to one of the options. Using this decomposition, we define a map ϕ : A→ B as follows:

(1) on A1 we set ϕ(a) = f(a);
(2) on A2 we also set ϕ(a) = f(a);
(3) on A3 we, however, set ϕ(a) = g−1(a).

To prove the theorem, it now suffices to argue that ϕ is a bijection.
To do this, first notice that for any b ∈ B, we could similarly consider the sequence

b, f−1(b), g−1 ◦ f−1(b), . . . . For this sequence there are the same three options, and again
they divide the set B into three disjoint subsets B1, B2, B3 based on which of the three
scenarios happens.

Now, observe the following:
• If a ∈ A1, then f(a) ∈ B1; and conversely, if b ∈ B1, then f−1(b) is well-defined and
f−1(b) ∈ A1. Thus ϕ restricted to A1 is a bijection between A1 and B1.
• Similarly, if a ∈ A2, then f(a) ∈ B2; and conversely, if b ∈ B2, then f−1(b) is well-

defined and f−1(b) ∈ A2. Thus ϕ restricted to A2 is a bijection between A2 and
B2.
• Finally, if a ∈ A3, then g−1(a) ∈ B3 and conversely for b ∈ B3, we have that g(b) ∈ A3;

Thus ϕ restricted to A3 gives a bijection between A3 and B3.
We conclude that ϕ : A→ B is a bijection.

□

[⋆ End of the non-examinable proof ⋆]
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Section 1

Topology and continuous functions

1.1 What is a topology?
Let us start by the definition of a metric space - a set together with a distance function.

This definition first appeared in Fréchet’s PhD thesis in 1906 - his motivation was to under-
stand better spaces of continuous functions and their properties, e.g. under which conditions
do continuous functions converge to continuous functions.

Definition 1.1 (Metric space). Let X be any set. Then a metric is a function d : X×X → R,
satisfying the following conditions:

• reflexivity: d(x, y) = 0 iff x = y;
• symmetry: d(x, y) = d(y, x);
• triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) for any x, y, z ∈ X.

The pair (X, d) is called a metric space.

It follows from these properties that in fact

Claim 1.2. If d is a metric then d(x, y) > 0 if x ̸= y.

Proof. Indeed, by symmetry we have that d(x, y) = d(y, x), by the triangle inequality we
have that 2d(x, y) = d(x, y) + d(y, x) ≥ d(x, x) and by reflexivity this equals 0. Thus we
conclude that d(x, y) ≥ 0. But we know that d(x, y) = 0 iff x = y, giving the conclusion. □

Some examples of metric spaces:
• Take X to be any set and define d(x, y) = 1 if x ̸= y and d(x, x) = 0. It is simple to

check the three conditions for being a metric. This is called the discrete metric.
• Take X = Rn and let d(x, y) = ||x − y||2. This way the Euclidean norm gives rise

to a metric (check!). We call it the standard metric on Rn. Any other norm would
similarly give rise to a metric.
• One can also put metrics on more complicated objects: e.g. the next exercise asks

you to how that the set C([0, 1]) of continuous functions on [0, 1] with d(f, g) =
supx∈[0,1] |f(x)− g(x)| gives rise to a metric space.
• Or, on more real-world objects: consider the set to be all towns in Switzerland and

the distances the cycling times in hours. Why does this give rise to a metric space?

Exercise 1.1 (Space of continuous functions). Consider the set C([0, 1]) of continuous func-
tions on [0, 1] with the metric d(f, g) = supx∈[0,1] |f(x)−g(x)|. Prove that this defines a metric
space. What happens if you instead consider continuous functions on (0, 1)?

We now come to the definition of topology that is usually traced back to a textbook by
Hausdorff on set theory, published in 1914. This definition might look scary to begin with,
but it will hopefully become a friend as the course progresses:

Definition 1.3. Let X be any non-empty set. Then a topology on the set X is a collection
τ of subsets U ⊆ X satisfying the following properties:

(1) Both ∅ ∈ τ and X ∈ τ ;
10



(2) the intersection of any finite number of sets in τ , is again in τ ;
(3) the union of any (possibly uncountable!) collection of sets in τ , is again in τ .

The sets U ∈ τ are called open sets and the pair (X, τ) is called a topological space.

Remark 1.4. Notice that the second condition could have been also worded as:
(2’) The intersection of any two open sets is again an open set - the case of all finite sets

would then follow by induction.

You should not worry if you don’t see the intuition behind this definition straight away
- at the moment this is just like looking at the architectural plan of the house, but we will
also visit and see the house.

Historically it took some 40 years before people agreed on this very definition of topology:
the notion of open sets started entering analysis in the very end of 19th century, and was first
named in the PhD thesis of Baire in 1899 (open domains in Rn) and Lebesgue in 1902. In the
beginning, open sets were just used in the context of analysis on Rn to clarify the existing
definitions and results. The idea of studying an abstract space came roughly at the same
time, and was really first put down by Hausdorff: in his introductory book on set theory in
1914, he gave a definition of an abstract topological space, taking as a primitive idea "the
neighbourhood of a point". Whereas he didn’t use exactly open sets to define the topology
4, and had worked with a special type of topological space (that we will call a Hausdorff
space later), this was the real starting point of topology. Interestingly, in the next edition of
his book, he replaced general topological spaces again with metric spaces (i.e. spaces with a
distance function), but now the idea had started spreading.

The current definition became most likely standard due to the Bourbaki group in France
- this was a secret group of high-level French mathematicians who met, argued loudly and
drank wine with the aim to write down proper foundations of mathematics, and develop all
existing mathematics from these foundations. Whereas they didn’t manage to fulfil their
complete aim - mathematics was developing quicker than they could write it down - they
did set the golden standard for many definitions and notions.

Here are some very basic examples of topologies.
• On the two element set X = {0, 1} we could for example take τ = {∅, {0, 1}} or also
τ = {∅, {0}, {0, 1}}. It is easy to check that both collections of subsets satisfy the
three properties for being a topology.
• On the set of three elements X = {0, 1, 2} we could take several different topologies.

For example τ = {∅, {0}, {1, 2}, {0, 1, 2}} gives a topology, but for example τ =
{∅, {0, 1}, {1, 2}, {0, 1, 2}} does not - the intersection of the sets {0, 1} and {1, 2} is
not contained in τ .

As the above shows, we can put many different topologies on a given set, giving them a
different geometric structure. Sometimes two topologies on a set can be comparable: if τ 1
and τ 2 are two topologies on X and τ 1 ⊆ τ 2, then τ 2 is called finer and τ 1 coarser. Not all
topologies are comparable (find an example!).

The two extremes topologies on any set are the discrete and the indiscrete topology:

4he used something called "neighbourhoods", but they also don’t quite correspond to the intuitive idea
of a neighbourhood in a town or city.
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• The discrete topology τD on X contains all possible subsets and is thus the finest
topology on any set. (Check that it is a topology!).
• The indiscrete topology τI contains only the empty set and the whole space and is

thus the coarsest topology on any set X. (Check that it is a topology!).
It should, however, be mentioned that a finer topology doesn’t necessarily mean more "in-
teresting structure". We will make this more precise soon.

Exercise 1.2. Find a chain of 5 topologies τ1, . . . , τ5 on {0, 1, 2} such that for each i = 1 . . . 4,
τi is coarser than τi+1. Write down 3 topologies on {0, 1, 2} so that no pair is comparable.

1.1.1 The metric topology
To gain some intuition about the definition of topology, let’s go back to what we understand

better. Namely, a central example of a topology is the topology induced by a metric space.
To start, we introduce the notion of a metric ball around some point x ∈ X - the set of

points closer than a certain distance to this point.

Definition 1.5 (Metric ball). Let (X, d) be a metric space. Then for any δ > 0, we define
the open ball to be B(x, δ) := {y ∈ X : d(x, y) < δ}.

One way to define open sets of a metric space, i.e. to define the metric topology is to then
just declare a set U open if around any point x ∈ U , we can find an open ball B(x, ϵ) ⊆ U :

Lemma 1.6 (Metric topology). Let (X, d) be a metric space. Define a set of subsets τd as
follows:

• We declare U ⊆ X to be open (this is, we set U to be in τd), if for every x ∈ U , we
can find some δ > 0 such that B(x, δ) ⊆ U .

Then τd is a topology and is called the metric topology.

As a quick sanity check, notice that open metric balls are themselves open sets.

Proof. We need to verify the conditions of the topology:
(1) X ∈ τd as any metric ball is by definition a subset of X, ∅ ∈ τd as the condition is

void.
(2) Let U1 ∈ τd, U2 ∈ τd. Consider now x ∈ U1 ∩ U2. Then there exits δ1, δ2 > 0 such

that B(x, δ1) ⊆ U1 and B(x, δ2) ⊆ U2. In particular, if we set δ = min(δ1, δ2) then
B(x, δ) ⊆ U1 ∩ U2.

(3) Let I be any index set and Ui ∈ τd for all i ∈ I. Consider x ∈
⋃

i∈I Ui. Then
there is some i ∈ I such that x ∈ Ui and thus by definition of τd, some δ > 0 with
B(x, δ) ⊆ Ui. But then B(x, δ) ⊆

⋃
i∈I Ui giving the claim.

□

There is another equivalent way to define the metric topology:

Lemma 1.7. Let (X, d) be a metric space and let τd be the metric topology. Then a set U
is open if and only if it can be written as a union of open metric balls.

Proof. As open metric balls are themselves open sets, all possible unions of them are open
sets.

12



In the other direction, by definition of τd, for any U ∈ τd and any x ∈ U , we can find a
ball B(x, δx) ⊆ U . We now notice that

⋃
x∈U B(x, δx) = U . Indeed, as each B(x, δx) ⊆ U ,

then also
⋃

x∈U B(x, δx) ⊆ U and clearly U ⊆
⋃

x∈U B(x, δx). □

Thus any metric space gives naturally rise to a topological space. In particular,
• The Euclidean metric in Rn gives rise to a topology on Rn called either the Euclidean

or the standard topology.
• As should be expected, the discrete metric on any set X gives rise to the discrete

topology τD on X. To prove this, it suffices to show that all singleton sets {x} belong
to τd - all other subsets are given by unions of those. But now, notice that we can
write {x} = B(x, 0.5). Moreover, by definition the open ball B(x, 0.5) is an open
set of the metric topology. Thus {x} also is an open set and hence by what we said
above indeed τd = τD.

1.1.2 Basis of a topology
In the metric topology there was a nice way to write any open set as a union of metric

balls. Something similar is possible in all topological spaces, via the notion of a basis. A
basis in topology is also a bit analogous to a basis of a vector space, we have some simpler
bricks out of which we can build up everything else.

Definition 1.8 (Basis of a topology). Let X be a set. Then a collection τB of subsets of X
is called a basis for a topology, if it satisfies two conditions:

• The union of all V ∈ τB covers X (i.e.
⋃

V ∈τB V = X);
• and for any V1 ∈ τB, V2 ∈ τB and x ∈ V1 ∩ V2, there is some V3 ∈ τB with x ∈ V3 ⊆
V1 ∩ V2.

Notice that a priori we have not yet defined a topology on X, just a certain collection
of subsets. However, any such collection naturally generates a topology via the following
proposition:

Proposition 1.9. Given some set X, and any subset τB satisfying the conditions of Defi-
nition 1.8, consider τ to be the set of all possible unions of V ∈ τB, together with the empty
set. Then τ defines a topology on X. We also then say that τB is a basis for the topology τ .

As many proofs in this section, this proof also contains no essential new idea - one hast to
just directly verify the conditions for a topology. In fact, the mathematical content in basic
topology hides rather in notions, definitions and structures than the proofs, which are more
sort of verifications that things have been set up correctly.

Proof. We need to carefully check that the three conditions for a topology hold:
• The empty set belongs to τ by the condition of the proposition, and the full space

by the conditions of Definition 1.8.
• Intersection property: U1 ∈ τ and U2 ∈ τ , then by the condition of the proposition,

we can write U1 =
⋃

i∈I Vi and U2 =
⋃

j∈J Vj for some index sets I, J and for some
sets Vi ∈ τB, Vj ∈ τB for all i ∈ I, j ∈ J . Then

U1 ∩ U2 = (
⋃
i∈I

Vi) ∩ (
⋃
j∈J

Vj) =
⋃

i∈I,j∈J

(Vi ∩ Vj).
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Now, consider x ∈ U1 ∩ U2, then ∃ix ∈ I, jx ∈ J such that x ∈ Vix ∩ Vjx . But by
the second condition for being a basis, there is thus an element Vx ∈ τB such that
x ∈ Vx and Vx ⊆ Vix ∩ Vjx . It is now easy to see that U1 ∩ U2 =

⋃
x∈U1∩U2

Vx, and
thus U1 ∩ U2 ∈ τ .
• Union property: if (Vi)i∈I are some sets in τ , then they are unions of U ∈ τB. But

then also any union of them will be an union of U ∈ τB, and hence an element in τ .
□

Notice that any topology containing the subset τB has to contain the union of all elements
in τB. Thus a way to rephrase the previous lemma is to say that:

• The topology τ is the smallest topology containing the basis τB.
Conversely, we see that:

Exercise 1.3. Let (X, τ) be a topological space. Let τ̃B ⊆ τ be a collection of subsets such
that any set in τ is an union of sets from τ̃B. Prove that τ̃B is a basis for a topology, and
that the topology induced by this basis is τ .

It is good to verify that we didn’t lie before - open balls do form a basis for the metric
topology:

Lemma 1.10. Let (X, d) be a metric space. Then τB := {B(x, δ) : x ∈ X, δ > 0} is a basis
for the metric topology τd.

Proof. By Exercise 1.3, we need to verify that any U ∈ τd can be written as a union of
elements from τB. But we know this from Lemma 1.7. □

In the case of Euclidean topology, things are even nicer, all open sets can be described as
the unions of countably many sets:

Exercise 1.4. Prove that the balls B(x, δ) where x ∈ Qn and δ ∈ Q ∩ (0,∞) are a basis for
the Euclidean topology on Rn. Moreover, prove that there are countably many elements in
this basis. Find a metric space which does not have a countable basis.

One can now also see the difference between a basis in a topology and in a finite-
dimensional vector space: in the latter, given a basis, each element has a unique writing
as a linear combination of the basis elements, whereas here open sets could be written as
many different unions using the sets in a topological basis.

1.1.3 Some non-metric topologies and closed sets
We have seen that metric topologies are quite nice. However, not all topologies stem from

metric spaces. To give two quick examples:
• For any set X, the indiscrete topology τI = {X, ∅} does not stem from a metric. We

will prove this shortly, but it might be a good idea to think a bit about it before.
• A slightly more interesting example is that of a co-finite topology. For any set X

we take τ to contain all subsets, whose complement w.r.t. X is finite together with
the empty set. It is an exercise to prove that this defines a topology. We will also
see that this topology can also not stem from an underlying metric, but we need to
develop some more concepts to prove this.

Exercise 1.5. Prove that the co-finite topology defined above is indeed a topology.
14



In defining co-finite topology, we saw how complements of open sets naturally enter the
scene.

Definition 1.11 (Closed sets). Let (X, τ) be a topological space. A set C is called closed if
it is a complement of some open set, i.e. if we can write C = X\U with U ∈ τ .

In fact, we could have defined the topology of a set also using closed sets. The set of closed
sets has exactly the same information as the set of open sets. The closed sets would have
had to satisfy then the following properties:

Exercise 1.6. Let (X, τ) be a topological space. Then both ∅ and X are closed sets. Prove
that any finite union of closed sets is again closed, and an arbitrary intersection of closed
sets is closed.

It is important to remark that there are many sets that are neither open nor closed: for
example, if X is any set that contains at least two points, then for the indiscrete topology
(X, τI) all the singletons {x0} for x0 ∈ X are neither open nor closed.

On the contrary, in the discrete topology every singleton is both open and closed: indeed,
by definition of the discrete topology {x0} is open for any x0 ∈ X; but as X\{x0} =⋃

x∈X;x ̸=x0
{x}, we see that {x0} is also closed.

Claim 1.12. In a metric space (X, d) all singletons {x} are closed sets of the metric topology.
Also, all closed balls B(z, δ) = {x ∈ X : d(x, z) ≤ δ} are closed sets.

Proof. Let x ∈ X. Then for any y ∈ X the ball B(y, 0.5d(x, y)) does not contain x. Thus
we can write X\{x} as X\{x} =

⋃
y∈X B(y, 0.5d(x, y)), which is open. Hence {x} is closed.

The second part is on the example sheet.
□

In particular, as for the indiscrete topology on the space of at least two points the singletons
are nor open, nor closed we have that:

Corollary 1.13. The indiscrete topology on a space X with at least two points cannot be a
metric topology for some metric space (X, d).

1.1.4 Interior/closure/boundary
By definition closed and open sets are complements of each other. However, there are

other natural relations between open and closed sets, defined in terms of certain operations.

Definition 1.14 (Interior and closure). Let (X, τ) be a topological space. Then for any
subset A ⊆ X, the interior of A, denoted int(A) is defined as the largest open set contained
in A, and the closure of A, denoted cl(A) is defined as the smallest closed set containing A.

One should wonder why is this largest or smallest well-defined? For example (0, 1) has no
smallest element, so the question is well-justified. However, in our case things are very nice,
because open sets are stable under union, and closed sets stable under intersection 5:

Lemma 1.15. Let (X, τ) be a topological space and A some subset. Then the interior and
closure of A are well defined. The interior is equal to the union of all open sets contained in
A, and the closure is equal to the intersection of all closed sets containing A.

5And in particular, for those who are interested - because of this stability there is no need for Zorn’s
lemma here...
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Proof. Let us consider the case of the interior. Then if (Ui)i∈I is the collection of open sets
contained in A, we have that V =

⋃
i∈I Ui is open. But by definition of V , any open set

Ui ⊆ A satisfies Ui ⊆ V . Thus V = int(A). □

It follows from the definition, for any open set U , int(U) = U and for any closed set C,
we have that cl(C) = C. Interestingly, it was in terms of closures that one first described an
abstract topological space equivalent to our definition:
Exercise 1.7 (Kuratowski’s formulation of a topological space). In 1922 Kuratowski con-
sidered an arbitrary set X with an operation named "closure" cl from the set of subsets of
X to itself, satisfying the following axioms:

(1) For any two subsets A,B of X, we have cl(A ∪B) = cl(A) ∪ cl(B);
(2) A ⊆ cl(A);
(3) cl(∅) = ∅ and cl(X) = X.

Show that if we start from a topological space (X, τ), then the closure defined by Definition
1.14 satisfies all these conditions.

In the opposite direction, suppose we have a set X and the operation cl. Define a set C
to be closed iff it equals its closure. Show that the sets X\C form a topology on X.

(*) Finally, prove that when we add the fourth axiom (4) cl(cl(A)) = cl(A), then there is a
bijection between the set of all possible functions cl satisfying conditions 1-4 and all possible
topologies.

The notions of interior and closure motivate us to think of open sets as of an interior of
a garden. A closed set then corresponds to a garden together with its fence, and closure to
adding a fence to your piece of land. But what about the notion of a fence itself?
Definition 1.16 (Boundary of a set). Let (X, τ) be a topological space and A ⊆ X. Then
the boundary of A, denoted ∂A, is defined as cl(A)\int(A).

Notice that the boundary could also be empty, this happens iff the set is both closed and
open. For example there are no boundaries in the discrete topology.

One would intuitively want to say that ∂A = ∂(X\A). And indeed, this is the case. To
prove this we first find a maybe slightly less appealing definition of the boundary:
Lemma 1.17. Let (X, τ) be a topological space and A ⊆ X. Then x ∈ ∂A if and only if for
any open set U containing x, we have that both U ∩ A and U ∩ (X\A) are non-empty.
Proof. If x /∈ ∂A, then either x ∈ int(A) or x ∈ X\cl(A). If x ∈ int(A), then int(A) is an
open set surrounding x that doesn’t intersect X\A. Similarly, if x ∈ X\cl(A), then X\cl(A)
is an open set containing x that doesn’t intersect A.

In the opposite direction, suppose there is some open set U containing the point x, such
that either U ∩ A is empty or U ∩ (X\A) is empty. In the first case, notice that the closed
set X\U must contain A. In particular, by definition of closure, we have that cl(A) ⊆ X\U
and hence x /∈ cl(A). In the second case U ⊆ A, and as U is open it means that U ⊆ int(A).
But then again x /∈ cl(A)\int(A) and the lemma follows. □

As a corollary we can now affirm our intuition:
Corollary 1.18. Let (X, τ) be a topological space and A ⊆ X. Then ∂A = ∂(X\A).
Proof. Indeed, the equivalent definition of the boundary in Lemma 1.17 is symmetric w.r.t
A and X\A. □
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1.2 Convergence and continuous maps
As mentioned in the introduction, a topology endows the set X with a notion of nearness.

As the topology is defined by a collection of open sets, it is then tempting to think that the
open sets give some sort of neighbourhoods around points. There is some truth to it:

• If we deal with a metric topology, then open balls are also open sets, and open balls
by definition contain points close to the centre of the ball.
• Moreover, sequences and continuity can be defined using open sets.

Indeed, the notion of convergence is a direct generalization of the convergence in Rn, when
we replace open balls with open sets.

Definition 1.19 (Convergence). Let (X, τ) be a topological space and (xn)n≥1 a sequence of
points in X. We say that xn converges to x, denoted xn → x if for any open set U containing
x there is some nU ∈ N such that ∀n ≥ nU : xn ∈ U .

But one should also keep in mind that:
• There are many open sets that one would not intuitively think of as of neighbour-

hoods: even in a metric topology also unions of distant disjoint balls are open sets.
• Statements like "y is closer to x than z because it is in more open sets" usually don’t

make literal sense. The notion of nearness present in topology does not usually give
a generic meaning to "is closer to". In fact, we will see that if you take R2 with the
standard topology then you can map any distinct m points to any distinct m points
without changing the topology.
• It is possible that all open sets are unimaginably big - e.g. think of open sets in the

indiscrete or co-finite topology for R.
Moreover, concepts like convergence might not always behave like we expect. Firstly, limits

are not necessarily unique. Indeed, for example in a topological space with the indiscrete
topology any sequence will converge to all points. A more interesting example is the following:

Exercise 1.8. Consider N with its cofinite topology.
• Find a sequence that converges simultaneously to all n ∈ N.
• Can you find a sequence that converges exactly to the points 1 and 2?

Secondly, sequences may not suffice to describe the structure of the topological space. For
example, from the Euclidean topology on Rn we are used to the fact that the boundary of a
set can be described using sequences of points inside the set: i.e. if for some set A we have
that x ∈ ∂A, then there is some sequence of points (xn)n≥1 in A such that xn → x. This
is not necessarily the case in topological spaces - we will not be always able to define the
boundary using sequences.

Exercise 1.9 (⋆ McMullen p. 19-20). Consider R with the co-countable topology. Show that
the closure of (0, 1) is the whole space. On the other hand show that there is no sequence in
(0, 1) converging to 2.

It might be worth mentioning that these two counter-intuitive things happen for different
reasons. The first one has more to do with the fact that the topology might be too sparse
- there are not enough open sets to separate points. The second one happens in fact when
the topology is too big - there are just too many open sets to describe everything using
sequences. We will come back to these two points at the end of the chapter.

17



1.2.1 Continuity at a point
Let us now get to continuity and start from looking at continuity at some fixed point.

This way, the definition of continuity can be also seen as a direct generalization from the
usual ϵ − δ definition in real analysis. Let us see how this generalization happens step by
step:

• A function f : R → R is called continuous at x if ∀ϵ > 0, there is some δ > 0 such
that whenever |z − x| < δ, then |f(x)− f(z)| < ϵ.
• Now, rewrite the latter conditions using metric balls: A function f : R→ R is called

continuous at x if ∀ϵ > 0, there is some δ > 0 such that f(B(x, δ)) ⊆ B(f(x), ϵ).
• We know that each open set around f(x) contains an open ball around f(x), so it is

equivalent to require that: A function f : R → R is called continuous at x if for all
open sets U around f(x), there is some δ > 0 such that f(B(x, δ)) ⊆ U .
• Similarly, it is also equivalent to replace the second open ball by a general open set:

A function f : R → R is called continuous at x if for all open sets U around f(x),
there is some open set V around x, such that f(V ) ⊆ U .

This final definition generalizes nicely to topological spaces:

Definition 1.20 (Continuity at a point). A map f : X → Y from a topological space (X, τX)
to a topological space (Y, τY ) is continuous at a point x ∈ X, if for any open set U containing
f(x), there is some open set VU containing x, such that f(VU) ⊆ U .

Exercise 1.10. Verify carefully that this definition is equal to the usual definition for real
functions.

Remark 1.21. From now onwards we will always, when working with continuous maps also
keep track of the topologies: i.e. although the function is defined on the points of X, we
will denote f : (X, τX) → (Y, τY ) to keep track of the topologies too. Different choices of
topologies might make the same function continuous or discontinuous.

It comes out that even in an abstract topological space, this definition implies that:

Lemma 1.22. Suppose (X, τX), (Y, τY ) are topological spaces and suppose that the map f :
(X, τX) → (Y, τY ) is continuous at x ∈ X. Then for any sequence (xn)n≥1 → x, we have
that (f(xn))n≥1 → f(x).

Proof. Consider a sequence (xn)n≥1 and for each n ∈ N, let yn = f(xn). Let further y = f(x).
We need to prove that for any open set U ∈ τY containing y, there exists some nU ∈ N such
that ∀n ≥ nU , we have that yn ∈ U .

So, consider an open set U containing y. By continuity of f at the point x (Definition
1.20), there is some open set VU containing x such that f(VU) ⊆ U . By the definition of
convergence of (xn)n≥ → x, there exists some nV ∈ N such that ∀n ≥ nV we have that
xn ∈ VU , and thus by the definition of VU , for all n ≥ nV we have that yn = f(xn) ∈ U . □

Remark 1.23. Interestingly, the converse of this lemma does not hold in general topological
spaces - i.e. one find topological spaces (X, τX), (Y, τY ) and a function f : X → Y such that
for some point x we know that for any sequence (xn)n≥1 → x, we have that (f(xn))n≥1 →
f(x); and yet f is not continuous at x. We will later see that the converse does hold for the
metric topology.
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1.2.2 Continuity of a map
The global continuity of a map can be formulated in even a slicker way:

Proposition 1.24 (Continuous map). A map f : X → Y from a topological space (X, τX)
to a topological space (Y, τY ) is continuous at every point x ∈ X iff the pre-image of any
open set is an open set, i.e. iff for any open set U of (Y, τY ) we have that f−1(U) is open in
(X, τX).

Often when we check continuity of a map, we will in fact use this condition. An equivalent
condition would be to require that the pre-image of any closed set is a closed set. It is key
to remember here is that continuity has to do with preimages:
Exercise 1.11 (⋆). Find a function f : R→ R such that f(U) is open for all open sets U ,
but f is not continuous. Find a continuous function f : R → R that doesn’t map open sets
to open sets.
Proof of Proposition 1.24. Suppose first that for any U ∈ τY we have that f−1(U) ∈ τX .
We want to show that f is continuous at all x ∈ X. So pick some x ∈ X and an open set
U ∈ τY with f(x) ∈ U (at least the whole space is such an open set). Then we know that
VU := f−1(U) is open and moreover x ∈ VU , thus as f(VU) ⊆ U , we see that f is continuous
at x, according to Definition 1.20.

In the opposite direction, suppose that f is continuous at each x ∈ X according to
Definition 1.20. Take some open set U in Y . If f−1(U) is empty, then we are done as
the empty set is an open set. Otherwise, consider any x ∈ V := f−1(U). Then by the
continuity of f at x we know that there is some open set Vx with f(Vx) ⊆ U and thus
Vx ⊆ V . Now define V̂ =

⋃
x∈V Vx. Then V̂ is open as an union of open sets. Moreover, we

have that V̂ ⊆ V as for every x ∈ V we have that Vx ⊆ V . On the other hand V ⊆ V̂ as for
any x ∈ V , we know that x ∈ Vx ⊆ V̂ . Thus f−1(U) = V = V̂ is open and hence indeed the
preimage of every open set is open. □

Here are some basic examples:
• The identity map from (X, τX) to itself is always continuous.
• The constant map from any space to any space is continuous.
• ConsiderX = {0, 1}, τ1 = {∅, {0}, {0, 1}} and τ2 = {∅, {1}, {0, 1}}. Then the identity

map from (X, τ1) to (X, τ2) is not continuous as the preimage of {1} is {1} and it is
not an open set in τ1. Yet, the map f that sends 1→ 0 and 0→ 1 is continuous.
• Any map from a topological space (X, τX) to a topological space (Y, τI) with indiscrete

topology is continuous: indeed the only open sets in the indiscrete topology are the
empty set and the whole space. Their preimages are again the empty set and the
whole space. Indeed, it is always the case that f−1(Y ) = X as every point of X by
definition maps somewhere.
• Any map from a topological space with discrete topology to any topological space is

continuous: this is just because all sets in the discrete topology are open.
In general for a map f : X → Y , it is easier to be continuous if X has many open sets,

and harder if Y has many. You should make sure to understand why this makes sense in an
intuitive way.

There are three nice facts about continuous maps. First, there is a neat fact - continuous
maps are sufficient to describe the topology (X, τX):

19



Exercise 1.12. Consider {0, 1} with the topology τ = {∅, {1}, {0, 1}}. For any subset A ⊆ X
define the function fA : X → {0, 1} to be equal to 1 if x ∈ A and 0 otherwise. Show that fA
is continuous exactly when A is open.

Second, there is an important fact - the composition of continuous maps remains contin-
uous:

Lemma 1.25. Suppose (X, τX), (Y, τY ), (Z, τZ) are topological spaces and f : (X, τX) →
(Y, τY ), g : (Y, τY ) → (Z, τZ) are continuous maps. Then g ◦ f : (X, τX) → (Z, τZ) is also
continuous.

Proof. Consider any open set U ⊆ Z. Then by continuity of g, we have that V = g−1(U) is
open in Y . Thus, by continuity of f , f−1(V ) = f−1 ◦ g−1(U) = (g ◦ f)−1(U) is open in X.
Hence the lemma follows from Proposition 1.24. □

And finally, an useful fact is that it suffices to check the continuity only for a basis:

Exercise 1.13. Let (X, τX) and (Y, τY ) be two topological spaces and f : X → Y a map.
Let further τBY be a basis for τY and suppose that for any U ∈ τBY , we know that f−1(U) is
open in X. Prove that f is continuous.

1.3 Equivalence of topological spaces - homeomorphisms
In the beginning of the course we mentioned that each class of spaces - sets, topological

spaces, metric spaces, normed vector spaces - comes with a notion of equivalence, i.e. a
notion of when two spaces are equal from the point of view of this class. For sets this notion
was given by a bijection. For topological spaces, this notion is called a homeomorphism:

Definition 1.26 (Homeomorphism). Let (X, τX), (Y, τY ) be two topological spaces. Then
f : X → Y is called a homeomorphism if f is bijective and both f and f−1 are continuous.

It is important to notice that a continuous bijective map might not yet be a homeomor-
phism: indeed, consider a set X with its indiscrete topology (X, τI), and with its discrete
topology (X, τD). Then we know that the identity map from (X, τD) to (X, τI) is continuous,
as a map to the indiscrete space is always continuous. However, as soon as X is larger than
a point, the inverse which is a identity map from (X, τI) to (X, τD) is not continuous.

Definition 1.27 (Homeomorphic spaces). Two topological spaces (X, τX) and (Y, τY ) are
called homeomorphic or equivalent as topological spaces if there exists a homeomorphism
f : X → Y . We denote this by (X, τX) ∼= (Y, τY ).

Let’s try to put this into words: as long as we deform a topological space continuously in
a way that can be continuously undone, the space actually remains (from the point of view
of topology) unchanged. This is why topology is sometimes called "rubber geometry"- you
can deform and mould a piece of rubber as you wish, as long as you are not pinching holes,
tearing the rubber into several pieces nor gluing it together at some points, you are not
changing the topology of your piece of rubber. Notice that this means much more freedom,
then if you had to keep distance between different rubber points fixed!

Exercise 1.14. Verify that being homeomorphic induces an equivalence relation on topolog-
ical spaces.
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Here are some examples of homeomorphic spaces:

• We saw already that (X, τI) and (X, τD) are not homeomorphic. In particular differ-
ent topologies on the same space can induce topological spaces that are inequivalent.
• On the other hand, considerX = {0, 1} and two topologies given by τ1 = {∅, {0}, {0, 1}}

and τ2 = {∅, {1}, {0, 1}}. Then the identity map between (X, τ1) and (X, τ2) is not
continuous, yet the two spaces are homeomorphic via f that swaps 0 and 1.
• The open interval (0, 1) with the Euclidean topology is homeomorphic to (0,M)

with the Euclidean topology for any M > 0 using x → Mx. Similarly, (0, 1) is
homeomorphic to (0,∞) using x→ x−1 − 1.

In fact, there are many important examples and non-examples from the realm of Euclidean
spaces, some of which will be proved only much later in the course:

• The spaces (0, 1) and R with Euclidean topology are homeomorphic;
• The spaces (0, 1) and [0, 1] with Euclidean topology are not homeomorphic;
• The spaces R and R2 with Euclidean topology are not homeomorphic.
• More generally, the spaces Rn and Rm with Euclidean topology are homeomorphic

iff m = n.

To show that two topological spaces are homeomorphic we usually have to find an explicit
homeomorphism:

Exercise 1.15. Prove that (0, 1) and R are homeomorphic.

Only sometimes we are lucky, and some easy property is equivalent to being homeomorphic:

Lemma 1.28. Two topological spaces (X, τD), (Y, σD) with discrete topology are homeomor-
phic if and only if there is a bijection between the sets X and Y .

Proof. One direction is clear, as by definition a homeomorphism is in particular a bijection
on the underlying sets. In the other direction, let f : X → Y be a bijection. We know that
any map from a space with the discrete topology is continuous. Thus, both f and f−1 are
continuous and hence f is a homeomorphism between (X, τD) and (Y, σD). □

A similar claim holds also when you consider two topological spaces with indiscrete topol-
ogy, and maybe more surprisingly, when you consider the co-finite topology (Why?).

To show that two topological spaces (X, τX) and (Y, τY ) cannot be homeomorphic, it
suffices to find some property that holds for (X, τX) and holds for any space that is home-
omorphic to (X, τX), but doesn’t hold for (Y, τY ). Such a property is called a topological
invariant and we will see several important topological invariants throughout the course.
Here are some examples:

(1) The property ’all singletons are open’ is a topological invariant: if there is a home-
omorphism f : X → Y between (X, τX) and (Y, τY ) then as f−1 is bijective, each
f−1({y}) is a singleton and as f−1 is continuous each f−1({y}) is open iff {y} ∈ τY .

(2) It is easy to check that the property that each converging sequence has a unique limit
is a topological invariant.

(3) The property that each sequence has a convergent subsequence is also a topological
invariant (we will return to this later in the course).
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1.3.1 Hausdorff spaces
Let us look at one important example of a topological invariant in more detail. When

Hausdorff first introduced topological spaces in his 1914 book he included an extra condition
- he axiomatically asked open sets to separate individual points. Nowadays these spaces are
called Hausdorff spaces:

Definition 1.29 (Hausdorff space). A topological space (X, τX) is called Hausdorff if for
any two distinct points x, y we can find two disjoint open sets Ux, Uy such that x ∈ Ux and
y ∈ Uy.

This is a reasonable thing to ask, as then automatically sequences do have unique limits:

Lemma 1.30. If (X, τX) is Hausdorff, then any convergent sequence has a unique limit.

Proof. Suppose that a sequence (xn)n≥1 converges to a point x and let y be some other
point. As the space is Hausdorff, then there are some disjoint open sets Ux, Uy containing
respectively x and y. But if (xn)n≥1 → x, then from some n0 onwards all (xn)n≥n0 belong to
Ux and thus not to Uy. Hence by the definition of convergence,(xn)n≥1 cannot converge to
y. □

The discrete topology is always Hausdorff, and indiscrete topology is not Hausdorff as soon
as we have a space with at least two points. A slightly more interesting example is the metric
topology that is also Hausdorff: indeed, for any x ̸= y we can take Ux := B(x, d(x, y)/3) and
Uy := B(y, d(x, y)/3). We saw that singletons are closed in metric spaces. This holds more
generally for Hausdorff spaces:

Exercise 1.16. Prove that in a Hausdorff space all singletons are closed.

As promised we should check that being Hausdorff is a topological invariant:

Lemma 1.31. Suppose that (X, τX) is Hausdorff and f : (X, τX) → (Y, τY ) a homeomor-
phism. Then (Y, τY ) is also Hausdorff.

Proof. Pick two distinct points y1 = f(x1) and y2 = f(x2) in Y . Then as (X, τX) is Hausdorff,
we can find U1, U2 two disjoint open sets such that x1 ∈ U1 and x2 ∈ U2. But then, as f−1

is continuous, f(U1) and f(U2) are both open, and as f is injective, they are disjoint. Thus
V1 = f(U1) and V2 = f(U2) are the desired disjoint open sets separating y1 and y2 and hence
(Y, τY ) is Hausdorff. □

Finally, we should mention that we have also already met a more interesting non-Hausdorff
topology:

Exercise 1.17. Prove that an infinite set with the co-finite topology is not Hausdorff and
deduce that cofinite topology on infinite sets cannot be induced by a metric.

1.4 New from old: unions, subspaces and product spaces
Let us now look at the several ways to form new topological spaces from already existing

ones. Indeed, there are several ways to construct new sets from old sets: we can either take
unions, subsets or products of sets. In all cases, if the initial set is endowed with a topology,
there is a natural way to induce a topology also on those sets. We will here treat the case
subspaces and product spaces. The case of unions is easier and will be left to the exercise
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sheet; the case of quotient topology is harder and is left to the starred section of the exercise
sheet, and to the next semester.

1.4.1 Subset topology
We can define a topology on [0, 1] by using the metric topology induced by d(x, y) = |x−y|.

However, [0, 1] is also naturally a subspace of R and thus one would expect that there is a
way to restrict the topology to a subset. And indeed, there is a natural way to do this:

Proposition 1.32 (Subspace topology). Let (X, τX) be a topological space and A a subset
of X. Then define τX,A to be the collection of sets of the form A ∩ U , where U ∈ τX . Then
τX,A defines a topology on A that is called the subspace topology.

Proof. One can directly check that the three conditions for being a topology hold:
• As ∅ ∩ A = ∅ and X ∩ A = A, we see that the empty set and the whole space are in
τSA .
• The intersection property: Let V1, V2 be two sets in τX,A. Then there exist some U1, U2

in τX such that V1 = A∩U1 and V2 = A∩U2. Thus V1 ∩ V2 = (A∩U1)∩ (A∩U2) =
A ∩ (U1 ∩ U2). But U1 ∩ U2 ∈ τX and hence V1 ∩ V2 ∈ τX,a.
• The union property follows similarly: if Vi = A ∩ Ui, then

⋃
i∈I Vi = A ∩ (

⋃
i∈I Ui).

□

It is important to check that the topology defined this way indeed coincides with what we
expect:

Exercise 1.18. Let (X, d) be a metric space, then it induces a topological space (X, τX) via
the metric topology. Now consider A ⊆ X. If we restrict d to A × A, we obtain a metric
space (A, d) and this induces a topological space (A, τA). Prove that τA coincides with the
subspace topology τX,A.

Now consider the case where X = R (with the standard topology) and A = [0, 1] and find
some open subsets in A that are not open in X.

Still, doubts might remain - is this the most natural topology? It could also feel natural
to define a topology τ̃X,A by

τ̃X,A := {U : U ∈ τX , U ⊆ A},
together with the set A. One can check that this also defines a topology. Or one could think
of many other topologies. How do we know that the one we defined is the ’right’ one?

There are two possible ways to answer this question:
(1) based on well-chosen examples we can rule out some choices straight away
(2) we can try to find a natural criteria that distinguishes one specific topology among

the others.
So let us first consider an example: consider R with its standard topology and Z ⊆ R.

Then the subspace topology induces a discrete topology on Z, as we have that {n} =
{n} ∩ B(n, 1/3). The topology τ̃X,A is however the indiscrete topology. Indeed, any non-
empty open set of R with the standard topology contains at least some open interval (as
open intervals from a basis and any open set can be written as a union of basis elements),
and no subset of Z contains an interval. Thus, at least in this comparison the subspace
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topology wins, as clearly the standard topology of R, restricted to Z should at least separate
all points.

Second, there is an abstract way to pick out τX,A as the natural candidate among all
choices:

Lemma 1.33. Let (X, τX) be a topological space and (A, τX,A) a subspace with the subspace
topology. Then τX,A is the smallest topology τ̃ for which the inclusion map i : (A, τ̃) →
(X, τX) defined on A by identity is continuous.

Proof. First, let us check that the inclusion map is continuous for (A, τX,A). Indeed, as i
is identity on A, then for any open set U ∈ τX , we have that i−1(U) = A ∩ U . Thus i is
continuous.

Now, if i : (A, τ̃) → (X, τX) is continuous, then for any open set U ∈ τX , we have that
i−1(U) = A ∩ U is open in τ̃ . But this means that τX,A ⊆ τ̃ giving the claim. □

This implies the following characterisation of the subspace topology:

Exercise 1.19 (⋆). Consider a topological space (X, τX) and let A ⊆ X. Then the subspace
topology τX,A is the only topology on A with the following property: for any topological space
(Y, τY ), and any map g : (Y, τY ) → (A, τX,A), the map g is continuous if and only if i ◦ g :
(Y, τY )→ (X, τX) is continuous, where i is the inclusion map as before.

Moreover, this definition of a topology on a subspace satisfies several other natural prop-
erties:

Exercise 1.20. Let (X, τX) be a topological space and (A, τX,A) a subspace with the subspace
topology.

• Prove that if (Y, τY ) is another topological space and f : (X, τX)→ (Y, τY ) is contin-
uous, then also f restricted to A is a continuous map from (A, τX,A)→ (Y, τY ).
• In particular, prove that if f : (X, τX)→ (Y, τY ) is a homeomorphism and f(A) = B

for some B ⊆ Y , then the restriction of f to A induces a homeomorphism between A
and B with their respective subspace topologies.

Finally, let us check that the Hausdorff property descends nicely to subspaces:

Lemma 1.34. Let (X, τX) be a Hausdorff topological space. Then (A, τX,A) is also Hausdorff.

Proof. Consider some x1 ̸= x2 ∈ A. Then as X is Hausdorff, we can find disjoint open
sets U1, U2 ∈ τX such that x1 ∈ U1 and x2 ∈ U2. Now define V1 = U1 ∩ A, and define
V2 = U2 ∩ A. Then V1, V2 ∈ τX,A, they are disjoint and contain x1, x2 respectively. Thus
(A, τX,A) is Hausdorff. □

1.4.2 Product topology on finite products
Recall that the Cartesian product X × Y of two sets is given by the set of ordered pairs:

X × Y = {(x, y) : x ∈ X, y ∈ Y }. Now, if both X and Y are endowed with a topology, it is
natural to ask what would be a natural topology on X × Y .

What should be the open sets for X × Y ? Recall, that in metric topologies, being open
was characterised by the following: around each point x in this open set, you can find a
small ball that is contained in this set, i.e. you have some freedom to move around. Now
consider a set U × V with U open for X, and V open for Y . Then if (x, y) ∈ U × V , there
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is ”space” to move in both the first and the second coordinate - so it makes sense to declare
U × V to be open for a natural topology on X × Y :

Proposition 1.35 (Product topology on X × Y ). Consider two topological spaces (X, τX)
and (Y, τY ). Define τBX×Y to be the collection of the subsets of X × Y of the form U × V ,
where U is open in X and V is open in Y . Then τBX×Y is a basis for a topology, and the
topology τX×Y induced by it is called the product topology on X × Y .

Proof. We need to verify that the two conditions for being a basis for a topology are met.
Then we are done as any basis induces a topology by taking unions of its elements.

First, by taking U = X and V = Y , we see that the collection of subsets in τBX×Y covers
X × Y .

Second, let W1,W2 ∈ τBX×Y . Then we can find U1, U2, be open in (X, τX) and V1, V2 open
in (Y, τY ) such that W1 = U1 × V1, W2 = U2 × V2. We have that

W1 ∩W2 = (U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2).

But (U1 ∩U2)× (V1 ∩ V2) is also by definition in τBX×Y . Thus the second condition for being
a basis is also satisfied and thus τBX×Y is a basis for a topology. □

In fact the proof can be strengthened to show that one can consider a smaller basis to
define the product topology :

Exercise 1.21. Let (X, τX), (Y, τY ) be two topological spaces. Suppose τBX is a basis for
(X, τX) and τBY is a basis for (Y, τY ). Show that the set

τ̃BX×Y := {Û × V̂ : Û ∈ τBX , V̂ ∈ τBY }

is a basis for the product topology.

Exercise 1.22. Consider (R, τE), i.e. R with Euclidean topology and the product R×R with
the product topology. Show that the resulting space is homeomorphic to R2 with its Euclidean
topology.

It is important to remember that not all open sets of the product topology are given by
products of open sets: for example in R2 with its standard topology, the set (0, 1)2 ∪ (1, 2)2

is open, but not given by the product. The same also holds for the ball B(1, 1), for example:
indeed if the latter was given by U × V , then (0, 1) ⊆ U and (0, 1) ⊆ V , and thus (0, 1)2 ⊆
B(1, 1) which we know is not true.

Again, although the definition of the product topology felt again very reasonable, there
could be possibly other natural ways to define a topology on the product. So how can
we mathematically pin down why this is the natural choice? Similarly to the case of the
subspace topology, the following lemma gives one such way:

Lemma 1.36. Let (X, τX) and (Y, τY ) be topological spaces and consider X × Y with the
product topology. Then the product topology τX×Y is the smallest topology τ̃ on X × Y
such that the projection maps pX : (X × Y, τ̃) → (X, τX) given by pX(x, y) := x and pY :
(X × Y, τ̃)→ (Y, τY ), given by pY (x, y) := y are both continuous.

Proof. Again, let us first check that pX , pY are continuous for the product topology. For any
open set U of (X, τX) we have that p−1

X (U) = U × Y , and this belongs to τBX×Y . Similarly,
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for any open set V of (Y, τY ) we have that p−1
Y (V ) = X×V ∈ τBX×Y , and thus the continuity

follows.
Now, suppose pX : (X × Y, τ̃) → X and pY : (X × Y, τ̃) → Y are continuous. Then, by

above all sets of the form U × Y with U ∈ τX and X × V with V ∈ τY have to belong to
τ̃ . But then also (U × Y ) ∩ (X × Y ) ∈ τ̃ and thus in particular τ̃ contains the basis τBX×V .
But then, as τ̃ is a topology, it has to contain the topology induced by this basis, i.e. τX×Y ,
giving the claim. □

Let us now quickly consider the interplay between the product topology and continuous
functions. Firstly, a function f from some space Z to the product space X × Y , written
f(z) = (f1(z), f2(z)) is continuous if and only if both f1 and f2 are continuous:

Exercise 1.23. Let (X, τX) and (Y, τY ) be topological spaces and consider X × Y with the
product topology. Let further (Z, τZ) be another topological space and f : (Z, τZ) → (X ×
Y, τX×Y ). Prove that f is continuous if and only if both f1 := pX ◦ f : (Z, τZ)→ (X, τX) and
f2 : pY ◦ f : (Z, τZ)→ (Y, τY ) are continuous.

Now, suppose that instead of a map f : Z → X × Y , you consider a map f : X × Y → Z.
Moreover, suppose that it is continuous separately in both coordinates, i.e. f(x, ·) : (Y, τY )→
(Z, τZ) is continuous for each x ∈ X and f(·, y) : (X, τX) → (Z, τZ) is continuous for each
y ∈ Y . One might hope that this also means that f : (X × Y, τX×Y ) → (Z, τZ) would be
continuous. However, as in real analysis, this is not the case. In fact the very same counter-
example will work here too: we can for example take f(x, y) : R2 → R to be equal to 2xy

x2+y2

if one of the points is non-zero, and equal to 0 at (0, 0). 6

Let now (Xi, τXi
) with i = 1 . . . n be topological spaces. How should we define the product

topology on X1 × · · · × Xn? One way would be to go about inductively: having defined a
topology τ̃n−1 on X1×· · ·×Xn−1, we can define a topology τ̃n on X1×· · ·×Xn by taking the
product topology for (X1× · · · ×Xn−1, τ̃n−1) and (Xn, τXn). But in doing so, we are making
some arbitrary choices here - for example, why does the resulting topology not depend on
the fact that we went step by step from X1 to Xn, and not vice versa?

This question is nicely answered by finding a canonical definition for the product topology
for arbitrary finite products:

Proposition 1.37 (The product topology on a finite product space). Let us consider
(X1, τX1), . . . , (Xn, τXn), a finite collection of topological spaces. Let

τBX1×···×Xn
:= {U1 × · · · × Un : Ui ∈ τXi

∀i = 1 . . . n}.

Then τBX1×···×Xn
is a basis for a topology, and this topology is called the product topology on

X1 × · · · ×Xn.

Proof. The proof is exactly the same as for two spaces. □

6Geometrically this can be just thought of as follows: consider the vector (x, y) and then reflect it w.r.t
the line x = y to get the vector (y, x). Then f is just equal to the cos(θ) where θ is the angle between the
vectors (x, y) and (y, x). Clearly this angle changes continuously when you fix a non-zero x or a non-zero y.
When one of them is equal to 0, then the angle is 90 degrees and thus the function is constantly 0. However
when x = y, then the angle is 0 degrees independently of the size of x = y, and thus the function is not
continuous at 0.
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It now just remains to verify that the inductive definition induces the same basis for its
topology:

Exercise 1.24. Show that for all n ≥ 2, the sets of the form U1× · · ·×Un with Ui ∈ τXi
for

all i = 1 . . . n form a basis for τ̃n as defined above, and thus that τ̃n is the product topology
on X1 × · · · ×Xn.

1.4.3 Product topology on infinite products
With an infinite number of spaces one has to be more careful - it comes out that there are

several natural ways to define a topology!
Let us however, start by reminding how to think about infinite products. Let I be some

infinite index set and (Xi)i∈I a collection of sets. If I is countably infinite, then it is in
bijection with N and we can think of the product Πi∈IXi as of sequences (x1, . . . , xn, . . . ).
However, a better way, which generalizes to any index set is to think of Πi∈IXi as of functions
x : I → ∪Xi such that x(i) ∈ Xi. One way to picture this is to think of I as the horizontal
axis and ∪Xi as the vertical axis - for each i ∈ I, we then mark an element in ∪Xi, like we
usually do when drawing a graph.

Remark 1.38. Somewhat surprisingly, it does not follow from the usual axioms of the set
theory, the so-called Zermelo-Fraenkel (ZF) axioms, that an arbitrary product of non-empty
spaces is non-empty. In fact, such a statement - that any product of non-empty sets is non-
empty is (equivalent to) the axiom of choice, stated just below. This axiom is independent of
ZF theory, in the sense that either this axiom or its negation can be added to the ZF axioms
to get a consistent mathematical theory.

We will come back to this axiom later in the course. For now we just mention that in
concrete settings there is sometimes no need for the Axiom of choice. For example, in the
case when we have the product of one identical space X, then we know that the product space
is non-empty, as we can always pick some x ∈ X and then the element defined by xi = x for
all i ∈ I is certainly in Πi∈IXi. The axiom of choice becomes important when the spaces Xi

are really arbitrary and we have no additional information about them.

• Axiom of choice: if (Xi)i∈I is any collection of non-empty sets, then also Πi∈IXi is
non-empty.

Now, having determined that Πi∈IXi is non-empty, if all spaces are non-empty, let us put
a topology on it. It comes out that the right way to put a topology on the infinite product
is as follows:

Proposition 1.39 (The product topology on an infinite product space). Let now I be some
infinite index set and ((Xi, τXi

))i∈I a collection of topological spaces. Let τBΠi∈IXi
be the

collection of subsets of Πi∈IXi of the form Πi∈IUi, where each Ui ⊆ Xi is open in Xi and
Ui ̸= Xi only for finitely many i ∈ I. Then τB is a basis for a topology, and this topology is
called the product topology on Πi∈IXi.

The proof is really the same as in the case of two spaces and thus omitted.

Remark 1.40 (Box topology). In fact, the choice above might not have been your first
guess. Maybe you would have preferred to define the basis using the collection of subsets
of the form Πi∈IUi, where each Ui ⊆ Xi is open in Xi? This indeed defines a topology on
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Πi∈IXi, however, it comes out that this topology is too large to be of much use. If interested,
see the exercise in the starred section.

One way to motivate the choice of the product topology is again to look for a natural
property. And indeed, if we come back to the projection maps, we obtain the following:

Lemma 1.41. Let now I be some infinite index set and ((Xi, τXi
))i∈I a collection of topo-

logical spaces. Then the product topology is the smallest topology on Πi∈IXi such that all
co-ordinate maps are continuous.

Again, we will not repeat the proof here, as it is the same as for two spaces. However, if
you do revisit the proof try to notice where the fact that only finitely many Ui differ from
Xi in the basis elements enters in the proof.

Maybe another good reason for the product topology is the following description of con-
vergence in product spaces with the product topology:

Lemma 1.42. Let now I be some index set and ((Xi, τXi
))i∈I a collection of topological

spaces. Then a sequence (xn)n≥1 converges to x in Πi∈IXi with the product topology if and
only if it converges pointwise, i.e. iff for all i ∈ I, (xn(i))n≥1 converges to x(i) in (Xi, τXi

).

Proof. Let us first assume that (xn)n≥1 converges to x in Πi∈IXi with the product topology.
Fix some i0 ∈ I and some open set Ui0 ∈ τXi0

containing x(i0). Consider the open set
Wi0 := Πi∈IVi, where Vi0 = Ui0 and Vi = Xi otherwise. Then by the definition of convergence,
there exists some ni0 ∈ N such that for all n ≥ ni0 , we have that xn ∈ Wi0 . In particular
xn(i0) ∈ Ui0 and thus (xn(i0))n≥1 → x(i0) in (Xi0 , τXi0

).
Conversely, suppose that for all i ∈ I, we have that (xn(i))n≥1 → x(i) in (Xi, τXi

). As any
open set is a union of the basis elements, and any x ∈ Πi∈IXi is contained in some basis
element, it suffices to show that for any open set U in the basis τBΠi∈IXi

there is some nU ∈ N
such that for all n ≥ nU , we have that xn ∈ U 7.

Now, any U ∈ τBΠi∈IXi
is of the form Πi∈IUi, where each Ui ⊆ Xi is open in Xi and Ui ̸= Xi

for only finitely many i ∈ I. Denote this finite set by I0. As (xn(i0))n≥1 → x(i0) for all
i0 ∈ I, there exists for any i0 ∈ I some nUi0

∈ N such that for all n ≥ nUi0
we have that

xn(i0) ∈ Ui0 . But then if we take nU = maxi0∈I0 nUi0
, we have that xn ∈ U as soon as

n ≥ nU . □

An interesting case is the space {0, 1}N with the product topology, when each {0, 1} is
given the discrete topology. Can you find some other set that it is homeomorphic to?

Exercise 1.25 (⋆). Consider a infinite dyadic tree, i.e. an infinite connected graph, where
exactly one vertex v has degree 2, every other vertex has degree 3 and which contains no
cycles. Consider the set X of all branches starting from v. Any two branches bi and bj
start from v, then stay together for a bit, and then separate once and for all. Let ni,j be the
number of common vertices for two branches and define a distance d(bi, bj) := n−1

i,j . Check
that d defines a metric on X, and thus also induces a topology τX . Find a bijection between
X and {0, 1}N. Moreover, prove that (X, τX) is in fact homeomorphic to {0, 1}N, where we
consider {0, 1} with the discrete topology and then take the product topology.

7In fact, we proved a nice general lemma here: to check convergence to some x ∈ X, it suffices to check
that for all basis elements U containing x, the sequence is eventually contained in U
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Exercise 1.26 (⋆, McMullen p. 20-21). Recall the standard Cantor set obtained as follows:
we start from the unit interval, and then remove the middle third (1/3, 2/3). In the next step
we remove the middle third of both [0, 1/3] and [2/3, 1]. We continue infinitely. The resulting
space endowed with the subspace topology induced from R is called the Cantor space. Prove
that the Cantor space is homeomorphic to the space (X, τX) of the previous exercise, and
thus also to {0, 1}N with the product topology as above.

1.4.4 Disjoint unions
Maybe the simplest example of ’new from old’ is actually that of disjoint union. It’s a

good way to test your understanding of the chapter:

Exercise 1.27 (Disjoint unions). Let (X, τX) and (Y, τY ) be topological spaces such that the
sets X, Y are disjoint.

• Define a reasonable topology on X ∪ Y .
• Explain why your choice is a reasonable topology via examples: e.g. show that the

disjoint union of two discrete spaces is still discrete.
• Is the Euclidean topology on [0, 2] induced by taking the disjoint union of ([0, 1], τE)

and ((1, 2], τE)?
• Find a way to single out your topology: e.g. by showing that it is the finest topology

making both inclusion maps X → X ∪ Y with x → x and Y → X ∪ Y with y → y
continuous.

You might wonder what to do in case the sets are not disjoint. Can you still take some
union?

Recall that actually sets are only defined up to bijection, and topological spaces up to
homeomorphism. So if you are given any sets (or top. spaces), you can always just take
some representatives of their equivalence class so that the underlying sets are disjoint.

For example, if you have a collection of sets (Xi)i∈I , then the sets X̂i := {(x, i) : x ∈ Xi}
are disjoint so that Xi

∼= X̂i. If in addition each space comes with a topology τXi
, you can

further use the bijections fi : Xi → X̂i to induce a topology τX̂i
on each X̂i so that in fact

(Xi, τXi
) ∼= (X̂i, τX̂i

): you just say that U ∈ τX̂i
iff f−1(U) ∈ τXi

.
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Section 2

Connectedness
We will now discuss connectedness of a topological space - do we have single piece of

rubber or does it consist of several disjoint pieces? Pulling or cutting a piece of rubber into
several pieces feels like highly discontinuous - some points that were close together, will now
be far apart. Thus it feels intuitive that being connected is something that is preserved by
continuous transformations.

Again the first question is how to even define connectedness in the formalism of topology.
Let us start with some examples that could guide our definitions:

• It seems reasonable to say that Rn and [0, 1] are connected, as we can always find a
continuous path joining two points, and to say that [−2,−1]∪ [1, 2] is not connected.
• But do you think for example Q with the induced topology is a connected space or

not, or R\Q? Intuitively, we would still probably agree that there are gaps between
the points and thus the spaces should be disconnected.
• And what about the following example in R2 (called topologist’s sine curve): consider

the graph of the curve y = sin(1/x) on x ∈ (0, 1], together with the line segment
y ∈ [−1, 1] on the y−axis. Is this plane figure connected or not? (See Proposition
2.18.)

In fact, it comes out that there are (at least) two reasonable ways to define connectedness,
following two different intuitive ideas:

(1) We could say that a space is connected if for all points x and y we can find a continuous
path going from one point to the other.

(2) Alternatively, we could try to formalize the existence of a "gap" and say that a space
is disconnected, if we can decompose it into two pieces A and B, so that for all points
in A, sufficiently small neighbourhoods around them are disjoint from B (i.e. they
cannot cross the gap);

It comes out that indeed both of these notions can be formalized, and whereas they agree
on the first two examples we gave, they disagree on the third one - on the topologist sine
curve.

2.0.1 Connectedness in topological spaces
Let us start from the definition formalizing the notion of “gaps”:

Definition 2.1 (Connectedness). A topological space (X, τX) is called connected if for any
open partition of X, i.e. for any writing of X = U ∪ V with U, V ∈ τX and U ∩ V = ∅,
either U or V has to be the empty set (or equivalently the whole space). A subset of X is
called connected if it is connected in the subspace topology.

Notice that this corresponds at least to some extent to our intuition about gaps: if a space
can be decomposed into two disjoint open sets U and V , then both of these sets are also
closed as complements of open sets. In particular their boundaries are empty. Thus there
are no points so that all their open neighbourhoods intersect both U and V , at least hinting
that there is a separation between the sets - an element is either really in the interior of U
or in the interior of V and there is emptiness in-between.
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Based on this, an equivalent way of stating connectedness is apparent:
• A topological space is connected if the only subsets of X that are both open and

closed are ∅ and X.
Indeed, for any set U ⊆ X we have a partition X = U ∪ (X\U). Now if U is both open an
closed, this gives an open partition and thus X being connected means that any such U is
either empty or the whole space.

Let us also consider some examples:
• firstly, one-point space is clearly connected by this definition;
• secondly, any space with the indiscrete topology is connected, as the only open sets

are the whole set and the empty set;
• finally, the discrete topology on more than one point is not connected, as for any

point x in the space both {x} and X\{x} are open and non-empty.

Exercise 2.1. Consider a set X with the co-finite topology. When are the resulting topolog-
ical spaces connected, when are they disconnected?

Showing from the definitions that any interval of the real line with its standard topology
is connected, is already a bit trickier:

Proposition 2.2. The interval [a, b] with its standard topology is connected.

Proof. Consider any decomposition [a, b] = U ∪ V of the interval into two disjoint open sets.
WLOG suppose that a ∈ U . Consider now s := sup{z ∈ [a, b] : [a, z] ⊆ U}. To show that
[a, b] is connected, we need to prove that s = b.

First, we check that s > a: as U is open and a ∈ U , we have that for some [a, a+ δ) ⊆ U ,
hence [a, a+ δ/2] ⊆ U and thus s > a.

Now we check that s ∈ U : indeed, suppose by contradiction that s ∈ V . Then by
assumption V is open and hence if s ∈ V , then also (s− δ′, s+ δ′) ⊆ V for some δ′s > 0. As
V and U are disjoint, this means that s− δ′/2 /∈ U , contradicting the definition of s.

Finally, let us argue that s = b. Suppose for contradiction that s < b. As U is open, there
is again some δ > 0 such that (−δ + s, s + δ) ⊆ U and thus s + δ/2 ∈ U giving again a
contradiction with the definition of s.

Hence s = b and the proposition follows. □

Remark 2.3. Basically the proof would also give connectedness for open or half-open inter-
vals, also all types of half-line and R itself.

In fact, in R one can characterise all possible connected subsets:

Proposition 2.4. Let A ⊆ R be any subset of R. Then A is connected if and only if A is
an interval, a half-line or R itself.

Proof. The proof is on the exercise sheet. □

2.0.2 Path-connectedness in topological spaces
The idea of connectedness as any two points being connected by a path is called path-

connectedness. Let us first define

Definition 2.5 (Path). A continuous map γ : ([0, 1], τE) → (X, τX) is called a path. If
γ(0) = x and γ(1) = y, then γ is called a path from x to y (sometimes denoted x→ y).
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Definition 2.6 (Path-connectedness). A topological space (X, τX) is called path-connected
if for any two points x, y ∈ X, there is a path γ from x to y.

Again let us start from some examples:
• Any set X with the indiscrete topology is path-connected, as any function to a

indiscrete space, in particular any function from ([0, 1], τE) to (X, τI) is continuous
and thus given x, y ∈ X we can for example just define γ(t) = x for t ∈ [0, 1) and
γ(t) = y for t = 1.
• Any interval I in (R, τE) is path-connected as for any x < y ∈ I we can map [0, 1] to
[x, y] continuously by scaling and translation.

One can concatenate paths - if we have a continuous path from x → y and from y → z,
then we can concatenate the paths to get a path from x→ z.

Lemma 2.7 (Concatenation of paths). Let (X, τX) be a topological space. Suppose that
x, y, z ∈ X and γ1 is a path from x→ y and γ2 is a path from y → z. Define γ̃ : [0, 1]→ X
by γ̃(t) = γ1(2t) for t ∈ [0, 1/2] and γ̃(t) = γ2(2t− 1) for t ∈ [1/2, 1]. Then γ̃ is a path from
x→ z.

This Lemma follows directly from an important general lemma, sometimes called pasting
or gluing lemma:

Lemma 2.8 (Pasting / gluing lemma). Let (X, τX), (Y, τY ) be topological spaces and A,B
closed subsets of X such that X = A ∪ B. Suppose that f is a map from (X, τX) to (Y, τY )
such that the restriction of f to A is continuous as a map from (A, τX,A) to (Y, τY ), and the
restriction of f to B is continuous as a map from (B, τX,B) to (Y, τY ). Then f is continuous
as a map from (X, τX) to (Y, τY ).

Proof. The proof is on the exercise sheet. □

2.0.3 Connectedness vs path-connectedness in topological spaces
Path-connectedness is a stronger notion than connectedness:

Theorem 2.9. Any topological space that is path-connected is also connected.

We start from a useful lemma, that helps to encode connectedness using continuous func-
tions:

Lemma 2.10. A topological space (X, τX) is connected if and only if any continuous map
from (X, τX) to {0, 1} with discrete topology is constant.

Proof. First suppose there exists some continuous non-constant function f : X → {0, 1}.
Then by continuity both f−1({0}) and f−1({1}) are open, disjoint and by assumption both
are different from the empty set. Moreover, also X = f−1({0}) ∪ f−1({1}) and thus X is
not connected.

In the other direction, suppose that X is not connected. Then there exists disjoint open
U, V ⊆ X that are both non-empty an open such that X = U ∪ V . Now set f = 0 on U and
f = 1 on V . Then by construction f is both non-constant and continuous. □

The proof of the Theorem 2.9 now follows:
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Proof of Theorem 2.9. Let (X, τX) be a path-connected topological space. We aim to use
Lemma 2.10 as a criterion.

Consider any continuous function f : X → {0, 1}, where the two-point space is taken with
the discrete topology. We want to show that f is constant. Fix some point x ∈ X and let
y ∈ X be any other point. Then as (X, τX) is path-connected, there exists a continuous path
γ : [0, 1] → X with γ(0) = x and γ(1) = y. Now, by the composition rule for continuous
functions (Lemma 1.25) we have that f ◦ γ : ([0, 1], τE) → ({0, 1}, τD) is also continuous.
But by Proposition 2.2 the interval [0, 1] is connected in the Euclidean topology. Thus we
conclude from Lemma 2.10 that f ◦ γ has to be constant and in particular f(x) = f(y). But
this holds for any y ̸= x, implying that f is constant. But f was an arbitrary continuous
function, and hence Lemma 2.10 implies that (X, τX) is connected. □

On the other hand, the connectedness is a strictly weaker notion - there are spaces that
are connected, yet are not path-connected. The most famous example is the topologist’s sine
curve. This planar subset is defined as the graph of the curve y = sin(1/x) on x ∈ (0, 1],
together with the line segment y ∈ [−1, 1] on the y−axis, i.e. as the union {(x, sin( 1

x
) : x ∈

(0, 1]} ∪ {(0, y) : y ∈ [−1, 1]}.

Proposition 2.11. The topologist sine-curve is connected, but not path-connected as a subset
of R2.

We will postpone the proof for now, but will come back to it after having developed
some convenient methods for working with connectedness. There is another example of a
connected but path-connected space on the example sheet. Also, even if connectedness and
path-connectedness are not equivalent in full generality, it comes out that in certain special
settings the two notions are equivalent. Notice the word "open" in the following statement:

Theorem 2.12. Consider Rn with the Euclidean topology. Then an open set is connected if
and only if it is path-connected.

As is often the case in basic topology, theorems about "concrete" spaces are a bit trickier
to prove than the very abstract general results - some special properties of the concrete
setting have to enter, but on the other hand you have to be able to use these properties in
the general formalism.

Proof. We already showed that path-connected implies connected, so it remains to prove the
inverse. The key observation, resulting from special properties of Rn is very simple:

Claim 2.13. The open balls B(x, δ) for any x ∈ Rn and any δ > 0 are path-connected.

Proof. This can be directly verified by writing down a straight-line path between any pair
of points. □

Now suppose U is some connected open set in Rn and fix some point x ∈ U . Define further
Ux as the set of points y ∈ U that are path-connected to x. Notice that Ux is non-empty as
x ∈ Ux.

We claim that Ux is open: indeed if y ∈ Ux, there is some path γ in U from x → y.
Moreover, as U is open and the open balls generate the Euclidean topology, there is some
δy > 0 such that B(y, δy) ⊆ U . But by the claim above, each ball is path-connected, thus
for any z ∈ B(y, δy) there exists some path γz : y → z. Using the concatenation lemma for
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the paths γ and γz we obtain a path γ̃ from x→ z. Thus z ∈ Ux, hence B(y, δy) ⊆ Ux and
thus Ux is open.

On the other hand, define Vx to be the set of points z ∈ U that are not path-connected to
x. Then Vx = U\Ux. We claim that Vx is also open. Indeed, if it is empty, then it is open
by definition. Otherwise, consider any z ∈ Vx. As U is open, there exists again δz > 0, such
that B(z, δz) ⊆ U . Consider some w ∈ B(z, δz). Then by the claim above, there is some
path γw : w → z. But now if w ∈ Ux, then there is also a path γ from x→ w, and again we
could concatenate γ and γw to get a path from x → z, contradicting z ∈ Vx. Thus w ∈ Vx,
hence B(z, δz) ⊆ Vx and we conclude that Vx is also open.

In conclusion, we can write U = Ux ∪ Vx with both Ux, Vx open and disjoint. Thus, as U
is connected, one of Ux and Vx has to be empty. But we know that Ux is non-empty and
hence Vx is empty, giving the claim. □

Again, let us stress the importance of considering open subsets: the topologist sine-curve
is also a subset of R2 for which this theorem does not hold.

2.1 More on connectedness
Let us now study how connectedness behaves under operations on topological spaces

2.1.1 Connectedness and continuity
Firstly, connectedness behaves nicely under continuous maps.

Proposition 2.14. Let (X, τX) be a connected topological space and f a continuous map to
some other topological space (Y, τY ). Then f(X) is connected in the subspace topology.

Similarly, to the proof of Theorem 2.9, we aim to use the criterion of Lemma 2.10:

Proof. Consider f(X) ⊆ Y with the subspace topology inherited from (Y, τY ), and consider
a continuous map g from (f(X), τY,f(X)) to {0, 1} with the discrete topology. Now look at
the map g ◦ f : X → {0, 1}. Then as the composition of continuous maps is continuous by
Lemma 1.25, we deduce that g ◦ f is continuous as a map from (X, τX) to ({0, 1}, τD). Thus
from connectivity of X and Lemma 2.10 it follows that g ◦ f is constant. But this implies
that g is constant on f(X) and thus f(X) is connected, by applying again Lemma 2.10. □

In particular this implies that connectedness is a topological invariant:

Corollary 2.15. Suppose that (X, τX) is connected and homeomorphic to (Y, τY ). Then
(Y, τY ) is also connected.

This allows to argue easily that S1 is not homeomorphic to [0, 1]. Indeed, by Exercise 3 on
sheet 4 we know that if f is a homeomorphism from [0, 1] to S1 (say S1 ⊆ R2, S1 = {(x, y) :
x2+y2 = 1}), then f restricted to [0, 1]\{1/2} is also a homeomorphism between [0, 1]\{1/2}
and S1\{f(1/2)}. Now the former is not connected, as all the connected subspaces of R are
intervals, half-lines or R. On the other hand, the latter is connected: by rotating the sphere
we can assume f(1/2) = (1, 0), then g(x) = (cos(2πx), sin(2πx)) is a homeomorphism from
(0, 1) to S1\{(1, 0)}, and as (0, 1) is connected, so is S1\{(1, 0)}. A similar question on the
exercise sheet shows that R and Rn cannot be homeomorphic for n ≥ 2.

Another direct consequence of Proposition 2.14 is a generalization of the Intermediate
value theorem:
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Theorem 2.16 (Intermediate value theorem). Let (X, τX) be a connected topological space
and f : X → R a continuous map. Suppose that for some x < y, we have that x ∈ f(X)
and y ∈ f(X). Then in fact [x, y] ⊆ f(X).

Proof. By Proposition 2.14 we know that f(X) is connected. But we proved before that all
connected subsets A of R are either intervals, half-intervals or the whole of R and for each
of them it holds that if x ∈ A and y ∈ A with x < y, then also [x, y] ⊂ A. □

On the exercise sheet you will see that path-connectedness is also a topological property.

Exercise 2.2. Prove that being path-connected is also a topological invariant. Start by
proving that if (X, τX) is path-connected and f a continuous map to some other topological
space Y , then f(X) is path-connected.

2.1.2 Connectedness does not imply path-connectedness
We saw that both path-connectedness and connectedness behave well under continuous

maps. However, this is not the case when taking closure - connectedness is stable under
taking closure and path-connectedness not. First,

Lemma 2.17. If A is a connected subset of (X, τX), then cl(A) is also connected.

Proof. This will be on the exercise sheet. □

Exercise 2.3. Show by example that even if A is connected int(A) might be disconnected.

In the other direction, the example of topologist sine-curve will show that the closure of a
path-connected space is not necessarily path-connected. To do show this we start from the
main proposition showing that connectedness does not imply path-connectedness:

Proposition 2.18. The topologist sine-curve S := {(x, sin( 1
x
) : x ∈ (0, 1]} ∪ {(0, y) : y ∈

[−1, 1]} is connected, but not path-connected as a subset of R2.

Noticing that S = cl({(x, sin( 1
x
) : x ∈ (0, 1]} and that {(x, sin( 1

x
) : x ∈ (0, 1]} is path-

connected, we deduce:

Corollary 2.19. Path-connectedness is not stable under closure.

Proof of Proposition 2.18. Let us denote the topologist sine-curve by S = I ∪ C, with
C = {(x, sin( 1

x
) : x ∈ (0, 1]} for ’curve’ and I = {(0, y) : y ∈ [−1, 1]} for ’interval’.

Part 1: S is connected.
As C is the image of (0, 1] under the continuous map f(x) = sin( 1

x
), it is connected by

Proposition 2.14. Moreover, notice that S = cl(C): indeed, one can verify that all of I is
the boundary of C using Lemma 1.17. Thus by Lemma 2.17, the set S is connected.

Part 2: S is not path-connected.
We will prove this by contradiction. Indeed, we suppose for contradiction that S is path-

connected. In particular this means that would mean that there exists a continuous function
γ : ([0, 1], τE) → (R2, τE) going from γ(0) = (1, sin(1)), γ(1) = (0, 0) to γ([0, 1]) ⊆ S. Our
aim is to show that in fact such a γ cannot be continuous and we do it again in two steps.
The intuition is that at some point the path has to cross from C to L, however due to the
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oscillations it cannot do it in a continuous way.

Step 2(a): locating the point of discontinuity. The point of discontinuity should be
where the path first enters I. Thus we define s = sup{t ∈ [0, 1] : γ([0, t]) ∈ C}. We claim
that γ(s) ∈ I.

Write γ(t) = (xγ(t), yγ(t)). Then from Lemma 1.36 it follows that both xγ(t) and yγ(t)
are continuous on [0, 1]. By definition of s and by continuity of γ, we have that s > 0.
Now, if s = 1, then by definition of γ, we have γ(s) = (0, 0) ∈ I. If, however, s < 1, then
by definition of s we can find ∀ϵ > 0 some sϵ ∈ (s, s + ϵ) such that xγ(sϵ) = 0. But by
assumption x(t) is continuous at t = s, and we conclude that xγ(s) = 0 and hence γ(s) ∈ I.

Step 2(b): proving discontinuity: The idea (that is easy to graphically verify) is to pick
two sequences (a)n≥1 and (b)n≥1 such that

• ∀n ≥ 1, both an ≤ s and bn ≤ s and both (an)n≥1 → s and (bn)n≥1 → s;
• it holds that yγ(an) = 0 and thus yγ(an)→ 0 as an → s;
• it also holds that yγ(bn) = 1 thus yγ(bn)→ 1 as an → s.

Indeed, doing this proves discontinuity of the function γ(t) at t = s: if it was continuous,
then yγ(t) would be continuous at t = s and yγ(an) and yγ(bn) would converge to the same
value.

It thus remains to justify that we can pick such sequences. Graphically/intuitively this is
rather clear (why?), but it requires a bit of justification to do it rigorously (why?).

For example, define an = supt<s{xγ(t) = 1
πn
} and bn = supt<s{xγ(t) = 2

π(4n+1)
}. It remains

to verify that these sequences satisfy the properties above. Let us do it here for an. By the
Intermediate Value Theorem the sets we take the infimum / maximum over are non-empty,
thus the value an exists. By continuity xγ(an) = 1

πm
and thus yγ(an) = 0. By definition

an ≤ s and finally we claim that an converges to s. If this was not the case, then as an is a
bounded sequence, by the usual Bolzano-Weierstrass Theorem there would be a subsequence
(ank

)k≥1 converging to some s′ < s. But we have xγ(s′) = limk→∞
1

πnk
= 0 and thus s′ ∈ I,

contradicting the definition of s.
□

2.1.3 Products and connectedness
Both connectedness and path-connectedness behave nicely under taking products. For

path-connectedness this is direct:

Exercise 2.4. Suppose that (Xi, τXi
) are path-connected topological spaces for all i ∈ I.

Prove that the product Πi∈IXi with its product topology is path-connected. [Hint: first, gen-
eralize Exercise 5 from the Exercise sheet 4 to infinite product spaces.]

For connectedness, we will satisfy ourselves with only finite product spaces for now, al-
though the result is also true for arbitrary products.

Proposition 2.20. Let (X1, τX1), . . . , (Xn, τXn) be connected topological spaces. Then (X1×
· · · ×Xn, τX1×...Xn) is also connected.

There are many ways of proving this proposition. We will depart from the following useful
lemma:
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Lemma 2.21. Let (X,τX), (Y, τY ), (Z, τZ) be topological spaces and suppose that f : (X ×
Y, τX×Y ) → (Z, τZ) is continuous. Then ∀x ∈ X the function fx(y) := f(x, y) : (Y, τY ) →
(Z, τZ) is continuous, as is ∀y ∈ Y the function fy(x) := f(x, y) : (X, τX)→ (Z, τZ).

We saw before that continuity along coordinates does not imply joint continuity, and
this lemma says that in the other direction things do go well: join-continuity does imply
continuity along each coordinate.

Proof. The proof of this lemma is left as an exercise. □

We are now ready to prove the proposition:

Proof of Proposition 2.20. Let us first prove the case n = 2. To do this consider any con-
tinuous f : (X1 × X2, τX1×X2) → ({0, 1}, τD). By Lemma 2.10 it suffices to show that f is
constant. Now fix some (x1, x2) ∈ X1×X2 and consider any (y1, y2) ∈ X1×X2. By Lemma
2.21 we have that fx1(x) : (X2, τX2) → ({0, 1}, τD) is continuous, and as X2 is connected,
Lemma 2.10 implies that fx1 is constant. Thus f(x1, x2) = f(x1, y2). Similarly we obtain
that fy2(x) is constant and hence f(x1, y2) = f(y1, y2). But then f(x1, x2) = f(y1, y2), hence
f is constant and the case n = 2 follows.

The case for arbitrary n now follows by induction. Indeed, suppose we know that (X1 ×
· · · ×Xn−1, τX1×...Xn−1) is connected. Then by the case n = 2 we know that the product of
X1 × · · · ×Xn−1 and Xn with its product topology is also connected. As we know that this
topology is exactly the product topology on X1 × . . . Xn, the proposition follows. □

2.1.4 Connected components
For now we only looked at the topological invariant of being connected, but this doesn’t

allow us to tell the difference between [0, 1] ∪ [2, 3] and [0, 1] ∪ [2, 3] ∪ [4, 5]. So it is useful
to introduce the notion of connected components. It is intuitive then that the number of
connected components should also be a topological invariant.

Definition 2.22 (Connected component). Let (X, τX) be a topological space. The connected
component Cx of x ∈ X, is the union of all connected subsets containing x.

Exercise 2.5. Prove that connected components are indeed connected, and that any con-
nected component is necessarily closed. Show by example that connected components are not
necessarily open. Can you find a criteria for all components to be open?

Proposition 2.23. Let (X, τX) be a topological space. Any two connected components of X
are either disjoint, or coincide. Connected components (Ci)i∈I form a partition of X, i.e.
X =

⋃
i∈I Ci. Moreover, any homeomorphism between topological spaces (X, τX) and (Y, τY )

induces a bijection between the sets of connected components of X and Y .

Proof. The proof is left as an exercise □

In particular, it follows that the number of connected components is a topological invariant,
i.e. if (X, τX) has n ∈ N connected components then so does a homeomorphic space (Y, τY ).
The same holds if we replace n ∈ N by "countably many" or "uncountably many".

A space where every point is a separate connected component is called totally disconnected.
For example any topological space with the discrete topology is a totally disconnected space.
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Exercise 2.6 (⋆). Prove that the Cantor space (see e.g. Exercise Sheet 4, exo 12) is a totally
disconnected space.

One can similarly define path-connected components of a point x ∈ X: the path-component
Px of x is the set of all points y such that there is path γ from x to y. Both in case of
path-components and connected components, there is also a nice way to think about these
components. Namely, we can define an equivalence relation on X such that x ≃ y if there
is a path from x → y, then path-components are exactly the equivalence classes under this
relation.

2.2 Simple-connectedness - can we identify the holes?
We saw that one way to think of connectedness, or rather disconnectedness, was to think

about the existence of "gaps" between different components. In the rubber example - if you
take a piece of rubber and tear it into two, you create a gap and clearly there is something
discontinuous in this operation as some points that were very close are now distant. Another
violent operation (in terms of continuity) would be to push a hole through rubber. Indeed,
in this case also some points that were very close together would become far apart, even
though the whole piece might remain connected.

Hence the existence and the number of such holes should help us differentiate between
different topological spaces. In that sense a croissant and a doughnut should be topologically
different sweets, and "u" and "o" topologically different letters. Continuing with everyday
examples, should a T-shirt and jeans topologically the same?

Our aim is to develop some notions that will help to detect and describe the existence of
such holes 8. As this is already in the realm of algebraic topology, we will remain very brief.

In this section we will only consider path-connected spacesX. Recall that path-connectedness
means that for any pair of points x and y, the point x can be continuously transported to y
in the space X. The definition of path-homotopy gives a notion of connectedness for paths -
two paths γ1, γ2 from x to y are "connected" (called path-homotopic) if one can be deformed
or transported continuously to the other one. If this is possible for all pairs of paths, the
space will be called simply-connected.

We will soon make this definition precise, and later see that there are other equivalent
ways of defining simply-connectedness (like e.g. given in your course of complex analysis).
It comes out that simply-connectedness is a very useful concept. It is the first topological
property (we haven’t yet seen that it is a topological property, but we will see), that really
puts strong constraints on the space and helps us classify different spaces:

• You have seen or will see in complex analysis the Riemann mapping theorem: for any
simply-connected open subset D ⊆ C that is not equal to C, there is a holomorphic,
bijective map from the unit disk D to D.
• In further topology courses you would see that any orientable, compact 2D surface

without boundary that is simply-connected is homeomorphic to the sphere.
• Poincaré conjectured that the previous statement is true in all dimensions. Only in

2006 it was proved if a orientable, compact 3D manifold without boundary is simply
connected, then it is homeomorphic to the sphere.

8There are also other types of holes - for example if you consider the sphere in 3D, then it also in some
sense has a hole inside. This is not accounted for in this chapter
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2.2.1 Homotopy of paths and simply-connectedness
Let us start now formalizing the ideas above.

Definition 2.24 (Homotopy of paths). Let (X, τX) be a topological space and γ0 : [0, 1]→ X,
γ1 : [0, 1] → X two continuous paths in X with the same starting point x0, and the same
end-point x1. We say that γ0 is (path-)homotopic to γ1 if there exists a continuous map
F : ([0, 1]2, τE) → (X, τX) such that ∀s ∈ [0, 1] we have that F (s, 0) = γ0(s) and F (s, 1) =
γ1(s), and moreover F (0, t) = x0 and F (1, t) = x1 for any t ∈ [0, 1]. We say that F is a
path-homotopy between γ0 and γ1

Remark 2.25. Notice that from Lemma 2.21 we know that for any fixed t ∈ [0, 1], the
function γt(s) := F (s, t) is a continuous map from ([0, 1], τE) to (X, τX), and in particular
as F (0, t) = x0 and F (1, t) = x1, γt(s) is a path from x0 to x1. In other words, the homotopy
map F does give an interpolation from the path γ0 to γ1 via continuous paths with fixed
endpoints.

Remark 2.26. Sometimes you will also find definitions of homotopy where the roles of s, t
are exchanged. This is just a matter of convention and you should be ready to meet both
versions.

Definition 2.27 (Simply-connected I). A path-connected space (X, τX) such that for any
x, y ∈ X, any two paths γ0, γ1 from x to y are path-homotopic is called simply-connected.

You can now prove directly from this definition that Rn is simply-connected - you just
have to come up a path-homotopy, i.e. a natural way to interpolate between any two paths
with the same endpoints.

Exercise 2.7. Prove that in Rn with the Euclidean topology any two paths with the same
starting point and the same end-point are path-homotopic and thus that (Rn, τE) is simply-
connected.

In any topological space one can equivalence relation between points, so that two points
are in the same equivalence class if and only if they are path-connected. Equivalence classes
then corresponded to path-connected components. Similarly, the notion of path-homotopy
also provides an equivalence relation between continuous paths and partitions them into
separate equivalence classes:

Lemma 2.28 (Path-homotopy is an eq. relation). Let (X, τX) be a topological space. Path-
homotopy induces an equivalence relation ≃ on continuous paths γ : [0, 1]→ X with a fixed
starting point x0 ∈ X and a fixed endpoint x1 ∈ X. We denote the equivalence class of a
path γ by [γ] and the set of equivalence classes by Γx0,x1

Proof. The proof is left as an exercise. □

An intuitive and useful fact is that even a very obnoxious time-reparametrization (i.e. we
don’t even ask for monotonicity!) does not change the homotopy-equivalence class of a path:

Lemma 2.29. Let γ be a path in (X, τX) from x to y and ψ : ([0, 1], τE) → ([0, 1], τE) be
continuous with ψ(0) = 0 and ψ(1) = 1. Then γ ◦ψ is also a path from x to y and moreover
γ ≃ γ ◦ ψ.
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Proof. First, notice that γ◦ψ is indeed a path from x to y: γ◦ψ is a continuous function from
([0, 1], τE) to (X, τX) as a composition of continuous functions. Moreover, γ◦ψ(0) = γ(0) = x
and γ ◦ ψ(1) = γ(1) = y.

Let us next define the homotopy map. To do this, we will just interpolate between the
two time-parametrizations linearly. In other words, define

F (s, t) := γ ((1− t)s+ tψ(s)) .

We claim that F is a homotopy between γ and γ ≃ γ ◦ ψ. Indeed, F (s, 0) = γ(s), F (s, 1) =
γ ◦ ψ, F (0, t) = γ(0) as ψ(0) = 0 and similarly F (1, t) = γ(1). It remains to argue that F
is continuous. One can directly check that g : ([0, 1]2, τE) → ([0, 1], τE) given by (s, t) →
(1− t)s + tψ(s) is continuous, and then F = γ ◦ g is a composition of continuous functions
and thus continuous. □

2.2.2 Algebraic operations on homotopy eq. classes
An interesting fact is that whereas the equivalence classes of path-connectedness, i.e. path-

components just form a set, the homotopy equivalence classes can be endowed with algebraic
operations:

• Firstly, for any two paths γ1 from x to y and γ2 from y to z, we already defined the
concatenated path γ3 := γ1 ∗ γ2 in Lemma 2.7:

γ3(t) =

{
γ1(2t) if t ≤ 1/2
γ2(2t− 1) if t ≥ 1/2

• Secondly, for any path γ we can define its time-reverse by ←−γ (t) = γ(1− t).
It comes out that these operations induce operations not only on individual loops, but

actually on the space of path-homotopy equivalence classes of loops. In other words, we
claim that

• if γ1,≃ γ̃1 are homotopic paths from x to y and γ2 ≃ γ̃2 are homotopic paths from y
to z, then γ1 ∗ γ2 ≃ γ̃1 ∗ γ̃2 as paths from x to z
• similarly, if γ1,≃ γ̃1, then ←−γ 1 ≃

←−
γ̃1 .

Let us state this as a lemma:

Lemma 2.30. Concatenation and time-reversal induce well-defined operations
• ∗ : Γx,y × Γy,z → Γx,z, defined by [γ1] ∗ [γ2] := [γ1 ∗ γ2] and
•
←−
[γ] : Γx,y → Γy,x, defined by

←−
[γ] := [←−γ ],

on the sets of homotopy equivalence classes.

For this proof it is very helpful to draw a picture of the different homotopies:

Proof. We will explain here how to do time-reversal and leave the more interesting case
of concatenation of paths to the exercise sheet. In both cases one has to define suitable
homotopy maps F1.

Consider γ1,≃ γ2. We want to show that ←−γ 1 ≃ ←−γ2 . Now, let F be the path-homotopy
between γ1 and γ2. Consider

F1(s, t) = F (1− s, t)
. Let us check that F1 is a homotopy between ←−γ 1 and ←−γ2 . First, F1 is continuous from
([0, 1]2, τE) as a composition of continuous maps. Second, by definition for all (s, t) ∈ [0, 1]2,
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we have that F1(s, 0) = ←−γ 1(s), F1(s, 1) = ←−γ2(s), F1(0, t) = F (1, t) = y and F1(1, t) =
F (0, t) = x and thus indeed F1 is a path-homotopy.

□

As we see in the next chapter, these operations behave even more nicely on a set of closed
loops rooted at some point x, and give rise to the group structure.

2.2.3 The fundamental group
We are now ready to prove the main theorem of this section, stating that the set of

equivalence classes Γx := Γx,x of closed paths starting and ending at x forms a group under
the operation ∗. This is the basic result of algebraic topology proved by H. Poincaré in
the end of 19th century that brings into light a wonderful interplay between geometry and
algebra:

Theorem 2.31. Let (X, τX) be a topological space and x ∈ X. Then the set of homotopy
equivalence classes Γx of closed paths rooted at x (i.e. paths from x to x), equipped with

• the operation ∗ : Γx × Γx → Γx,
• and the identity given by eq. class of the constant path [ex(t)] := x,
• the inverse given by the time-reversal [←−γ ],

forms a group, called the fundamental group of X at the point x, that is denoted by π1(X, x).

To prove the theorem we have to just verify that the axioms of a group are satisfied for
the operation ∗. Firstly, the set Γx is closed under the operation ∗, thus it remains to prove
associativity, the existence of identity elements and of inverses. We state all this in a slightly
more general form, that is useful for us later on:

Lemma 2.32. Let γ1 be a path from x to y, γ2 a path from y to z, and γ3 a path from z
to w. The concatenation operation ∗ on equivalence classes of paths satisfies the following
properties:

(1) (Associativity) We have that [γ1] ∗ ([γ2] ∗ [γ3]) = ([γ1] ∗ [γ2]) ∗ [γ3];
(2) (Identity elements) If we denote by ex the path that stays constantly at the point x,

then [ex] ∗ [γ1] = [γ1] = [γ1] ∗ [ey];
(3) (Inverses) We have that [γ1] ∗ [←−γ 1] = [ex] and [←−γ 1] ∗ [γ1] = [ey].

Again, I encourage you to draw pictures of the different homotopies needed in the proof:

Proof. Take some representatives γi ∈ [γi]. Then a path γ in [γ1]∗ ([γ2] ∗ [γ3]) can be written
as

γ(t) =

 γ1(2t) if t ≤ 1/2
γ2(4t− 2) if 1/2 ≤ t ≤ 3/4
γ3(4t− 3) if t ≥ 3/4

Similarly a path γ̃ in ([γ1] ∗ [γ2]) ∗ [γ3] can be written as

γ̃(t) =

 γ1(4t) if t ≤ 1/4
γ2(4t− 1) if 1/4 ≤ t ≤ 1/2
γ3(2t− 1) if t ≥ 1/2
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Thus we can see that γ̃(t) = γ ◦ ψ(t) with ψ(t) a piece-wise linear function:

ψ(t) =

 2t if t ≤ 1/4
t+ 1/4 if 1/4 ≤ t ≤ 1/2
t/2 + 1/2 if t ≥ 1/2

In particular ψ(t) is continuous and thus it follows from Lemma 2.29 that γ and γ̃ are
path-homotopic.

An analogous argument also shows the second point. Let us here only consider the first
half, i.e. let us show that [ex] ∗ [γ1] = [γ1], the other half following similarly. Let γ1 ∈ [γ1].
Then ex ∗ γ1 can be written as γ1 ◦ ψ(t) with ψ(t) = 0 when t ≤ 1/2 and ψ(t) = 2t − 1 for
t ≥ 1/2. As ψ(t) is continuous, it again follows from Lemma 2.29 that ex ∗ γ1 and γ1 are
path-homotopic.

Finally, let us prove the third part of the lemma. Again we prove the first half of the
statement, the other half following similarly. Let γ1 ∈ [γ1] and write γ(t) := γ1 ∗ ←−γ 1(t).
Then γ(t) = γ1(2t) for t ≤ 1/2 and γ(t) = γ1(2− 2t) for t ≥ 1/2. Now define F (s, t) by

F (s, t) =

 γ(s) if s ≤ 1/2− t/2
γ(s) if s ≥ 1/2 + t/2
γ(1/2− t/2) if 1/2− t/2 ≤ s ≤ 1/2 + t/2

We claim that F is a homotopy between γ and ex. First, notice that γ(1/2 − t/2) =
γ(1/2+t/2) = γ1(1−t). Thus, for any fixed t the path F (s, t) just goes up to the point γ1(1−t)
along γ1 with a certain speed, stays there for some time and then returns (Again do draw a
picture!). Let us now check the conditions for being a homotopy. We have that F (s, 0) = γ
and F (s, 1) = x = ex. Also, F (0, t) = F (1, t) = x. It remains to check that F is continuous.
But this follows from the Pasting Lemma (Lemma 2.8) as F (s, t) can be checked to be
continuous on the closed sets S1 := [0, 1]2∩({(s, t) : s ≤ 1/2− t/2} ∪ {(s, t) : s ≥ 1/2 + t/2})
and S2 := [0, 1]2 ∩ {(s, t) : 1/2 − t/2 ≤ s ≤ 1/2 + t/2}. Indeed, on S1 we just have that
F (s, t) = γ(s) and on S2, F (s, t) = γ(1/2− t/2) so in both cases the continuity follows from
the continuity of γ. □

A priori we have a different group at every point of the space. However, the nice thing
is that in a path-connected space all these groups are isomorphic, meaning that there is a
bijection between the groups that preserves the group structure.

Proposition 2.33. Let (X, τX) be a path-connected topological space. Then for any x, y ∈ X
the groups π1(X, x) and π1(X, y) are group-isomorphic.

Proof. Let η be a path from x to y. We claim that the map G : Γy → Γx defined for γy ∈ Γy

by G([γy]) = [η] ∗ [γy] ∗ [←−η ] induces a group-isomorphism between π1(X, x) and π1(X, y). In
other words, we need to prove that G is a bijection and that it preserves the group structure:
for any [γ1], [γ2] ∈ Γy we should have that G([γ1]) ∗G([γ2]) = G([γ1] ∗ [γ2]).

Let us start from the latter point, i.e from the fact that the group structure is preserved
by G. By definition of G, we have that

G([γ1]) ∗G([γ2]) = ([η] ∗ [γ1] ∗ [←−η ]) ∗ ([η] ∗ [γ2] ∗ [←−η ])
By associativity of ∗, i.e. Lemma 2.32 we can write this as

[η] ∗ ([γ1] ∗ ([←−η ] ∗ [η]) ∗ [γ2]) ∗ [←−η ].
42



But again by Lemma 2.32 we have that [←−η ] ∗ [η] = [ey] and moreover that [γ1] ∗ [ey] ∗ [γ2] =
[γ1] ∗ [γ2]. Thus

G([γ1]) ∗G([γ2]) = [η] ∗ ([γ1] ∗ [γ2]) ∗ [←−η ] = G([γ1] ∗ [γ2]).
It remains to check that G is bijective. This can be done by just writing out the inverse
map, but let us here check step by step:

• G is injective: indeed, let [γ1] ∈ Γy. Then by associativity of ∗, we have that

[←−η ]G([γ1])[η] = [η] ∗ ([←−η ] ∗ [γ1] ∗ [η]) ∗ [←−η ] = γ1,

and thus if G([γ1]) = G([γ2]) then [γ1] = [γ2].
• G is surjective: let [γ̃] ∈ Γx. Then [←−η ] ∗ [γ̃] ∗ [η] is in Γy. Moreover, by associativity

of ∗,
G([←−η ] ∗ [γ̃] ∗ [η]) = [η] ∗ ([←−η ] ∗ [γ̃] ∗ [η]) ∗ [←−η ] = [γ̃].

□

This proposition justifies the usage of "the fundamental group of space X is ...", although
one should bear in mind that each point gives a different representative and there is no
canonical isomorphism between the different groups (it may depend on the chosen path).

There is now a very nice way to restate simple-connectedness:

Lemma 2.34 (Simply-connected space II). A path-connected topological space (X, τX) is
called simply-connected if and only if its Fundamental group is trivial (one-element) group.

Often this is condition - that the fundamental group is trivial - is used as the definition
for simple-connectedness.

Proof. Let x be any point in X. Then as (X, τX) is simply connected, any path in Γx is
path-homotopic to the constant path ex. Thus we see that Π1(X, x) is trivial. In the other
direction consider any two paths γ1 and γ2 from x to y. Then [γ1] ∗ [←−γ 2] ∈ Γx. But now
Π1(X, x) is trivial and thus [γ1] ∗ [←−γ 2] = [ex]. Acting now by ∗[γ2] from the left, we obtain
that [γ1] = [γ2], as claimed. □

Continuous maps induce homomorphism on fundamental groups, and based on this one
can see that the fundamental groups of homeomorphic spaces are isomorphic:

Lemma 2.35. Let (X, τX), (Y, τY ) be a path-connected topological spaces and f : X → Y a
continuous map with f(x) = y. Then f∗ : π1(X, x)→ π1(Y, y) defined by f∗([γ]) = [f ◦ γ] is
a (group) homomorphism. Moreover, if (X, τX) ∼= (Y, τY ), then the fundamental groups of
(X, τX) and (Y, τY ) are (group) isomorphic.

In particular this means that the fundamental group is a topological invariant.

Proof. The proof is left as an exercise. □

By showing that all paths in Rn were path-homotopic, we already showed that Rn is
simply-connected. Our next aim is to quickly discuss cases where the fundamental group
is something more exciting. In particular, we look at the case of the circle S1 and the
punctured plane R2\{0} - their fundamental groups are isomorphic to the additive group Z.
In general fundamental groups are not necessarily commutative, and indeed might turn out
to be complicated and not easy to even compute. You will see some exciting cases in further
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topology courses. Here, however, we will content ourselves with stating and discussing, but
not proving the following theorem:
Theorem 2.36. The fundamental group of the circle S1 is isomorphic to the additive group
Z.

The idea of the proof is very nice and works in a much more general setting: we set up a
map (a covering map) between the circle S1 and R by heuristically wrapping R around S1

infinitely - in this case it is just the map f(x) = e2πix. Notice that via this map for each
point p ∈ S1, we have that f−1(p) is given by a shifted copy of Z. Even more, if you consider
the set of homeomorphisms τ : R→ R such that f ◦ τ = f , then this set of homeomorphisms
with the operation of composition is also isomorphic to Z. In fact this is the key insight in
the slightly technical proof, given in the handout - there is a correspondence between the
group of closed loops in S1 and the group of automorphisms of R, that are compatible with
f . As the elegant theory of covering spaces is out of the scope of this course, the complete
proof (using only hands-on methods accessible to us) is non-examinable and sketched on an
independent exercise sheet.
Exercise 2.8. Now we can prove in a few steps that R2 is not homeomorphic to any Rn,
n > 2 (we already know the case n = 1):

• Show that the fundamental group of R2\{0} is also isomorphic to Z.
• Show that Rn\{0} is simply-connected.

⋆ (non-examinable) The fundamental group of S1

We parametrize S1 = {ei2πθ : θ ∈ [0, 1)} and set p0 = (1, 0). A natural distance dS
in S1 is given by the ’angular’ difference dS(e

i2πθ1 , ei2πθ2) := min(|θ1 − θ2|, 1 − |θ1 − θ2|)
(check it’s a distance!). A natural distance on paths on S1 is then given by δS(γ1, γ2) :=
sups∈[0,1] dS(γ1(s), γ2(s)). On R we use the usual distance d and the path distance δ(γ1, γ2) :=
sups∈[0,1] d(γ1(s), γ2(s)).

The following steps should help you prove that the fundamental group of S1 is isomorphic
to Z.

(1) Defining the covering map:
• Consider the map f(x) = ei2πx from R to S1. Observe that for any p ∈ S we have

that f−1(p) = ap+Z for some ap ∈ [0, 1). For each p ∈ S1, denote by Up the open
interval of dS-length 1/4 centred at p in S1. Show that f−1(Up) = ∪n∈ZVap+n,
where ap is as above and Vx denotes an open interval of Euclidean-length 1/4
around x ∈ R.
• Argue that f is locally a homeomorphism: for any x ∈ R, prove that hx : Vx →
Uf(x) given by restricting f to Vx is a homeomorphism.

(2) Lifting the paths: we aim to show that for any path γ in S1 from p0 to p0 there exists
a unique path γ̃ in R starting from 0 such that f ◦ γ̃n = γ. Observe that γ̃(1) ∈ Z.
• Define s as the supremum of t ∈ [0, 1] such that there is unique γ̃ for the path

defined on [0, t]. Prove that s > 0.
• Prove by contradiction that s is not smaller than 1 and conclude the existence

and uniqueness of γ̃.
• Argue that this lifting maps close-by paths to close-by paths: using the fact that
f is locally a homeomorphism and the specific expression for f , show that if two
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paths γ1, γ2 from p0 to p0 satisfy δS(γ1, γ2) < ϵ for ϵ > 0 small enough, then in
fact δ(γ̃1, γ̃2) = δS(γ1, γ2).

(3) Lifting the homotopy: we now show that two paths γ1 and γ2 from p0 to p0 are
path-homotopic in S1 if and only if the paths γ̃1 and γ̃2 are path-homotopic in R.
Denote by F the homotopy between γ1 and γ2.
• Define F̃ : [0, 1]2 → R by lifting for each fixed t ∈ [0, 1] the path γs(t) = F (s, t),

i.e. set F̃ (s, t) = γ̃s(t).
• Argue that F̃ is continuous by using continuity of F and the fact that close-by

paths are mapped to close-by paths. For example, define u as the supremum of
t ∈ [0, 1] so that F̃ is continuous on [0, 1]× [0, t]. Prove as above that t > 0, and
prove further that t = 1.

(4) Show that if two paths are homotopic in R, then they are homotopic in S1.
(5) We now define a group isomorphism j : π1(S

1, p0)→ Z:
• For any path γ in S1 from p0 to p0, we can look at the endpoint of the lift,

i.e. assign mγ := γ̃(1). Using the previous points (and simple-connectedness
of R), argue that mγ only depends on the equivalence class of γ. Thus define
j([γ]) := mγ.
• Show that j is an injection from π1(S

1, p0) to Z (by using simple-connectedness
of R).
• By considering a sufficiently large class of paths in S1, show that j is a surjection

from π1(S
1, p0) to Z.

• Finally, by arguing that the lift of γ1 ∗ γ2 is given by γ̃1 ∗ (mγ1 + γ̃2). show that
j is a homomorphism, i.e. that j([γ1 ∗ γ2]) = j([γ1]) + j([γ2]).

[⋆ End of an non-examinable section ⋆]
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Section 3

Compactness
Oxford dictionary of English tells us what compact means - closely and neatly packed

together. And this is indeed very close to its meaning in mathematics. In Analysis II you
saw three equivalent definitions for compactness in Rn:

(1) K ⊆ Rn is compact iff it is closed and bounded;
(2) K is compact iff every sequence in K has a convergent subsequence with a limit in

K;
(3) K is compact iff every covering of K with open balls admits a finite subcover - i.e.

if (Bi)i∈I are open balls with K ⊆
⋃

i∈I Bi, then K ⊆
⋃

i∈I0 Bi for some finite set
I0 ⊆ I.

We will start a fresh, try to generalize these definitions to arbitrary topological spaces and
to then study the resulting notions. In fact, the first of these definitions does not naturally
generalize to arbitrary topological spaces as there is no notion of boundedness. The other
two do generalize, but actually give rise to slightly different concepts, as we will see soon.
As a by-product we will reprove the equivalences for Rn as well.

To start, let us fix some helpful vocabulary: we say that a collection of sets (Ui)i∈I covers
another set K if K ⊆

⋃
i∈I Ui

9. We will use the term open cover, when all the sets in this
collection are open in the underlying topological space.

Definition 3.1 (Compactness). A topological space (X, τX) is called compact if any open
cover of X admits a finite subcover, i.e. if I is any index set, Ui are open for all i ∈ I and⋃

i∈I Ui = X, then there exists a finite subset I0 ⊆ I such that
⋃

i∈I0 Ui = X.

To get well-acquainted with this definition, let us start from some basic examples:
• A space (X, τI) with the indiscrete topology is compact as every cover has to contain

the whole space and we can choose just this single set to be our subcover.
• A space (X, τD) with the discrete topology is compact iff it is finite.

Indeed, if X is finite and (Ui)i∈I is an open cover, then for any x ∈ X we can pick
some Uix containing x. Then the sets Uix with x ∈ X form a finite subcover.

If X is infinite, we can choose the collection of sets {x} - they form an open cover
without a finite subcover.
• (R, τE) is not compact: we can take Ui = (i − 1, i + 1), then (Ui)i∈Z form an open

cover without a finite subcover.
• (0, 1) is not compact: we can take Ui = (i−1, 1) - you can again check that they form

an open cover without a finite subcover.
More examples are on the example sheet, for now let us verify that the canonical example

of a neatly packed set is indeed compact:

Proposition 3.2. The interval [0, 1] with its standard topology is compact.

Proof. It suffices to prove that for any covering of [0, 1] with open sets admits a finite sub-
cover. So consider such a covering (Ui)i∈I . Mimicking the proof of connectedness of [0, 1],
let s be the supremum of x ∈ [0, 1] such that [0, x] can be covered with a finite subcover of

9Notice that a priori the same set could appear several times.
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(Ui)i∈I . Notice that s > 0: the point 0 can be covered with a single open set among Ui and
there is some δ > 0 so that [0, δ) ⊆ Ui.

We aim to first show that s = 1. Suppose for contradiction that s < 1. Consider the
open interval Uis covering s. For some δ > 0 we have that (s − δ, s + δ) ⊆ Uis . But then
by adding Uis to the existing finite subcover of [0, s − δ/2] we obtain a finite subcover of
[0, s+ δ], contradicting the choice of s.

Now, 1 is also covered by some set Uj and thus again there is some δ > 0 such that
(1 − δ, 1] ⊆ Uj. As s = 1, we have that [0, 1 − δ/2] has a finite subcover; adding Uj to this
cover gives a finite subcover of [0, 1]. □

Remark 3.3. A quick way to check whether you understand the proof is to identify where
the argument fails for the half-open interval [0, 1).

Let us now introduce the other notion of compactness:

Definition 3.4 (Sequentially compact). A topological space (X, τX) is called sequentially
compact, if any sequence (xn)n≥1 in X admits a convergent subsequence.

In fact, it comes out that there are many different definitions of compactness, often with no
implications between the definitions. For example compactness and sequentially compactness
are in general just different:

• there are spaces that are compact, but not sequentially compact, and also spaces that
are sequentially compact but not compact.

We will meet such examples in a bit, but we will also see later on that in the realm of metric
spaces these definitions are equivalent.

So which is the ’good’ definition or notion? It depends on the context, but if the criteria is
neatness, then compactness often wins. Let us illustrate this by the proof of the Boundedness
theorem.

Theorem 3.5 (Boundedness theorem). Let (X, τX) be a compact topological space and f :
X → R a real-valued continuous function. Then f is bounded on (X, τX), i.e. there exist
i ∈ R, s ∈ R such that i ≤ f(x) ≤ s for all x ∈ X.

Proof. Cover R with open intervals Ui = (i−1, i+1). Define Vi := f−1(Ui). Then
⋃

i Vi = X.
As f is continuous, all Vi are also open in X. Thus (Vi)i∈Z form an open cover of X. Now
X is compact, and thus there exist some i1, . . . , im such that X =

⋃
k=1...m Vik . But then

f(X) ⊆
⋃

k=1...m Uik and thus for all x ∈ X we have that mink=1...m ik − 1 ≤ f(x) ≤
maxk=1...m ik + 1 □

The similar result holds for sequentially compact spaces, but the proof argues by contra-
diction and is not half as neat. Thus we will now mainly work with compactness.

3.1 Some main properties of compactness
We will often consider subsets of a compact space, so here is an useful criteria in verifying

that they are compact (with their subspace topology), by just using open sets of the ambient
space. This lemma is so intuitive that we will often even forget mentioning that we use it.

Lemma 3.6. Let (X, τX) be a topological space and consider K ⊆ X. Then (K, τX,K) is
compact as a topological space if and only if every covering of K with open sets of X admits
a finite subcover.
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The proof is a direct definition-chasing, which is left as an exercise:

Proof. On the exercise sheet. □

Another useful property is that, as with continuity, compactness can be checked only for
a more restricted collection of open sets - those forming a basis for the topology:

Lemma 3.7. Let (X, τX) be a topological space, τBX a basis and A some subset. Suppose that
any covering of A with sets from τBX admits a finite cover. Then A is compact.

Proof. On the exercise sheet. □

A central property is the fact that continuous maps preserve compactness:

Proposition 3.8. Let (X, τX) be a compact topological space and f : (X, τX) → (Y, τY ) be
continuous. Then f(X) is compact.

The proof reminds us of the proof of the Boundedness theorem (there is a good reason for
that!):

Proof. By Lemma 3.6, it suffices to show that any cover (Ui)i∈I of f(X) by open sets of Y
admits a finite subcover. So consider such a cover. Then as f is continuous we have that
Vi := f−1(Ui) are open in X and as f−1(Y ) = X, they form an open cover of X. But X
is compact, and thus we can find a finite set I0 ⊆ I such that X =

⋃
i∈I0 Vi. But then

f(X) ⊆
⋃

i∈I0 Ui and thus we have exhibited a finite subcover of f(X). □

As a direct corollary we see that compactness is a topological property:

Corollary 3.9. Suppose that (X, τX) is compact and (Y, τY ) is homeomorphic to (X, τX).
Then (Y, τY ) is compact.

Using this corollary we can directly see that ([0, 1], τE) and ((0, 1), τE) cannot be homeo-
morphic as the closed interval is compact and the open one not.

Another nice corollary of Proposition 3.8 is a strengthening of the Boundedness theorem -
the Extreme value theorem, which says that a continuous real-valued function on a compact
space X is not only bounded, but it also attains its bounds:

Theorem 3.10 (Extreme value theorem). Let (X, τX) be a compact topological space and
f : X → R a real-valued continuous function. Then f is bounded on (X, τX) and attains its
bounds at some points xi, xs ∈ X: i.e. there exist xi ∈ X, xs ∈ X such that f(xi) ≤ f(x) ≤
f(xs) for all x ∈ X.

Proof. On the exercise sheet. □

3.2 Compact vs closed and the Hausdorff property
In Rn compact and closed sets go hand in hand. It comes out that they remain friends in

the context of general topological spaces, but sometimes take a bit of distance. As a starter,
we remark that compactness can be also stated using closed sets:

Lemma 3.11. A topological space (X, τX) is compact if and only if for any collection (Cj)j∈J
of closed subsets of X such that the intersection

⋂
j∈J Cj is empty, there exists some finite

subset Jc ⊆ J such that
⋂

j∈Jc Cj is empty.
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This also has a nice corollary:

Corollary 3.12. Let (X, τX) be a compact topological space and (Cn)n≥1 a sequence of nested
closed non-empty subsets of X, i.e ∀n ∈ N : we have Cn ⊇ Cn+1. Then

⋂
n∈NCn is non-

empty.

The proofs of both of these statements are on the exercise sheet. Moreover, it is important
to note that this property does not necessarily hold if we are in a non-compact space.

Exercise 3.1. Find a topological space (X, τX) and a sequence of closed sets (Cn)n≥1 such
that each Cn is non-empty, for each n ≥ 1 we have that Cn ⊇ Cn+1, but the intersection⋂

n∈NCn is empty.

The next proposition can be read as saying that compactness has a hereditary nature: if
the whole space is compact, then also are its closed sets.

Proposition 3.13. Let (X, τX) be a compact topological space. Then every closed subset of
X is compact.

Proof. Let C be some closed set in (X, τX) and (Ui)i∈I a cover of C by open sets in X. Then
as X\C is open, we have that (Ui)i∈I together with X\C form an open cover of X. But X
is compact, and thus there exists some finite set I0 such that X = (X\C) ∪ (

⋃
i∈I0 Ui). But

then C ⊆
⋃

i∈I0 Ui and hence (Ui)i∈I0 form an open subcover. Thus (by Lemma 3.6) C is
compact. □

Although based on the example of Rn, one would believe that the opposite also holds -
that the compact subsets would be closed - this does not hold in full generality. For example
think of a set endowed with the indiscrete topology - then all subsets are compact, but the
only closed sets are the empty set and the whole space. The opposite does hold, however, in
Hausdorff spaces:

Proposition 3.14. Let (X, τX) be a Hausdorff topological space. Then every compact subset
of X is closed.

Proof. Consider some compact subset C. To prove that C is closed, it suffices to show that
for any y ∈ X\C we can find some open set contained in X\C and containing y. Fix such
y ∈ X\C. As X is Hausdorff, then for any x ∈ C we can find disjoint open sets x ∈ Ux, Uy,x

with x ∈ Ux and y ∈ Uy,x separating x from y. Now, observe that (Ux)x∈C form an open
cover of C. As C is compact, there exist x1, . . . , xm so that C ⊆ Ux1 ∪ · · · ∪ Uxm . If we now
set Uy =: Uy,x1 ∩ · · · ∩ Uy,xm , then Uy is an intersection of finitely many open sets and thus
open. We also have that Uy ∩ (Ux1 ∪ · · · ∪Uxm) = ∅ and hence Uy ⊆ (X\C). Hence Uy is the
open set that we were looking for. □

In fact, in some textbooks (mainly French), compactness entails the Hausdorff property,
i.e. a compact space is by definition always Hausdorff. The reason behind this is that
compact Hausdorff spaces behave more like we would like them to behave - for example
we already saw that in this case compact subsets are closed. Compact Hausdorff spaces
sometimes even behave better than hoped:

Theorem 3.15. A continuous bijection between two compact Hausdorff spaces is a homeo-
morphism.
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Proof. Let (X, τX), (Y, τY ) be compact Hausdorff spaces and consider a continuous bijection
f : (X, τX) → (Y, τY ). It suffices to prove that for any closed set C, we have that f(C) is
also closed. As X is compact and C is closed, then by Proposition 3.13 we have that C is
compact. Further by Proposition 3.8, as C is compact and f is continuous, we see that f(C)
is compact. Now, finally as Y is Hausdorff and f(C) is compact, from Proposition 3.14 we
deduce that f(C) is closed. □

Remark 3.16. Notice that in fact the proof only used the compactness of the domain X and
the Hausdorff property of the image-space Y . In other words any continuous bijection from
a compact space X to a Hausdorff space Y is a homeomorphism.

Finally, let us mention another beautiful property of compact Hausdorff spaces. Namely,
in Hausdorff spaces one can not only separate distinct points with disjoint open sets, but
also any two disjoint closed sets can be separate via disjoint open sets.

Definition 3.17 (Normal space). A topological space (X, τX) is called normal if for any two
closed disjoint sets C1, C2 we can find open sets U1, U2 such that C1 ⊆ U1, C2 ⊆ U2 and
U1 ∩ U2 = ∅.
Lemma 3.18. Any compact Hausdorff space (X, τX) is also normal.

Proof. The proof is on the exercise sheet. □

Most often one considers Hausdorff normal spaces. However, there are also normal spaces
that are not Hausdorff - for example, if you consider the set X = {1, 2, 3, 4} with the topology
given by τX = {∅, X, {1, 2}, {3, 4}}, then X is normal yet not Hausdorff.

3.3 Compactness for finite product spaces and Heine-Borel in Rn

Let us now see that compactness behaves well w.r.t. taking finite products. The case of
infinite products is considerably more difficult, and we come back to this at the end of the
section.

Proposition 3.19. Let (X1, τX1), . . . , (Xn, τXn) be compact topological spaces. Then also
X1 × · · · ×Xn with its product topology is compact.

Proof. The case of general n follows from the case n = 2 by induction, exactly as for con-
nectedness, so this argument is not repeated here and we will only derive the case n = 2.
For lightness of notation, consider thus two topological spaces (X, τX) and (Y, τY ) and their
product (X × Y, τX×Y ). Our aim is to use Lemma 3.7, i.e. to show that any cover of basis
elements admits a finite subcover. Recall that any basis element for the product topology is
given by U × V with U ∈ τX and V ∈ τY . So consider a cover (Ui × Vi)i∈I .

We will first use compactness of Y : Pick some x ∈ X and consider the set Ix of i ∈ I for
which x ∈ Ui. We then have that {x} × Y ⊆

⋃
i∈Ix Ui × Vi. In particular (Vi)i∈Ix is an open

cover of Y . But Y is compact, and thus there exists some finite set Ix0 ⊆ Ix such that (Vi)i∈Ix0
is a finite subcover. Then {x} × Y ⊆

⋃
i∈Ix0

Ui × Vi and moreover, if we set Wx :=
⋂

i∈Ix0
Ui

then Wx × Y ⊆
⋃

i∈Ix0
Ui × Vi.

But now each Wx is open as a finite intersection of open sets and thus (Wx)x∈X is an open
cover of X. As X is compact, there is some finite set X0 ⊆ X such that (Wx)x∈X0 covers X.
But then (Ui × Vi)i∈Ix0 ,x∈X0 is a finite subcover of (Ui × Vi)i∈I covering X × Y .

□
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We are now basically ready to (re)prove the basic characterisation of compactness in Rn:

Theorem 3.20. [Heine-Borel] Consider Rn with its standard topology. Then a subset K ⊆
Rn is compact if and only if it is closed and bounded in the sense that K it is contained in
some Euclidean ball B(0, R).

The only missing part is an almost unnoticeable detail: given spaces (X1, τX1), . . . , (Xn, τXn)
and subsets Ki ⊆ Xi, then we have a priori two ways to put a topology on the product
K1 × · · · ×Kn:

• We take the product topology of the subset topologies: i.e. the product topology for
(Ki, τXi,Ki

) with i = 1 . . . n;
• or we take the subset topology of the product topology: i.e. we consider K1×· · ·×Kn

as a subset of X1 × · · · ×Xn and endow it with the subset topology of the product
topology on X1 × · · · ×Xn.

It could be a priori possible that these two topologies disagree, but naturally, things are set
up so that they agree. Indeed, denote the first topology by τ1 and the second by τ2, we want
to show that τ1 = τ2. To do this we just observe that for both of them we have a basis given
by all sets of the form (U1 ∩K1)× · · · × (Un ∩Kn) with Ui ∈ τXi

.

Let us now prove Theorem 3.20. It is maybe interesting to note in the proof, where we
use special properties of Rn and which ones they are. Let us hence already point out some
basic results we will use:

(1) The Euclidean topology on Rn is the same as the product topology on the product
of n copies of R. This was on Exercise sheet 4 for n = 2, but you can verify that
exactly the same proof works for general n, using the explicit basis for the product
topology of n spaces.

(2) The Euclidean topology on Rn is Hausdorff (we saw that all metric spaces are Haus-
dorff).

(3) The standard Euclidean distance to 0 on Rn given by dE(x, 0) : (Rn, τE) → (R, τE)
is continuous. (This is on the exercise sheet)

Proof. Suppose K is compact. Then because Rn is Hausdorff, Proposition 3.14 implies that
K is closed. Moreover, as mentioned just above the function dE(x, 0) : (Rn, τE) → (R, τE)
given by the Euclidean distance to the origin is continuous. Thus by the Boundedness
Theorem (Theorem 3.5) we know that dE(x, 0) is bounded on K and hence K is bounded,
i.e. contained in some Euclidean ball B(0, R).

In the other direction suppose that K is closed and bounded. Then in particular, we have
that K ⊆ [−m,m]n for some m > 0. Now, [−m,m] is homeomorphic to [0, 1] and thus is
compact. Moreover, by Proposition 3.19 above, we know that then [−m,m]n is also compact,
and by the small comment just above this also holds when we consider [−m,m]n with the
subset topology of Rn. But then K can be seen as a subset of the compact space [−m,m]n,
and thus we can use Proposition 3.13 to deduce that K is compact. □
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3.4 Tychonoff’s theorem for infinite product spaces and the
axiom of choice

Studying compactness for infinite product spaces is considerably harder. Yet - and maybe
a bit surprisingly - it comes out that any product space with the product topology is compact:

Theorem 3.21 (Tychonoff’s theorem). Let ((Xi, τXi
)i∈I) be any collection of compact topo-

logical spaces. Then their product Πi∈IXi with product topology is again compact.

This is a difficult result and the proof is not part of the course. I’m also not sure there is
a clear intuition available for why it should be true. Maybe, rather than seeing Tychonoff’s
theorem as a statement about the properties of compactness, one should see it as a statement
about arbitrary product spaces with the product topology - the product topology tries to
keep the product space neatly packed together, i.e. compact.

It comes out that Tychonoff’s theorem is mathematically equivalent to the Axiom of
Choice, which we briefly already met. This is an axiom of set theory that does not follow
from the basic, so called Zermelo-Fraenkel axioms. I believe it was a bit of a controversy
whether to accept it or not in the beginning of 20th century, but by today the leaning is
heavily towards accepting it. This is mainly because the statement feels just so ’obvious’: it
roughly says that if you have any collection of non-empty sets, then you can pick an element
in each of them.

• Axiom of choice I: If (Xi)i∈I is any collection of non-empty sets, then also Πi∈IXi

is non-empty.
In fact, this axiom can be reformulated in many ways. For example, here are two refor-

mulations:
• Axiom of choice II: Given any collection (Xi)i∈I of non-empty sets, there is a

function x : I →
⋃

i∈I Xi such that x(i) ∈ Xi (this is called a choice function).
• Axiom of choice III: Given any collection of disjoint non-empty sets (Yi)i∈I , there

is a set C containing one element of each Yi.
Here the equivalence of formulations I and II just follows from the definition of the infinite

product set. The equivalence with III needs a proof. You will see more on Axiom of Choice
in the 3rd year course of logic, if you decide to take it.

A typical situation where it is convenient to use axiom of choice comes up in the proof of
Proposition 3.19 - for each x, we are picking a finite cover of {x}×Y and based on this define
a set Wx. This can be done without Axiom of choice for any finite number of x, however
when we choose Wx for all x ∈ X, we are using Axiom of choice. However, whereas this
is a typical example, it is not a very good example, as the proposition can be proved also
without the Axiom of choice. But maybe this also illustrates to which extent this axiom is
actually accepted.

Exercise 3.2 (⋆ Compactness of product topology without Axiom of Choice). Prove Propo-
sition 3.19, i.e. that the product of the compact spaces is compact in the product topology,
without using Axiom of choice.

We will use Axiom of choice in the (non-examinable) proof of Tychonoff’s theorem, and
it comes out that this is inevitable. In fact Tychonoff’s theorem is equivalent to the Axiom
of choice:
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Theorem 3.22. Tychonoff’s theorem holds if and only if Axiom of Choice holds.

So if you accept Tychonoff’s theorem, you should accept the Axiom of Choice too and
vice-versa. This might also be the reason why it’s not so easy to put our hand on Tychonoff’s
theorem - it’s already a step beyond the basic Zermelo-Fraenkel axioms for the set theory.
Whereas we will not go in more detail with the Axiom of choice, here are some examples to
think about.

Suppose you have have a collection (Xi)i∈I of sets Xi.
• LetXi = [0, 1]. Then Πi∈IXi is non-empty because you can just define x̄ with x̄(i) = 0

and that’s an element in the product.
• Similarly, suppose that Xi ⊆ N for all i ∈ I. Prove that Πi∈IXi is non-empty without

using the axiom of choice: you can define x̄(i) = min{y ∈ Xi}.
• We were using axiom of choice when showing that a countable union of countable

sets is countable. Can you point it down?
The non-examinable proof is given at the end of the chapter.

3.5 Local compactness and compactifications
We saw that (Rn, τE) is not compact. However, by the Heine-Borel theorem there are

many compact subsets of Rn and they all satisfy the nice properties of compact spaces: for
example, continuous real functions defined on them are bounded and take their extremal
values. In fact, around each point of (Rn, τE) we can find a subset that is compact - so at
least locally the space is neatly packed. In fact there are many spaces that are locally neatly
packed, but globally too large to be compact. This motivates the general definition of local
compactness:

Definition 3.23 (Locally compact). Let (X, τX) be a topological space. If for each x ∈ X,
we can find an open set U and a compact set K such that x ∈ U ⊆ K, then we say that X
is locally compact.

It is easy to see that (Rn, τE) is locally compact. Also, any space with the discrete topology
is locally compact, as we can take U = K = {x}. However,

Exercise 3.3. Prove that Q with the subspace topology of (R, τE) is not locally compact.

So sometimes spaces are really not compact at all. However, there are still several ways
to build compact spaces out of them - called compactifications.

Proposition 3.24 (One-point compactification). Let (X, τX) be a topological space. Fix
∞ /∈ X. Let X ′ = X ∪{∞} and τX′ be the union of τX with the collection of sets of the form
(X \K) ∪ {∞} where K is any compact and closed subset of (X, τX). Then (X ′, τX′) is a
topological space and that the subspace topology on X ⊆ X ′ equals τX . Moreover, (X ′, τ ′) is
compact and it is called the one-point compactification of (X, τX).

In the example sheet you will also see that one-point compactifications goes well with
homeomorphisms, and deduce from this that the one-point compactifications of (0, 1) and R
are both S1.

Proof. To see that (X ′, τX′) is a topological space we need to verify the axioms of a topology
for τX′ :
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• X ′ belongs to τX′ because ∅ is closed and compact. The empty set belongs to τX′ as
it belongs to τX .
• To prove the intersection property notice that as K is closed, any set of the form
(X \K) ∪ {∞} can be written as U ∪ {∞} for some U ∈ τX . Thus if at least one of
two open sets V1, V2 ∈ τX′ is in τX , then their intersection is also in τX . Otherwise,
if both V1, V2 ∈ τX′ \ τX , we can write them as (X \K1)∪ {∞} and (X \K2)∪ {∞}.
Thus their intersection is given by (X \K1 ∪K2)∪{∞}. But now we know from the
exercise sheet that the union of two compact sets is again compact.
• To prove the union property, consider any collection of open sets (Ui)i∈I belonging to
τX′ . If all of them are in fact in τX , then we are done as τX is a topology. Otherwise,
we have at least one set Ui0 of the form Ui0 = (X \K0)∪ {∞}. But notice that then
X∪{∞}\

⋃
i∈I Ui is a closed set that is moreover contained in K0. As K0 is compact,

Proposition 3.13 implies that C = X ∪{∞}\
⋃

i∈I Ui is also compact. Hence
⋃

i∈I Ui

is open in (X ′, τX′) as desired.
The second point is clear, as for every set U ∈ τX′ we have by definition U ∩X ∈ τX .
Finally, to show that (X ′, τX′) is compact, consider any open cover (Ui)i∈I ∈ τX′ of X ′.

This open cover has to also cover the point ∞, and thus there is some set Ui0 of the form
Ui0 = (X \K) ∪ {∞}. But now (Ui ∩X)i∈I,i ̸=i0 is an open cover of K and as K is compact,
it admits a finite subcover (Ui ∩X)i∈I0 . Then (Ui)i∈I0 together with Ui0 is the desired finite
subcover of X ′. □

3.6 ⋆ [Non-examinable] Proof of Tychonoff’s theorem ⋆
In this non-examinable section we will discuss how to prove Tychonoff’s Theorem. There

are several proofs in the literature, we will provide here one going via the notion of a sub-
basis. A key input in the proof is a further simplification for checking compactness.

Definition 3.25 (Subbasis). Consider a topological space (X, τX) and a basis τBX . Then a
subbasis SB

X of τBX is a subset of open sets, i.e. SB
X ⊆ τX such that any element of τBX can be

written as a finite intersection of elements in SB
X .

So a sub-basis is a possible even smaller collection of subsets then a basis - whereas a
basis generates the topology via unions, for a subbasis we have to take unions of all finite
products of its elements. Similarly to basis, one could also just define a subbasis without any
reference to a topology and then consider the topology it generates: it would be the smallest
topology containing all the unions of finite intersections of sets in the subbasis. In contrary
to basis, that had to satisfy some conditions, any collection of subsets (of the power set of
X) is a subbasis for some topology:

Exercise 3.4. Let X be any set and S̃B
X any subset of the power set of X. Show that arbitrary

unions of finite intersections of sets of S̃B
X , together with the empty set and X generate a

topology τ . Can you write out the basis of τ for which S̃B
X would act as a subbasis?

Let us consider some examples:
• Consider (R, τE). Then the collection of half-lines [−∞, a), (b,∞] over all a, b ∈ R

forms a subbasis for the basis of open intervals.
• Consider an arbitrary product space Πi∈IXi with the product topology. We have

seen that a basis is given by all sets of the form Πi∈IUi, where each Ui ∈ τXi
and
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Ui = Xi for all but finitely many i ∈ I. A subbasis is given by all sets of the form
Πi∈IUi, where each Ui ∈ τXi

and Ui = Xi for all but possibly one i ∈ I. It is more
concise to write such sets just as π−1

i (Ui), where Ui ∈ τXi
, i.e. as preimages of the

projection maps.
Tychonoff’s theorem will follow quite easily from the following criterion, saying that com-

pactness can be checked only using coverings by subbasis elements. Interestingly, whereas
the similar statement for just basis elements is a simple exercise, it is quite a bit more
demanding in the case of the subbasis.

Theorem 3.26 (Alexander subbasis theorem). Consider a topological space (X, τX) and
some subbasis SB

X . If any covering (Vi)i∈I of X with subbasis elements Vi admits a finite
subcover, then X is compact.

This Theorem also relies on the Axiom of Choice, or rather we will use an equivalent
statement to Axiom of Choice called Zorn’s lemma. Notice that the similar statement with
subbasis replaced by basis did not require any form of the Axiom of Choice. When we deduce
Tychonoff’s theorem from Alexander subbasis theorem, we use Axiom of Choice once again.
In fact, let us start by this - by proving Tychonoff’s theorem assuming Alexander subbasis
theorem:

Proof of Tychonff’s theorem, Theorem 3.21. Consider a covering (Vm)m∈M of X by some
subbasis elements, i.e. each Vm is given by Vm = π−1

im
(Ujm) for some im ∈ I and some

Ujm ∈ τXim
. Recall that Vm is then of the form Πi∈IOi, where all Oi ∈ τXi

, Oi = Xi other
than for i = im, in which case Oi = Ujm is possibly not equal to the full space Xi. In other
words, only the coordinate im may be non-trivial.

Now pick some coordinate i0 ∈ I and consider the set M i0 ⊆ M for which im = i0, i.e.
the the elements of the cover that are non-trivial exactly in the co-ordinate i0. Suppose first
that the sets (Ujm)m∈M i0 cover Xi0 . Then as Xi0 is compact, there is a finite set M i0

0 such
that Xi0 ⊆

⋃
m∈M i0

0
Ujm . But then X ⊆

⋃
m∈M i0

0
π−1
im
(Ujm) =

⋃
m∈M i0

0
Vm and thus (Vm)m∈M i0

0

is a finite subcover of X.
Hence, if for some coordinate i0, we have that (Uim)m∈M i0 covers Xi0 , then we are done.

So suppose for contradiction that for all i0 ∈ I, we have that Wi0 := Xi0\(
⋃

m∈M i0 Ujm) ̸= ∅.
Then by the Axiom of Choice there is some x ∈ Πi0∈IWi0 . But one can verify that this x
is not covered by any Vm with m ∈ M , giving a contradiction. Hence our cover of subbasis
elements admits a finite subcover, and thus by Alexander subbasis theorem we see that
Πi∈IXi with its product topology is compact. □

Let us finally prove Alexander subbasis theorem.

Proof of Alexander subbasis theorem, Theorem 3.26. Let SB
X be a subbasis for τBX . Suppose

that any cover by subbasis elements admits a finite cover. By Lemma 3.7 to show that X is
compact, it suffices to show that any cover by basis elements admits a finite subcover.

The countable case. Let us start by the countable case to better present the key ideas:
i.e. consider a countable cover C0 = (Un)n∈N with Un ∈ τBX and let’s try to show it has a
finite subcover. Suppose for contradiction that this is not the case. We know that U1 can
be written as U1 =

⋂
j=1...m V

1
j for some subbasis elements V 1

j ∈ SB
X .
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Claim 3.27. Suppose that for all j = 1 . . .m, the cover given by adding V 1
j to C0 = (Un)n∈N

admits a finite subcover. Then (Un)n∈N admits a finite subcover.

Proof. From the hypothesis it follows that for all j = 1 . . .m, we there is some finite subset
Nj ⊆ N such that X = V 1

j ∪ (
⋃

n∈Nj
Un). Then for each j, we have that X\V 1

j ⊆
⋃

n∈Nj
Un

and hence by De Morgan’s laws X = (
⋂

j=1...m V
1
j ) ∪ (

⋃
j=1...m

⋃
n∈Nj

Un). But by definition
U1 =

⋂
j=1...m V

1
j and thus in fact (Un)n∈N admits a finite subcover. □

Hence, as by assumption (Un)n∈N admits no finite subcover, there must be some j =
j(1) ∈ {1, . . . ,m} such that we can add V 1

j to the cover C0, then the resulting cover C1 still
admits no finite subcover. We can now continue recursively - given the cover Cn−1 with no
finite subcover, we consider the set Un, which can be written as Un =

⋂
j=1...mn

V n
j . The

same argument as before tells us that we can add some V n
j (with j = j(n)) to the cover

Cn−1 and the resulting cover Cn has still no finite subcover. The union of all these covers,
gives us a cover C∞ that contains for each n ∈ N some V n

j
10 and admits no finite subcover

(otherwise some finite Cn would). But we know that Un ⊆ V n
j and thus V n

j is a covering of
X by subbasis elements, thus by assumption it should have a finite cover! This gives us a
contradiction and hence the initial cover C0 admits a finite subcover.

The general case. The general case follows a similar philosophy, but the difficulty is
that if the index space is uncountable, there is no way to go through all coordinates with
the described procedure and add the subbasis elements. Thus, instead we try to add them
at once by constructing some sort of maximal cover:

Lemma 3.28. Given any covering (Ui)i∈I of X by some basis elements Ui ∈ τBX that admits
no finite subcover, we can find a maximal cover C = (Ũi)i∈Ĩ of X by open sets that contains
the cover (Ui)i∈I , that does not admit a finite subcover and that is maximal in the following
sense: if you add any other open set to this cover, then it does admit a finite subcover.

This lemma follows directly from the Zorn’s lemma, stated and explained just below the
proof. We will now argue how this lemma proves the theorem. We again start with some
cover (Ui)i∈I with Ui ∈ τBX and suppose for contradiction that it has no finite subcover.
Consider the maximal cover C obtained in the lemma above.

Now, pick some i ∈ I and write again Ui =
⋂

j=1...m V
i
j with V i

j elements in the subbasis.
Similarly to the countable case, we claim that there must be some j = j(i) ∈ {1 . . .m} such
that V i

j ∈ C: indeed, if this is not the case then by maximality of the cover C adding any V i
j

to C, we obtain a finite cover. Then, exactly as in the proof of Claim 3.27, this would imply
that C itself has a finite subcover, giving a contradiction. Hence for each i ∈ I, we have some
V i
j ∈ C (with j = j(i)). But similarly to the countable case, the collection (V i

j )i∈I also covers
X and by the assumption has a finite subcover. Hence we derive again a contradiction with
our starting assumptions - the fact that (Ui)i∈I admits no finite subcover.

□

It remains to describe Zorn’s lemma, which we state as a theorem despite its name. To
state it properly we need to introduce some vocabulary:

10In fact we are using a weaker form of Axiom of Choice here, called the Axiom of Dependent Choice.
You may want to think why does the usual mathematical recursion not work here...
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(1) A partially ordered set X is a set with a relation ≤ that satisfies the following natural
conditions:
• x ≤ x;
• if x ≤ y and y ≤ x, then x = y;
• if x ≤ y and y ≤ z, then x ≤ z.

Partial here means that there might be some pairs x, y ∈ X such that there is no
relation between x and y, i.e. neither x ≤ y nor y ≤ x. A prime example would be
the set of subsets of some set Y with the relation ≤ given by set inclusion.

(2) A subset A of X such that any two elements a, b ∈ A are related, i.e. that we have
that either a ≤ b or b ≤ a, is called a chain.

(3) An upper bound for a chain A ⊆ X is an element u ∈ X such that a ≤ u for all
a ∈ A.

(4) A maximal element in X is some xm ∈ X such that there is no x ∈ X distinct from
xm with xm ≤ x.

Theorem 3.29 (Zorn’s lemma). If in a partially ordered set X any chain has an upper
bound, then X has a maximal element.

In the application to Lemma 3.28 the partially ordered set X would be the set of open
coverings containing (Ui)i∈I and admitting no finite subcover. The relation would be the set
inclusion: two coverings C1 and C2 would be in the relation C1 ≤ C2 if and only if all the
open sets in C1 are also in C2. I leave it for you to check how Zorn’s lemma implies Lemma
3.28.

[⋆ End of the non-examinable section ⋆]
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Section 4

Metric spaces
So far the course has been pretty abstract - we have worked in the realm of general

topological spaces. Often, however, the spaces used in other domains of mathematics or
its applications come with some extra structure. An example of such extra structure is a
distance function d(x, y) between each pair of points, giving rise to a metric space.

Given a set X, we recall that a metric d(x, y) : X×X → R has to satisfy three properties:
(1) reflexivity: d(x, y) = 0 iff x = y;
(2) symmetry: d(x, y) = d(y, x);
(3) triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) for any x, y, z ∈ X.

Also, recall that these properties together imply that in fact d(x, y) ≥ 0 for all x, y ∈ X.
We already saw that metric spaces induce a topology on the underlying space, called the

metric topology. Thus all the topological concepts we have introduced also apply to metric
spaces. In fact, many of them behave nicer in metric spaces. One of the reasons for this is
that in metric spaces sequences are enough to describe many of the topological properties:

• continuity of a function f at a point x is equivalent to the statement that for any
sequence xn → x, we have that f(xn)→ f(x);
• for any point in the closure of a set, there is some sequence converging to it;
• compactness is equivalent to sequential compactness;
• etc...

We will start by discussing some of the basic topological notions in the realm of metric
spaces, and looking into some metric spaces of special interest.

4.1 Basic topology of metric spaces
In the following, we consider a metric space (X, d) with its metric topology τd induced by

the basis of open balls B(x, δ) := {y ∈ X : d(y, x) < δ}. This is, we set

τBd := {B(x, δ) : x ∈ X, δ > 0}.
To start off, let us, ask a very natural question - when do two different metrics on the

same set induce the same metric topology? Two metrics that induce the same topology are
called topologically-equivalent metrics.

Lemma 4.1. Consider a set X and two metrics d1 and d2. Then the metrics d1 and d2 are
topologically equivalent if and only if for any x ∈ X and any r > 0, we can find r1, r2 > 0
such that Bd1(x, r1) ⊆ Bd2(x, r) and Bd2(x, r2) ⊆ Bd1(x, r).

Proof. Suppose that two metrics d1, d2 are topologically equivalent and consider some x ∈ X,
some r > 0. The open ball Bd2(x, r) has to be open in (X, τd1). Thus as open balls form
a basis for (X, τd1), there is some δ > 0 and y ∈ X such that x ∈ Bd1(y, δ) ⊆ Bd2(x, r).
But then we can choose r1 < δ−d(x,y)

2
to obtain Bd1(x, r1) ⊆ Bd2(x, r). Changing the roles of

d1, d2 we get the other inequality.
In the other direction, it suffices to prove that for any x ∈ X, r > 0, the ball Bd1(x, r) is

open for the topology τd2 and the ball Bd2(x, r) is open for the topology τd1 . We will prove
the first of these two claims.
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So consider some Bd1(x, r). Then for any y ∈ Bd1(x, r), there is some ry such that
Bd1(y, ry) ⊆ Bd1(x, r). By the hypothesis, for any such y there is some ry,2 such that
Bd2(y, ry,2) ⊆ Bd1(y, ry). But this exactly means that Bd1(x, r) =

⋃
y∈Bd1

(x,r)Bd2(y, ry,2).
And thus Bd1(x, r) ∈ τd2 . □

Sometimes two metrics d1 and d2 defined on some setX are also called Lipschitz-equivalent
if there is some C > 0 such that for any x ̸= y ∈ X we have that

C−1d2(x, y) < d1(x, y) < Cd2(x, y).

Exercise 4.1. Show that two Lipschitz-equivalent metrics are topologically equivalent. Are
topologically equivalent metrics always also Lipschitz-equivalent?

4.1.1 Sequences and continuity
It is an easy check that in metric spaces the topological notions of convergence and con-

tinuity can be reworded in terms of metric balls.

Lemma 4.2. Consider two metric spaces (X, dX) and (Y, dY ). Then:
• A sequence (xn)n≥1 converges to x (in the sense of (X, τdx)-convergence) if and only

if for every ball B(x, δ) there is some nδ ∈ N such that xn ∈ B(x, δ) for all n ≥ nδ.
• A function f : (X, τdX ) → (Y, τdY ) is continuous if and only if for each x ∈ X, and

each ϵ > 0, there is some δ > 0 such that f(B(x, δ)) ⊆ B(f(x), ϵ).

Proof. The proof of this lemma is on the exercise sheet. □

Let us now verify that (as promised) in metric spaces continuous functions can be defined
via sequences:

Proposition 4.3 (Continuity in terms of sequences). Consider a metric space (X, d) and
any topological space (Y, τY ). Then a function f : (X, τd)→ (Y, τY ) is continuous at x if and
only if for any sequence (xn)n≥1 → x, we have that (f(xn))n≥1 → f(x).

Proof. We have seen that in any topological space the continuity of the function f at a point
x implies that for any convergent sequence (xn)n≥1 → x, we have that (f(xn))n≥1 → f(x).
So it remains to prove the converse.

Suppose for contradiction that for any sequence (xn)n≥1 → x, we have that (f(xn))n≥1 →
f(x), but f is not continuous at x. Then by assumption and by the definition of continuity
at the point x, there is some open set U ∈ τY such that there is no open set in X contained
in f−1(U).

Now, set δn := n−1. Then for any n ∈ N we have that B(x, δn)\f−1(U) is non-empty.
Hence we can pick some sequence xn such that xn ∈ B(x, δn) and f(xn) /∈ U 11. But then
the sequence (xn)n≥1 converges to x, whereas the sequence (f(xn))n≥1 cannot converge to
f(x), giving a contradiction. □

Remark 4.4. It is worthwhile to inspect this proof and to ask why it works. Basically, we
only used the following property of open sets around x:

• there are countably many open sets (Un)n∈N containing x, such that for any other
open set U containing x, there is some n ∈ N such that Un ⊆ U .

11We are using the Axiom of Countable choice here (and we have used it also before...), but the standard
is that this axiom is mostly used without mentioning it.
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Any topological space satisfying such conditions for any point x is called first-countable - the
open sets around each point are encoded in countably many sets. In first-countable spaces
sequences are good enough to encode most properties.

Similarly, in metric spaces all points of the set boundary can be described in terms of
sequences:

Lemma 4.5. Consider a subset A of a metric space (X, d). Then for any x ∈ ∂A, there is
a sequence (an)n≥1 with an ∈ A for all n ∈ N and (an)n≥1 → x.

This means that in particular in metric spaces the closure of a set A is given by adding
all limits of all converging sequences in A.

Proof. On the exercise sheet. □

4.1.2 Products of metric spaces
Consider a finite number of metric spaces (X1, d1), . . . , (Xn, dn). The product X1×· · ·×Xn

has a natural metric given by
dΠ((x1, . . . , xn), (y1, . . . , yn)) := d1(x1, y1) + · · ·+ dn(xn, yn).

It comes out that the underlying topology introduced by this metric is exactly the product
topology:

Lemma 4.6. Let (X1, d1), . . . , (Xn, dn) be metric spaces. Then the metric topology induced
by the metric dΠ on X1 × · · · ×Xn defined just above is the product topology.

Proof. Recall that the product topology was the smallest topology such that the projection
maps πi : X1×. . . Xn defined by πi(x1, . . . , xn) = xi are continuous. But using the description
of continuity for metric spaces obtained in Lemma 4.2 and the explicit expression of dΠ,
we see that all πi are also continuous when we use the topology induced by dΠ. Thus
τX1×···×Xn ⊆ τdΠ .

We now want to show that τdΠ ⊆ τX1×···×Xn . To do this, consider any open ball BdΠ(x, δ)
in the τdΠ topology. It suffices to show that it is also an open set in the product topology.
As usual, this follows when we show that around any point in BdΠ(x, δ) we can find some
open set of the product topology that is contained in BdΠ(x, δ).

Hence, for any y ∈ BdΠ(x, δ), define δy = δ−dΠ(x, y). We have that Vy := Bd1(y1,
δy
2n
)×· · ·×

Bdn(yn,
δy
2n
) is open in the product topology. But for any z ∈ Vy, we have that dΠ(z, y) < δy/2.

Thus by the triangle inequality Vy ⊆ BdΠ(x, δ), and thus BdΠ(x, δ) =
⋃

y∈BdΠ
(x,δ) Vy is open

in the product topology. □

There is also a nice way to put a metric on a countable product of metric spaces so that
obtained topology agrees with the product topology:

Lemma 4.7. Consider a countable family of metric spaces (Xn, dn)n∈N. Then the product
topology on X := Πn∈NXn is induced by the following metric: for any x, y in X, writing
x = (x1, x2, . . . ) and y = (y1, y2, . . . ) with xn, yn ∈ Xn we set

dΠ(x, y) =
∑
n≥1

dn(xn, yn)

2n(1 + dn(xn, yn))
.

When can we forget about the 1 + dn(xn, yn) in the denominator?
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Proof. The proof is on the exercise sheet. □

However, notice that the same thing will can not work on uncountable products:

Lemma 4.8. The product topology on the product of uncountably many metric spaces (that
are all bigger than one point) is not metrizable, i.e. there is no metric on the uncountable
product space that would induce the product topology.

The idea of the proof is the following. We noticed that in a metric space X for any point
x ∈ X, there are countably many open sets (Un)n≥1 containing x such that for any other
open set U containing x, we have that Un ⊆ U for some n ≥ 1.

Moreover, observe the following: if we can find such countable collection of open sets
(Un)n≥1, then we can replace Un with elements of any basis τX - indeed, for any Un there is
a basis element Vn ⊆ Un. We will show that in an uncountable product and the usual basis
this is not possible.

Proof. The full proof will be on the example sheet as a starred exercise, i.e. the proof is not
examinable. □

Remark 4.9. This could be formulated as saying that the uncountable product of spaces that
are bigger then a point with the product topology is not first-countable.

Let us finish this small section with a little reality check.

Exercise 4.2. Consider a metric space (X, dX). Then the function d(x, y : (X×X, dX×X)→
(R, τE) is continuous.

4.2 Some important and interesting examples of metric spaces
Let us browse through some important metric spaces for keeping in mind, some which we

have met and some which we will meet more closely:

Metrics on Rn

• The standard Euclidean metric, given by dE(x, y) := ∥x − y∥2 or indeed the metric
induced by any norm ∥x∥. On exercise sheet 9, we saw that all norms are equivalent,
and thus based on above we see that they all induce the same topology - the Euclidean
topology.
• There are also less-standard metrics, e.g. the following distance on R2 is called the

Paris metric:

dP (x, y) :=

{
∥x− y∥2 if x and y lie on the same line through the origin
∥x∥2 + ∥y∥2 otherwise

It will be an exercise to check that this defines a metric and to study its topology.

Sequence spaces

• Consider the space of all sequences x := (x1, x2, . . . ) with each xi ∈ R. As discussed,
you can think of sequences as of points in RN.

– Seeing this way, the first metric one would think of is the product metric:
dΠ(x, y) =

∑
n≥1

dn(xn,yn)
2n(1+dn(xn,yn))

, that indeed is a metric on the whole of RN.
61



Often, however, this is not the most useful metric, and rather we might want to use:
(1) The sup(remum) metric: d∞(x, y) := supn∈N |xn − yn|.
(2) Or for example the l2 metric: d2(x, y) :=

√∑
n∈N(xn − yn)2.

In both cases, there would be some pairs of elements of RN for which the metric is
not defined, so in order to really define a metric space with such metrics we need to
constrain the set of sequences we need to consider. For example, in the case of d∞
metric, the distance between x = (1, 2, 3, . . . ) and y = (0, 0, . . . ) is not well-defined.
Instead, one would consider d∞ on the set of sequence x with supi≥1 |xi| <∞.

Function spaces

• Similarly to sequence spaces, one could also consider function spaces on, say, I =
[0, 1]. As mentioned, you could think that this means that instead of RN we are
now considering the product space R[0,1]. As we saw, in this case there is no natural
product metric on this space. So one works directly with smaller subsets:
(1) For example, we can consider the set of bounded functions, B([0, 1]) with the

sup(remum) metric d∞(f, g) = supx∈[0,1] dE(f(x), g(x)). In fact, we will see that
this sup metric behaves even nicer when restricted to only the set of continuous
functions C([0, 1],R).

(2) The set of continuous functions becomes a metric space also under other dis-
tances - for example we could consider the distance d1(f, g) =

∫ 1

0
|f(x)−g(x)|dx.

(3) More generally, we could consider for any topological space (X, τX) the set of
continuous functions C(X,R) with some metric. As we will see, often the sup
metric is the useful one. As a word of caution recall the example of C((0, 1),R),
where we had to tweak the metric d∞ on R to obtain a metric space: for example
we could define d̃∞(f, g) = min(d∞(x, y), 1).

(4) Even more generally, if (Y, dY ) is any metric space, we could consider the set
of continuous functions C(X, Y ) with the uniform or sup-metric defined by
d∞(f, g) = supx∈X d(f(x), f(y)). Again, this sometimes defines a metric only
after tweaking it a bit. For example, an interesting case would be X = ([0, 1], τE)
and Y any metric spaces. Then C(X, Y ) corresponds to the set of paths in Y
and it could be useful to look at it as a metric space.

A variety of spaces

• Finally, metric spaces appear also in many different contexts. Let us mention two
here:
• The p-adic metric: the whole numbers Z are naturally a subspace of (R, τE) and thus

can be considered with the Euclidean metric. It comes out that from the point of
view of number theory, another useful metric is the p−adic metric. This is defined
for any prime number p as follows: dp(k, n) = m−1 if |k − n| = pm−1q with q not
divisible by p. In words, this metric encodes distance between whole numbers in
terms of divisibility by p. We will see that it is also interesting to consider a variant
of this metric on the set of rationals.
• The Hausdorff metric on the set of closed subsets of a metric space (X, d). For any

closed set C, we can define its ϵ−neighbourhood by Cϵ := {x ∈ X : d(x,C) ≤ ϵ}.
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We can now define the Hausdorff distance between two closed sets C,D, denoted
dH(C,D), as follows:

dH(C,D) := inf
ϵ>0
{C ⊆ Dϵ and D ⊆ Cϵ}.

It will be an exercise to check that (under certain conditions) this indeed defines a
metric.
• In fact also the set of all probability measures on ([0, 1],FR) will be a metric space!

We will come back to this some time later in the course.

4.3 Compactness in metric spaces
As already mentioned before, in metric spaces compactness and sequential compactness

are equivalent:

Theorem 4.10. A metric space (X, d) is compact if and only if it is sequentially compact.

Our aim is to now prove Theorem 4.10. We will prove it in two parts. The easier step is:

Proposition 4.11. Every compact metric space is sequentially compact.

Here, the proof idea is very natural - we will just have to find a convergent subsequence.
We do it by identifying smaller and smaller closed subsets containing an infinite subsequence.
The argument is sometimes called Lion-hunting - in some sense we are making the perimeter
around the Lion smaller and smaller until we track it down. To make it lighter to write, be
record a simple observation:

Lemma 4.12. In a compact space for every ϵ > 0, one can finitely many points x1, . . . , xn
such that balls (B(xi, ϵ))i≤n cover the whole space.

Proof. This follows directly from compactness: the collection (B(x, ϵ))x∈X is an open cover
and by compactness has a finite subcover. □

One way to intepret this simple lemma is to say that compact metric spaces satisfy a
stronger form of boundedness: for any ϵ we can cover the whole space with a finite number
of ϵ−balls.

Proof of Proposition 4.11. Suppose that (X, d) is compact and let (xn)n≥1 be any sequence
in X. By the lemma above, we find finitely many balls of radius 1/2 covering X. Now, as
there are finitely many balls, some ball B(z1, 1/2) has to contain infinitely many elements of
xn. We pick the smallest n for which xn ∈ B(z1, 1/2) and define y1 := xn.

Now, we can also find finitely many balls of radius 1/4 covering the space, and in particular
finitely many of them cover B(z1, 1/2). For one of them, say B(z2, 1/4), we have that
B(z1, 1/2) ∩B(z2, 1/4) must again contain infinitely many elements of the sequence xn. We
again pick such an xn with the smallest index n and set y2 = xn. Continue this way to obtain
a sequence Cn nested closed sets Cn := cl(∩m=1...nB(zm, 2

−m)) and a sequence (yn)n≥1 with
yn ∈ Cn.

But we have seen that if (X, d) is compact, then such an intersection of non-empty closed
sets

⋂
n≥1Cn is non-empty. Pick any element y in this intersection12. It is now easy to check

that yn → y and thus (X, d) is sequentially compact. □
12In fact there can be only one, but it is not relevant here
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Remark 4.13 (⋆). It might be interesting to ask yourself, what are the properties we used
about metric spaces here?

The other direction is slightly trickier - how to convert existence of convergent sequences
to existence of finite covers? A possible middle-man is provided by the following lemma:
Lemma 4.14 (Lebesgue number lemma). Let (X, d) be a sequentially compact space. Then
for every open cover (Ui)i∈I there exists some ϵ > 0 such that for each x ∈ X, there is some
Ui such that B(x, ϵ) ⊆ Ui. The largest such ϵ > 0 for the given cover, is called the Lebesgue
number of the cover.

This is a lemma that clearly directs us towards compactness - firstly, we are dealing
already with open covers, and secondly the lemma says that we cannot cover the space
without somehow evenly covering each point.

Proof. Suppose that the Lebesgue number is not positive for some cover Ui. Then for this
cover, and for any n we can find some sequence (xn)n≥1 such that each B(xn, 1/n) is not
contained in any Ui

13.
AsX is sequentially compact, then there is some convergent subsequence (xnk

)k≥1 converg-
ing to some x ∈ X. Then as (Ui)i∈I covers X, there is some Ui with x ∈ Ui and in particular
as Ui is open and open balls form a basis, there is some δ > 0 such that B(x, δ) ⊆ Ui.
Now, we can choose k large enough so that on the on hand n−1

k ≤ δ/3 and on the other
hand d(xnk

, x) < δ/3. But then by the triangle inequality also B(xnk
, 1/nk) ⊆ B(x, δ) ⊆ Ui,

giving a contradiction with the assumption that B(xn, 1/n) is not contained in any Ui. □

We are now ready to prove the other direction of compactness vs sequential compactness:
Proposition 4.15. Every sequentially compact metric space is compact.

Proof. Let (X, d) be sequentially compact space. Consider an open cover (Ui)i∈I of X. By
the Lebesgue number lemma, there is some ϵ > 0 such that for each x ∈ X, there is some
i = i(x) with B(x, ϵ) ⊆ Ui. In particular, it suffices to prove that X can be covered by finitely
many balls B(x1, ϵ), . . . , B(xn, ϵ) as then the sets Ui(x1), . . . , Ui(xn) form a finite subcover.

Suppose for contradiction that this is not the case, i.e. that no finite subset of these balls
covers the space. Then we can inductively pick a sequence x1, x2, . . . such that d(xn, xm) > ϵ
for any m < n. Indeed, we pick some point x1 and having picked x1, . . . , xn−1 we pick
xn ∈ X\

⋃
i=1...n−1B(xi, ϵ), which is by assumption non-empty. 14

Now, by assumption (X, d) is sequentially compact. Thus we obtain the contradiction and
prove the proposition by showing that
Claim 4.16. Suppose that (xn)n≥1 is a sequence in some metric space (X, d) such that
d(xn, xm) > ϵ, whenever n ̸= m. Then (xn)n≥1 admits no convergent subsequence.

Proof of claim. Indeed, suppose for contradiction that some subsequence (xnk
)k≥1 did con-

verge to some x. Then from some point onwards d(xnk
, x) < ϵ/2 and d(xnk+1

, x) < ϵ/2, im-
plying by triangle inequality that d(xnk

, xnk+1
) < ϵ, contradicting the fact that d(xn, xm) > ϵ.

Thus (xn)n≥1 admits no convergent subsequence. □

□
13We are again using countable axiom of choice here, but as already pointed out before - the standard is

usually not to even mention it
14We are using dependent choice here.
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4.4 Cauchy sequences and completeness
You have already met Cauchy sequences in real analysis. Cauchy was an engineer who

decided that mathematics is more beautiful than engineering and that kings are better than
democracy. Cauchy sequences make sense in general metric spaces.

Definition 4.17 (Cauchy sequence). Let (X, d) be a metric space. A sequence (xn)n≥1 is
called Cauchy if for any ϵ > 0, there is some nϵ ∈ N such that for any n1, n2 ≥ nϵ we have
that d(xn1 , xn2) < ϵ.

It is easy to verify that each convergent sequence is Cauchy:

Lemma 4.18. Let (X, d) be a metric space. If a sequence (xn)n≥1 converges, then it is
Cauchy.

Proof. Let x be the limit of (xn)n≥1. Then by definition of convergence, for any ϵ > 0 there
exists some nϵ such that for all n ≥ nϵ we have that d(xn, x) < ϵ/2. But then by the triangle
inequality, for any n,m ≥ nϵ, we have that d(xn, xm) < ϵ and thus (xn)n≥1 is Cauchy. □

As the elements in a Cauchy sequence get closer and closer together, so in some sense the
sequence stabilizes It would be reasonable to guess that such a sequence might converge.
Whereas this is indeed true in Rn with its Euclidean metric, it is not true in general. For
example,

• consider Q with its standard metric and look at the sequence xn given by stopping
the decimal expansion of

√
2 at its n-th digit. Then xn ∈ Q and xn is Cauchy, yet it

doesn’t converge in Q.
• Or, consider (0, 1) with its standard metric. Then the sequence xn = n−1 is Cauchy,

yet does not converge in (0, 1).
However, it is often true for spaces that one wants to work with, so such spaces have

earned their own name:

Definition 4.19 (Complete metric space). A metric space (X, d) is called complete if every
Cauchy sequence converges.

Thus paraphrasing, we just saw that neither Q nor (0, 1) with their usual metrics are
complete. For a simple example of a complete space to keep in mind, consider any set with
the discrete metric: this is a complete metric space as any Cauchy sequence is eventually
constant (Why?). There are of course also many more interesting spaces:

Exercise 4.3. Prove that C([0, 1],R) with the sup-norm is complete.

Let us consider some basic properties of complete spaces (X, d):
• Let K be a closed subset. Then (K, d) is also a complete metric space - indeed, if

you take a Cauchy sequence in K, then it is also Cauchy in X and thus converges.
But all the limit points of a closed set belong to the set, thus the limit is in K and
hence (K, d) is complete.
• Suppose that (X1, d1), . . . , (Xn, dn) are complete - then alsoX1×· · ·×Xn are complete

with the product metric. (This is on the exercise sheet.)
• But what about continuous images of complete metric spaces? E.g. if f : (X, d) →
(Y, dY ) is continuous, is f(X) complete? Maybe a somewhat silly way to see that
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this is not the case is to consider X = (0, 1) with d given by the discrete metric and
(Y, dY ) = ((0, 1), τE). Then we know that the former is complete, the latter is not
complete and the identity map is continuous as all maps from a discrete space are
continuous. You should think of different examples!

You have also already seen in the first year that Rn with its standard metric is complete.
We will deduce it from a more general statement very soon.

4.4.1 Completeness vs compactness
Both completeness and sequential compactness are about convergent sequences. So it is

reasonable to expect a relation between the two:

Proposition 4.20. Every sequentially compact metric space is complete. More generally,
if for a metric space (X, d) and some point x0 we have that all closed balls B(x0, R) are
sequentially compact, then (X, d) is also complete.

Proof. We will directly prove the more general statement. Let x0 be the point around
which we have sequentially compact balls. Let (xn)n≥1 be a Cauchy sequence. Then there
is some n0 such that for all n,m ≥ n0 we have that d(xn, xm) < 1. In particular, if we
denote R0 = d(x0, xn0) then for all n ≥ n0 we have that xn ∈ B(x0, R0 + 1). As the space
(B(x0, R0 + 1), d) is sequentially compact, there is some subsequence (xnk

)k≥1 of (xn)n≥n0

that converges to some x ∈ B(x0, R0 + 1).
We claim that then the whole sequence converges to the same x:

Claim 4.21. Let (X, d) be a metric space and (xn)n≥1 a Cauchy sequence such that some
subsequence (xnk

)k≥1 converges to x. Then in fact (xn)n≥1 converges to x.

Proof of claim. By convergence of (xnk
)k≥1 to x we can pickm1 ∈ N such that for all nk ≥ m1

we have that d(xnk
, x) < ϵ/2. By the Cauchy property of (xn)n≥1 we can also pick m2 ∈ N

so that for all n,m ≥ m2 we have that d(xn, xm) < ϵ/2. Now pick some nk ≥ max(m1,m2).
Then for all m ≥ max(m1,m2) we have by the triangle inequality that

d(x, xm) ≤ d(x, xnk
) + d(xnk

, xm) < ϵ

and thus indeed (xn)n≥1 converges to x. □

□

It follows from this result and the fact that compactness and sequential compactness agree
in metric spaces, that Rn is complete. Indeed, we have

Corollary 4.22. Rn with its standard metric is complete.

Proof. We know that for any R > 0, the closed ball B(0, R) ⊆ Rn is compact. By the
Theorem 4.10 these balls are thus also sequentially compact. But then by Proposition 4.20
we deduce that Rn is complete. □

Let us now look for a converse of Proposition 4.20. Notice that the converse is not true in
a naive sense: for example R is complete, but not sequentially compact - there are sequences
like 1, 2, 3 where elements can stay far and thus don’t have to converge.

Also, just adding say boundedness of the space would not help: any infinite space with
the discrete metric is complete and bounded, yet not compact. So what could we say?
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Recall that we noticed in Lemma 4.12 that compact metric spaces satisfy a stronger form
of boundedness: for any ϵ we can cover the whole space with a finite number of ϵ−balls.
Such a property has earned its own name:

Definition 4.23 (Totally bounded metric space). A metric space (X, d) is called totally
bounded if for every ϵ > 0, we can find a finite number of balls of radius ϵ covering X.

It comes out that this is the missing bit. In fact, again total boundedness on its own, i.e.
without completeness does not imply compactness - for example Q ∩ [0, 1] with the usual
metric is totally bounded, yet we have seen that it is not compact. However, putting the two
- completeness and total boundedness - together, gives a characterisation of compactness for
metric spaces:

Theorem 4.24 (Compact = complete + totally bounded). A metric space is (sequentially)
compact if and only if it is complete and totally bounded.

We have already proved that compactness implies complete and totally bounded. Only the
other direction is missing. However, if you inspect the proof of Proposition 4.11, you notice
that total boundedness sets us up well for the Lion hunting argument - i.e. to track down
a convergent subsequence. Indeed, we can basically re-use the two first paragraphs of that
proof, and only modify the last step of identifying the actual limit: instead of the non-empty
intersection property for closed sets in compact spaces, we will now use completeness.

Proof. Using the equivalence of compactness and sequential compactness, we see that Propo-
sition 4.20 and Lemma 4.12 provide one direction - they show that compactness implies
complete and totally bounded.

So suppose (X, d) is a complete and totally bounded metric space. Let us show that it is
sequentially compact, and thus compact.

Suppose that (X, d) is totally bounded and let (xn)n≥1 be any sequence in X. Then we
can find finitely many balls of radius 1/2 covering X. Now, as there are finitely many balls,
some ball B(z1, 1/2) has to contain infinitely many elements of xn, pick the element xn with
smallest n and call it y1.

Now, we can also find finitely many balls of radius 1/4 and in particular finitely many of
them cover (B(z1, 1/2). For one of them, say B(z2, 1/4), we have that B(z1, 1/2)∩B(z2, 1/4)
must again contain infinitely many elements of the sequence xn. We pick one with the
smallest index n and call it y2. Continue this way to obtain a sequence Cn nested closed sets
Cn := cl(∩m=1...nB(zm, 2

−m)) and a sequence (yn)n≥1 with yn ∈ Cn.
But now, notice that for any yn, ym ∈ Cn0 we have that d(yn, ym) ≤ 2−n0 . Thus the

sequence yn is Cauchy! But by completeness it hence converges, and again we have found
the convergent subsequence.

□

4.5 Continuous functions with values in metric spaces
We will now concentrate our study on the space of continuous functions defined on some

topological space (X, τX) and taking values in a metric space (Y, d). The space of such
functions is denoted C(X, Y ).

We will endow C(X, Y ) with the uniform metric (sometimes also called sup metric): for
any f, g ∈ C(X, Y ) we want to set d∞(f, g) := supx∈X d(f(x), g(x)). We have seen that this
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defines a metric space only on a subset - if X is not compact, there might be functions for
which the distance becomes infinite. Thus we define d∞(f, g) = min(d∞(f, g), 1) and call it
for clarity sometimes the truncated sup metric. Notice that this metric is well-defined on
the larger space Y X and in fact (Y X , d∞) also defines a metric space.

Theorem 4.25. Let (X, τX) be a topological space. If (Y, d) is complete, then so is C(X, Y )
with the truncated sup metric d∞. If X is compact, the same conclusion holds for the uniform
metric d∞.

In particular it says that uniform limits of continuous functions are continuous in quite
an abstract setting. We will cut the proof into two independent results. The first says that
the product space is complete:

Lemma 4.26. Let (X, τX) be a topological space. If (Y, d) is complete, then so is the space
of all functions f : X → Y , i.e. the product space Y X with the (truncated) uniform metric.

The second says that any uniform limit of continuous functions is continuous:

Proposition 4.27. Let (X, τX) be a topological space, (Y, d) a metric space and (Y X , d∞) the
related function space. Consider a sequence (fn)n≥1 of continuous functions, i.e. functions
in C(X, Y ). Suppose that (fn)n≥1 converges to f ∈ Y X in the d∞ metric. Then in fact
f ∈ C(X, Y ).

The theorem follows directly from these two results:

Proof of Theorem 4.25. Consider a Cauchy sequence (fn)n≥1 in (C(X, Y ), d∞). Then (fn)n≥1

is also Cauchy in (Y X , d∞). As the latter is complete by the lemma above, then (fn)n≥1

converges to some f ∈ Y X . But now by the proposition above in fact f ∈ C(X, Y ) and thus
the theorem follows for the d∞ metric. The statement for compact X then follows from the
exercise stated just below. □

Exercise 4.4. Suppose that (X, τX) is compact. Recall that then (C(X, Y ), d∞) is also metric
space without truncating the metric. Show that d∞ and d∞ are topologically equivalent metrics
on C(X, Y ), but not necessarily Lipschitz-equivalent. Prove that nevertheless (C(X, Y ), d∞)
is complete if and only if (C(X, Y ), d∞) is complete.

Let us now prove the lemma and the proposition, starting from the lemma:

Proof of Lemma 4.26. Consider a Cauchy sequence (fn)n≥1 in (Y X , d∞). As then for each
x ∈ X, the sequence (fn(x))n≥1 is Cauchy and Y is complete, then there is some yx ∈ Y
such that (fn(x))n≥1 converges to yx. Set f(x) := yx, defining a function f : X → Y , i.e. an
element of Y X . It remains to check that (fn)n≥1 converges to f in the d∞ metric.

Fix n ∈ N. Then for any x ∈ X and any m ≥ n we have that

d(fn(x), f(x)) ≤ d(fn(x), fm(x)) + d(fm(x), f(x)).

As fm(x) converges to f(x) (with different speed for different x), we have that d(fm(x), f(x))→
0 as m→∞. In particular, for every x ∈ X and every δ > 0 we can find m0 = m0(x) such
that d(fm(x), f(x)) < δ for all m ≥ m0. Thus

d(fn(x), f(x)) ≤ d(fn(x), fm(x)) + δ ≤ sup
m≥m0

d(fn(x), fm(x)) + δ.
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Letting now δ → 0, we obtain that for any x ∈ X
d(fn(x), f(x)) ≤ lim sup

m
d(fn(x), fm(x)).

For n large enough (so that d∞(fn, fm) = d∞(fn, fm) for all m ≥ n), the right hand side is
further bounded by lim supm d∞(fn, fm). Hence also

d∞(fn, f) ≤ sup
x∈X

d(fn(x), f(x)) ≤ lim sup
m

d∞(fn, fm),

which goes to zero as (fn)n≥1 is by assumption Cauchy. □

It remains to argue that uniform limits of continuous functions are continuous.

Proof of Proposition 4.27. Consider a sequence (fn)n≥1 of functions in C(X, Y ) converging
in d∞ metric to some f ∈ Y X . We want to show that f ∈ C(X, Y ). To do this fix some
x0 ∈ X and consider some open ball B(f(x0), ϵ) around f(x0). Then as (fn)n≥1 converges
to f in d∞-distance, we can pick n large enough so that for any x ∈ X, we have that
d(fn(x), f(x)) < ϵ/3. But now fn is continuous, so there is some open set U0 ∈ τX containing
x0 such that fn(U0) ⊆ B(fn(x0), ϵ/3).

We claim that then f(U0) ⊆ B(f(x0), ϵ) as well: indeed, for any x ∈ U0, by the choice of
U0 we have d(fn(x), fn(x0)) < ϵ/3. Thus by the triangle inequality

d(f(x), f(x0)) < d(f(x), fn(x)) + d(fn(x), fn(x0)) + d(fn(x0), f(x0)) < ϵ/3 + ϵ/3 + ϵ/3 = ϵ,

and the claim follows. Hence f is continuous at x0 and as x0 was arbitrary, in fact f ∈
C(X, Y ). □

4.6 Compact subsets of C(X, Y )

Our next aim is to understand compact subsets of C(X, Y ) with the uniform metric d∞. In
other words - given a sequence of functions, when can we extract a convergent subsequence?
We have seen that compact subsets of a metric space have to be complete and totally
bounded. However, these criteria are a priori not easy to understand in terms of conditions
on the functions themselves.

For example, one could ask
• Does the sequence fn = sin(nx) on [0, 1] have a convergent sequence?
• Is the subset of differentiable functions on [0, 1] compact? But what if we ask in

addition that |f(x)| ≤ 1? Also that |f ′(x)| ≤ 1?
• Do uniformly bounded holomorphic functions have convergent subsequences?

We will find a pretty useful criteria to answer these questions in the setting where (X, τX)
is a compact topological space and (Y, d) a metric space such that all closed bounded balls
are compact. 15 Recall, that in particular this means that (Y, d) is complete.

Let us start from understanding how functions in C(X, Y ) look like in general:

Lemma 4.28. Let (X, τX) be compact and (Y, d) be a metric space. Let f ∈ C(X, Y ). Then
(1) f is bounded, i.e. there is some C > 0 and some y ∈ Y such that d(f(x), y) < C for

all x ∈ X.

15One could generalize a bit further, but for us this is quite enough.
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(2) f is uniformly continuous, i.e. for all ϵ > 0, we can find a finite open cover U1, . . . , Un

of X such that d((f(x), f(y)) < ϵ whenever x, y ∈ Ui.
Remark 4.29. It is probably instructive to think why this definition of uniform continuity
of general topological spaces is equivalent to the following usual definition for functions in
C([0, 1],R): f ∈ C([0, 1],R) is uniformly continuous if for all ϵ > 0 we can find δ > 0 such
that whenever x, y ∈ [0, 1] are such that |x− y| < δ, then |f(x)− f(y)| < ϵ.
Proof. Fix some y ∈ Y . As (X, τX) is compact and we have seen that d(f(x), y) is a
continuous function to (R, τE), the image of f is compact and thus in particular bounded.

For the second claim consider the open sets Uy := f−1(B(y, ϵ/2)) with y ∈ f(X). The sets
(Uy)y∈f(X) form an open cover of X and thus by compactness of X there are finitely many
y1, . . . , yn such that Uyi with i = 1 . . . n cover X. But by definition, if x1, x2 belong to the
same Uy, then d(f(x1), f(x2)) < ϵ. Thus uniform continuity follows.

□

It comes out that if we now consider a sequence of continuous functions converging to a
continuous function, then these two properties are moreover uniform. Let us introduce two
definitions to formulate this:
Definition 4.30 (Uniformly bounded functions). Let A ⊆ C(X, Y ) be a subset of continuous
functions from (X, τX) to (Y, d). Then A is called uniformly bounded, if

• there is C > 0, and y ∈ Y such that d(f(x), y) < C for all x ∈ X and for all f ∈ A.
Definition 4.31 (Equicontinuous functions). Let A ⊆ C(X, Y ) be a subset of continuous
functions from (X, τX) to (Y, d). Then A is called equicontinuous, if

• for any ϵ > 0, we can find a finite covering of X with open sets U1, . . . , Um such that
for all f ∈ A, whenever x, y ∈ Ui for some i ∈ {1, . . . ,m}, we have d(f(x), f(y)) < ϵ.

Notice that a set consisting of one single continuous function is both uniformly bounded
and equicontinuous. Moreover, every finite union of uniformly bounded or equicontinuous
sets is again uniformly bounded or equicontinuous, respectively:
Lemma 4.32. If A1, . . . , An are uniformly bounded subsets of C(X, Y ), then also A =⋃

i=1...nAi is uniformly bounded. Similarly, if A1, . . . , An are equicontinuous subsets of
C(X, Y ), then also A =

⋃
i=1...nAi is equicontinuous.

Proof. By induction it suffices to prove the case for n = 2. So let A1, A2 be uniformly
bounded. Then there exist C1, C2 and y1, y2 such that d(f1(x), y1) < C1 for all x ∈ X and
f1 ∈ A1; similarly d(f2(x), y2) < C2 for all x ∈ X, f2 ∈ A2. Now, consider any f ∈ A1 ∪ A2.
We claim that then d(f(x), y1) < d(y1, y2) + C1 + C2. This is true if f ∈ A1 and if f ∈ A2,
then by the triangle inequality

d(f(x), y1) ≤ d(f(x), y2) + d(y2, y1) ≤ C2 + d(y1, y2),

and the claim follows.
Let us now see that A1 ∪ A2 is equicontinuous. Similarly, we can choose U1, . . . , Um ∈ τX

such that whenever x, y ∈ Ui, and f1 ∈ A1 then d(f1(x), f1(y)) < ϵ; similarly we can choose
V1, . . . , Vk ∈ τX such that whenever x, y ∈ Vj and f2 ∈ A1 then d(f2(x), f2(y)) < ϵ. But now
notice that Wi,j = Ui ∩ Vj also form a finite open cover, and whenever x, y ∈ Wi,j we have
that for every f ∈ A1 ∪ A2, d(f(x), f(y)) < ϵ. Thus the equicontinuity follows.

□
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Moreover, if we have a convergent sequence of functions, then this set of functions has to
be both equicontinuous and uniformly bounded:

Proposition 4.33. Let (X, τX) be compact and (Y, d) be a metric space. Let (fn)n≥1 be
a sequence of functions in (C(X, Y ), d∞) converging to some f ∈ C(X, Y ). Then the set
A = {f} ∪ {fn : n ∈ N} is equicontinuous and uniformly bounded.

The proofs of the two statements have the following intuition: convergence in the uniform
norm means that for n large enough the functions fn look extremely similar to f and thus
the boundedness and uniform continuity of f should imply those of fn for n large enough,
say n ≥ n0. Thus we get one equicontinuous and uniformly bounded set with all fn with
n ≥ n0. Thereafter, we are left with a finite number of fn for n < n0, but we already
know that finite unions of uniformly bounded and equicontinuous sets are again uniformly
bounded and equicontinuous.

Proof. As f is continuous, by Lemma 4.28 we can find C > 0, y ∈ Y such that d(f(x), y) <
C for all x ∈ X. Moreover, for every ϵ > 0, we can find U1, . . . , Um of X such that
d((f(x), f(y)) < ϵ/3 whenever x, y ∈ Ui.

As (fn)n≥1 converges to f in d∞-metric, there is some n0 ∈ N such that for all n ≥ n0 we
have that d∞(fn, f) < ϵ/3. In particular for all n ≥ n0 and all x, y ∈ X we have that
(4.1) d(fn(x), fn(y)) < d(fn(x), f(x))+d(f(x), f(y))+d(f(y), fn(y) < 2ϵ/3+d(f(x), f(y)).

Let us see how this estimate implies uniform boundedness and equicontinuity.
Firstly, we see that for all n ≥ n0 and all x ∈ X we have that d(fn(x), y) < C + 1. Thus

the set A0 := {f}∪{fn : n > n0} is uniformly bounded. But then A = A0∪{f1}∪· · ·∪{fn0}
is a finite union of uniformly bounded sets and thus is uniformly bounded by the lemma just
above.

Second, notice that for all n ≥ n0 and x, y ∈ Ui with i = 1 . . .m, we have from Equation
(4.1) that d(fn(x), fn(y)) < ϵ. Hence the set A0 is also equicontinuous, and thus similarly
by the lemma above A is equicontinuous as a finite union of equicontinuous sets. □

Corollary 4.34. Let (X, τX) be compact and (Y, d) be a metric space such that all bounded
closed balls are compact. Then a compact subset A of (C(X, Y ), d∞) is uniformly bounded
and equicontinuous.

Proof. This is on the exercise sheet. □

We are now ready to state the main result of this section - Arzela-Ascoli theorem. This says
that boundedness and equicontinuity are not only necessary but also sufficient to guarantee
compactness of a subset of continuous functions:

Theorem 4.35 (Arzela-Ascoli). Let (X, τX) be compact and (Y, d) be a metric space such
that all closed bounded balls are compact. Then cl(A) ⊆ C(X, Y ) is compact if and only if
A is uniformly bounded and equicontinuos .

We have already basically proved one part of the theorem in Corollary 4.34, up to the
following small exercise:

Exercise 4.5. Show the following statements:
• Let X be compact and (Y, d) a complete metric space. Then A ⊆ (C(X, Y ), d∞) is

equicontinuous and uniformly bounded iff cl(A) is.
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• in any metric space (Y, d) and for any subset A ⊆ Y , cl(A) is totally bounded if and
only if A is totally bounded.

Before getting into the proof in the general case, let us sketch the proof in the case
(C([0, 1],R), d∞). The key step is to prove total boundedness of this set of functions:

• First, because of equicontinuity we can find finitely many points x1, . . . , xm such that
if we know the value of f at these points, then in fact we know the value of f over
whole of [0, 1] up to ϵ/3−precision.
• Second, because f([0, 1]) is bounded, we can also find y1 . . . yk such that each f(xj)

is ϵ/3− close to one of the points yi.
• This means that if we know for each xj the point yi to which f(xj) is close to (please

draw!), then we know f up to ϵ−precision. But now there are only finitely many
options assigning to each xj some yi and moreover, any two functions giving rise to
the same assignment are ϵ.
• This gives us total boundedness, as for every assignment of a point yi to each xj, we

can pick a function that satisfies such an assignment, if such a function exists. Then
ϵ balls around these functions cover the whole set.

Proof. As mentioned, Corollary 4.34 together with the exercise just above proves that if
cl(A) is compact, then A has to be uniformly bounded and equicontinuous. So we only need
to prove that if A is uniformly bounded and equicontinuous, then cl(A) is compact.

By Theorem 4.25 (C(X, Y ), d∞) is complete, thus as cl(A) is closed, it is also complete.
Hence, by Theorem 4.24 to prove compactness it suffices to show that cl(A) is totally
bounded. As the exercise above confirms, it suffices to show that A is totally bounded.
Thus for any ϵ > 0, we aim to find functions f1, . . . , fn such that the balls (B(fi, ϵ))i=1...n

cover the set A, i.e. that any other function is an ϵ neighbourhood of one of f1, . . . , fn in the
uniform metric. We will now follow the sketch above.

By equicontinuity of A we can find U1, . . . , Um such that for all f ∈ A and all x, y ∈ Uj

for j = 1 . . .m, we have that d(f(x), f(y)) < ϵ/3. By uniform boundedness of A we can also
find some C > 0 and some y0 ∈ Y such that f(X) ⊆ B(y0, C) for all f ∈ A. By assumption
cl(B(y0, C)) is compact and thus in particular totally bounded. Hence we can find y1, . . . , yk
such that B(y0, C) ⊆

⋃
i=1...k B(yi, ϵ/6).

Pick now points xj ∈ Uj for j = 1 . . .m. We claim that two functions that are close on all
points xj, then they are close over whole of X:

Claim 4.36. Suppose that f1, f2 ∈ A are such that for all j = 1 . . .m, one can find ij ∈
{1, . . . , k} with f1(xj) ∈ B(yij , ϵ/6) and f2(xj) ∈ B(yij , ϵ/6). Then in fact d∞(f1, f2) < ϵ.

Before proving the claim, let us show how to conclude the proof. Fix some f0 ∈ A, and
define for each i = (i1, . . . , jm) ∈ {1, . . . , k}m the function fi ∈ A as follows:

• if there is a function f ∈ A such that for each j = 1 . . .m we have that f(xj) ∈
B(yij , ϵ/6), set fi := f ;
• otherwise set fi := f0.

Then by the claim above each f ∈ A is ϵ−close in the d∞ metric to fi where i = (i1, . . . , im)
is such that f(xj) ∈ B(yij , ϵ/6) for all j = 1 . . .m). Thus the theorem follows, once we prove
the claim.
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Proof of the claim. Fix some x ∈ X. Then there is some Uj with j ∈ {1, . . . ,m} such that
x ∈ Uj. Then by the triangle inequality,

d(f1(x), f2(x)) ≤ d(f1(x), f1(xj)) + d(f1(xj), f2(xj)) + d(f2(xj), f2(x)).

But now d(f(x), f(xj)) < ϵ/3 for any f ∈ A by the definition of Uj and moreover

d(f1(xj), f2(xj)) ≤ d(f1(xj), yij) + d(f2(xj), yij) < ϵ/3

by the conditions of the claim. Thus we conclude that d(f1(x), f2(x)) < ϵ. As this holds for
all x ∈ X, the claim follows. □

□

4.7 Generic properties in metric and topological spaces
In this subsection we treat a somewhat vague question:
• How does a generic / typical point of a space look like? What properties does it

satisfy?
We use typical and generic as synonyms. To give some mathematical content to this question,
we will need to make precise the meaning of this generic / typical. It comes out that there
are many different ways of doing this.

(1) We could just use the size of a set: for example, it would be reasonable to say that a
property of a natural number is generic if it holds for all but a finitely many n ∈ N.
In this vein, being larger than 11 is generic, but being odd is for example not generic.
Similarly, one could say that a property of a real number is typical if it holds for
all but countably many real numbers - thus for example being irrational would be a
typical property. More generally, we could say that a property is typical in a set X
if it holds for all x ∈ X\A, where A has strictly smaller size (cardinality).

(2) Generic / typical has also a meaning in the realm of probability theory: for example,
there is a notion of a uniform random number on [0, 1], which we denote by X. In
this setting, a property of r ∈ [0, 1] is called typical if it holds with probability 1 for
the uniform random number X. For example being irrational has probability 1 and
thus it is a typical property, having a digit 5 in the decimal expansion also happens
with probability 1 and is thus typical. Notice that in this case the set of r ∈ [0, 1]
that have no digit 5 in their decimal expansion is uncountable, so having a digit 5
would not be typical in the sense of the set theory above.

(3) Finally, there is the notion of generic / typical in the realm of metric and topological
spaces. This is what we aim to look at in the current subsection.

We will need a few definitions to get going:

Definition 4.37 (Dense and nowhere dense sets). Let (X, τX) be a topological space. We say
that A ⊆ X is dense if cl(A) = X. We say that A ⊆ X is nowhere dense if int(cl(A)) = ∅.

Lemma 4.38. Let (X, τX) be a topological space.
• A ⊆ X is dense if and only if for every non-empty U ∈ τX we have that U ∩ A ̸= ∅.
• A ⊆ X is nowhere dense if and only if for every non-empty U ∈ τX , there exists a

non-empty V ∈ τX with V ⊆ U and V ∩ A = ∅.

Proof. The proof is on the exercise sheet. □
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For example, Q is dense in (R, τE) as the closure of Q is equal to R. On the other hand
Q is not dense in R with the discrete metric - so the definition really does involve also the
topology of the underlying space. For more examples - any finite set is nowhere dense in R,
any set is dense in a space with the indiscrete metric.

The topological notion of small or negligible is given by the following definition:

Definition 4.39 (Meagre sets). Let (X, τX) be a topological space. A subset A ⊆ X is called
meagre if it can be written as a countable union of nowhere dense sets.

We would like to now say that if a property holds for all x ∈ X\A, and A is meagre, then
this property is typical. Notice however that it is very much possible that X itself is small
in this topological sense: for example (Q, τE) can be written as a countable union of {q}
with q ∈ Q and each {q} is nowhere dense. Thus this notion is only useful, if the underlying
space is not meagre. And luckily, there are many such spaces, called Baire spaces:

Definition 4.40 (Baire space). A topological space (X, τX) is called a Baire space if any
A ⊂ X with non-empty interior is not meagre.

There is an equivalent definition, which is also frequently used:

Lemma 4.41. A topological space (X, τX) is Baire if and only if for any countable collection
of dense open sets (Un)n∈N we have that

⋂
n∈N Un is dense.

Proof. This is on the example sheet. □

Baire spaces were introduced in the PhD thesis of René-Louis Baire. He also proved that
in fact there are plentiful interesting examples of Baire spaces:

Theorem 4.42 (Baire Category Theorem I). Every complete metric space is a Baire space.

Remark 4.43. The ’I’ in the theorem hints that there is a sequel. And indeed, one can also
show that every compact Hausdorff space is a Baire space. Whereas this result and its proof
are not be examinable, it is on the starred section of the exercise sheet. The proof mimics
that of Baire Category Theorem I, but you will need to recall some additional properties of
compact Hausdorff spaces...

The following proof should remind you a bit of the Lion hunting argument: here we are
trying to find an element that is not covered by a countable union of nowhere dense sets.

Proof. Let A ⊆ X some subset with non-empty interior. In particular, there is some open
set U ⊆ A. We aim to show that A cannot be written as a countable union of nowhere dense
sets. So let (Cn)n≥1 be a countable collection of nowhere dense sets.

As C1 is nowhere dense and U is open, we can find B(x1, δ1) ⊆ U such that B(x1, δ1)∩C1 =

∅. In particular, the closed ball B(x1, δ1/2) does not intersect C1 and is contained in U . Now,
C2 is also nowhere dense and thus we can further find B(x2, δ2) ⊆ B(x1, δ1/2) with B(x2, δ2)∩
C2 = ∅. Again, the closed ball B(x2, δ2/2) does not intersect C2. Inductively, having
constructed B(x1, δ1), . . . , B(xn, δn), as Cn+1 is nowhere dense, we can find B(xn+1, δn+1) ⊆
B(xn, δn/2) such that B(xn, δn) ∩ Cn+1 = ∅ and moreover B(xn+1, δn+1/2) ∩ Cn+1 = ∅.
Observe that we can choose δn always as small as we wish, in particular so that δn < 1/n to
guarantee that δn → 0.
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Hence 16 we obtain a sequence (xn)n≥1 that is Cauchy: indeed, for any n > n0 we have
that xn ∈ B(xn0 , δn0/2). In particular, as X is complete, we have that (xn)n≥1 converges to
some x ∈ X. But now as B(xn, δn/2) is closed, and contains all elements xm with m > n,
we see that x ∈ B(xn, δn/2) for all n ∈ N. In particular, x ∈ A and x /∈ Cn for all n ∈ N.
Thus A cannot be written as a countable union of nowhere dense sets (Cn)n≥1 and as this
collection was arbitrary the theorem follows.

□

In particular, we see that for example (R, dE) is a Baire space and so is (C([0, 1],R), d∞).
In both cases this has also some interesting consequences. In fact, Baire Category Theorem
has surprisingly many interesting consequences. These consequences seem to come in two
flavours:

(1) Existence results: for example, it can be used to prove the existence of nowhere differ-
entiable continuous functions on [0, 1]; in fact from Baire Category Theorem it follows
that being nowhere differentiable is the generic / typical property of continuous func-
tions. In some cases, the proofs can be much easier than explicit constructions. For
example, this seems to be the case when one tries to find a everywhere differentiable
but nowhere monotonic functions. In the 19th century the mathematicians really
couldn’t decide whether they should or should not exist!

(2) Strengthening of properties: here most of the examples go out of the scope of the
current course, but let us mention a few for the interested: open mapping theorem and
uniform boundedness theorem for linear maps between infinite-dimensional vector
spaces. Moreover, on the exercise sheet you find the following pretty intriguing fact
about holomorphic maps: if a sequence of holomorphic maps on a connected open
set U converges pointwise, then the limit is actually holomorphic on a dense open set
of U ! It is a ’strengthening’ in the sense that we extract from a pointwise limit large
sets where the function is holomorphic.

Let us now try to illustrate such consequences of the Baire Category Theorem via two
examples:

Claim 4.44. The set of continuous functions on [0, 1] that is zero on some q ∈ Q is meagre
in ((C([0, 1],R), d∞).

In particular this means that typical, or most continuous functions are not zero at any
rational point! Here we use the fact that ((C([0, 1],R), d∞) is complete to see that meagre
is negligible, i.e. very small.

Proof. Let A denote the set of functions that are zero at some q ∈ Q and let Aq denote the
set of functions that are zero at q. Then A =

⋃
q∈QAq and thus to show that A is meagre,

it suffices to show that Aq is nowhere dense for every fixed q ∈ Q.
So fix some q ∈ Q and consider some open ball B(g, ϵ) in ((C([0, 1],R), d∞). We want

to show that there is some smaller ball B(g0, δ) ⊆ B(g, ϵ) such that B(g0, δ) ∩ Aq = ∅. We
separate two cases:

• First, suppose that g(q) ̸= 0. Then |g(q)| > c > 0 and thus for any g̃ ∈ B(g, c/2) we
have that g̃(q) > c/2 > 0. Hence B(g, c/2) ∩ Aq = ∅. As also B(g, c/2) ⊆ B(g, c) we
have the desired ball.

16Here we are again using a weak version of the Axiom of choice: the Axiom of dependent choice.
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• Now, suppose that g(q) = 0. Then consider g0(x) = g(x) + ϵ/2. We claim that
B(g0, ϵ/3) satisfies the desired conditions: indeed, if g̃ ∈ B(g0, ϵ/3), then d∞(g̃, g) <
ϵ/2 + ϵ/3 < ϵ by the triangle inequality. Thus B(g0, ϵ/3) ⊆ B(g, ϵ). But also
g̃(0) > ϵ/2− ϵ/3 > 0, thus B(g0, ϵ/3) ∩ Aq = ∅.

We conclude that Aq is nowhere dense and thus A =
⋃

q∈QAq is indeed meagre. □

Claim 4.45. The set of continuous real-valued functions on [0, 1] that are differentiable at
1/2 is meagre in (C([0, 1],R), d∞)

In particular this means that typical, or most continuous functions are not differentiable
at 1/2! Here we again use the fact that ((C([0, 1],R), d∞) is complete to see that meagre is
negligible, i.e. very small.

Proof. The proof is detailed on the exercise sheet - it follows a very similar idea as the last
proof, it is just a bit more difficult on the technical level (i.e. on the level of choosing δ-s). □

4.8 Separation properties in metric spaces
We end the chapter on metric spaces with a very tiny subsection on separation properties.

We already saw that any metric space (X, d) is Hausdorff: for any two distinct points
x, y ∈ X, we have that d(x, y) > 0 and thus the open ball B(x, d(x, y)/2) is disjoint from y.
It comes out that more is true.

Recall, that on Exercise sheet 8 we already met a stronger property of separation - we saw
that compact Hausdorff spaces are normal. In a normal space one cannot only separate any
two distinct points by open sets, but any two disjoint closed sets can be separated by open
sets. It comes out that metric spaces are normal:

Proposition 4.46. A metric space (X, dX) is a normal space. This is, for any two disjoint
closed sets C1, C2 there are disjoint open sets U1, U2 such that C1 ⊆ U1 and C2 ⊆ U2.

Proof. The proof is detailed on the exercise sheet. □

Thus it follows that any metrizable space has to be normal. In the next chapter we will see
a sort of converse - we will see that each topological space (X, τX) that is Hausdorff, normal
and has a countable basis is metrizable, i.e. there is some metric d on X such that (X, τX) is
the topology induced by (X, d). That proof will be based on the following important lemma,
whose proof is given in the next section, but is not examinable:

Lemma 4.47 (Urysohn’s Lemma). Let (X, τX) be a normal space. Then for any two disjoint
closed sets K0, K1 we can find a continuous function f : (X, τX) → ([0, 1], τE) such that
f(x) = 0 for x ∈ K0 and f(x) = 1 for x ∈ K1.

I urge you to think about this lemma - how would one go about constructing such a
continuous function in an abstract setting? Also, why does the existence of such a continuous
function imply that the space is normal?

76



Section 5

A metrization theorem [⋆ non-examinable ⋆]
The last non-examinable mini-chapter is a tribute to Pavel Samuilovich Urysohn, who

lived short, yet made some fundamental contributions to topology. We will see the metriza-
tion theorem, often named after him. But Urysohn also introduced our modern notion of
compactness, contributed to the development of the dimension theory of topological spaces
and has a metric space named after him - the Urysohn universal space.

Some of this work he did in collaboration with his friend Pavel Sergeevich Aleksandrov,
with whom he also went swimming in stormy seas off the coast of Brittany, when 26 years
old, to never return. Both Urysohn and Aleksandrov were fluent in German and French
and thus were well aware of all the contemporary developments of mathematics. Apparently
their papers were succinct, clear and always friendly with attributions of credit. So with no
further:

Theorem 5.1 (Urysohn’s Metrization Theorem). Let (X, τX) be a topological space that is
Hausdorff, normal and has a countable basis. Then (X, τX) is metrizable - there is a metric
d on X so that the induced topology of (X, d) agrees with τX .

The proof of this theorem is a jewel, with several beautiful ideas and bringing together
many ideas of different chapters of the course. There are two key steps:

(1) In the first step, we will show that in a normal space, given two disjoint closed sets one
can construct a real-valued continuous function that takes values 0 and 1 on these two
sets, respectively. Whereas constructing such continuous functions on metric spaces
is relatively easy using the distance function, it is by no means clear in a general
topological space.

(2) Thereafter, we see that a countable family of such continuous functions helps to de-
scribe the metric structure - indeed, using these functions we construct an embedding
(a bi-continuous injection) of our topological space to the product space [0, 1]N. As
this latter space is endowed by the product metric, it induces a metric on the image
of our topological space, and thus on the initial space itself.

The first step is usually separated in a lemma of independent interest, that we already
stated in the last section.

Lemma 5.2 (Urysohn’s Lemma). Let (X, τX) be a normal space. Then for any two disjoint
closed sets K0, K1 we can find a continuous function f : (X, τX) → ([0, 1], τE) such that
f(x) = 0 for x ∈ K0 and f(x) = 1 for x ∈ K1.

Before proving the lemma and the theorem, let us quickly revisit the concepts in the
statement of the theorem:

• In a normal space, given any two disjoint closed sets K0 and K1 we can find disjoint
open sets U0, U1 containing K0 and K1, respectively. Notice that in this case cl(U0)
is also disjoint from U1 and in particular of K1. This is just because X\U1 is closed,
and hence by definition of the closure cl(U0) ⊆ X\U1. Recall also that we saw that
any metric space is a normal space, so this condition is necessary.
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• On the other hand, not every metric spaces has a countable basis. For example R with
its discrete metric has no countable basis. Also, not all basis have to be countable -
think of (R, τE) for example. Existence of a countable basis implies in particular that
the underlying space can be approximated by countable sets in the following sense:
we say that (X, τX) is separable if there is a countable set A ⊆ X with cl(A) = X.
One can check that if (X, τX) has a countable basis (Ui)i∈N, then we can construct
such A by picking some xi ∈ Ui for all i ∈ N and taking their union 17.

Let us now prove Urysohn’s lemma:

Proof. Fix two closed disjoint sets K0, K1. Let Dn = {m
2n

: m ∈ N} and D =
⋃

n≥1Dn. The
idea is now to construct a family of open sets (Us)s∈(0,1)∩D so that

• K0 ⊆ Us for any s > 0;
• for any s < t: cl(Us) ⊆ Ut;
• also, Ut ⊆ X\K1 for all t < 1.

Before constructing this family, let’s see how its existence allows to find the desired continuous
function f : (X, τX) → ([0, 1], τE). Indeed, set f(x) := infs∈(0,1)∩D{x ∈ Us}, if the infimum
exists and set f(x) = 1 otherwise. Notice that by the conditions on the family Us, we have
that f(x) = 0 when x ∈ K0 and f(x) = 1 when x ∈ K1. So we just need to check the
continuity of f . As the sets of the form [0, a) and (a, 1] with a ∈ (0, 1) form a subbasis of
open sets for τE on [0, 1], it suffices to check that their preimages are open in τX .

First, by definition if x ∈ Us, then f(x) ≤ s. Thus we have that f−1([0, a)) ⊇
⋃

s∈[0,a)∩D Us.

On the other hand, if f(x) < a, then there is some a0 < a in D such that x ∈ Ua0 . Thus
f−1([0, a)) ⊆

⋃
s∈[0,a)∩D Us. We conclude that f−1([0, a)) is open as an union of open sets.

In the other direction, if x ∈ X\Us, then f(x) ≥ s. Thus f−1((a, 1]) ⊇
⋃

s∈(a,1]∩DX\cl(Us).

But if f(x) > a, then we can find a0 ∈ (a, f(x)) ∩ D such that x /∈ Ua0 . If we now pick
further a1 ∈ (a, a0) ∩D, then as cl(Ua1) ⊆ Ua0 , we see that x ∈ \cl(Ua1). Thus f−1((a, 1]) ⊆⋃

s∈(a,1]∩DX\cl(Us). Hence, we see that f−1((a, 1]) is also open, proving continuity.
It remains to construct a family of open sets (Us)s∈[0,1]∩D with the above conditions. We

will do this recursively over the n ∈ N of Dn. It is easier to also simultaneously keep track
of a family of closed sets (Cs)s∈(0,1)∩D, such that Cs := X\Us.

The induction basis is the case n = 1, i.e. we construct U1/2, C1/2. By normality of X, we
can find disjoint S, T ∈ τX such that K0 ⊆ S and K1 ⊆ T , and we just set U1/2 := S and
C1/2 := X\S.

For the induction step: having constructed all Us, Cs for s ∈ Dn ∩ (0, 1), we construct
Us, Cs with s = 2m+1

2n+1 as follows:
• if m /∈ {0, 2n − 1} consider the disjoint closed sets C0 := cl(U m

2n
) and C1 := Cm+1

2n
;

• m = 0, set C0 := K0 and C1 := C 1
2n

;
• m = 2n − 1, set C0 := cl(U 2n−1

2n
) and C1 := K1.

Again, by normality of X, we can find disjoint open sets S and T such that C0 ⊆ S and
C1 ⊆ T . We set U 2m+1

2n+1
:= S and C 2m+1

2n+1
:= X\S and check that all conditions remain to be

satisfied. Thus, we conclude our construction of sets U1
18.

□
17By using Axiom of countable choice of course...
18Yes, we are using Axiom of dependent choice here...
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We are now ready to prove the Urysohn’s Metrization theorem itself, which would be too
beautiful to admit. The idea is as follows: for any two nested open basis sets U1, U2 such
that cl(U1) ⊆ U2, we construct the function fU1,U2 with K0 := cl(U1) and K1 := X\U2 using
Urysohn’s Lemma. We then show that all these functions fU1,U2 together actually encode a
metric structure, by finding a bi-continuous injection (an embedding) of X into [0, 1]N with
its product metric. Here, it is the countability of the basis that allows us to use countably
many functions and thus to embed into a countable product space (recall that uncountable
product spaces are not metrizable!).

Proof of the Metrization theorem. Consider all pairs of basis sets Ui, Vi such that cl(Ui) ⊆ Vi.
There are only countable many pairs of the basis sets, and thus there are also only countable
many of such nested pairs. Thus we can index all such pairs using N to obtain (Ui, Vi)i∈N.
Notice that this set is indeed non-empty. First of all, as the basis covers X, for any x ∈ X
there is some basis element Vi containing x. Moreover,

Claim 5.3. For any x ∈ X and any basis element Vi containing x, there is a further basis
element Ui with x ∈ Ui such that cl(Ui) ⊆ Vi.

Proof of claim. As X is Hausdorff, then {x} is closed. As {x} and X\Vi are disjoint closed
sets and X is a normal space, we can find some disjoint open sets S, T such that x ∈ S and
X\Vi ⊆ T . Now, each open set is an union of basis elements, thus there is some further
basis element Ui containing x with Ui ⊆ S. Moreover as cl(Ui) is disjoint from T , it is in
particular contained in Vi and the claim follows. 19 □

For any pair (Ui, Vi) with i ∈ I define fi := fUi,Vi
as the continuous function obtained

from the Urysohn’s lemma with K0 = cl(Ui) and K1 = X\Vi. Consider now [0, 1]N with its
standard product metric dΠ, and the function f : (X, τX) → ([0, 1]N, dΠ) given by f(x) :=
(f1(x), f2(x), . . . ). Then f is continuous as each fi is continuous. We aim to show that f is
also injective and f−1 is continuous, i.e. that f maps open sets to open sets. Indeed, given
this, it would follow that X is homeomorphic to f(X) and as (f(X), dΠ) is a metric space,
we could conclude that X is metrizable. So let us prove these two properties.

• f is injective: pick any disjoint x, y. By the Hausdorff property, there are some
disjoint open sets S, T such that x ∈ S, y ∈ T . Then there must be also some basis
element Vi ⊆ S containing x and not y. Thus by the claim above we can also find a
basis element Ui with x ∈ Ui and cl(Ui) ⊆ Vi. In particular, by the definition of the
function fi = fUi,Vi

we have that f(x) = 0 and f(y) = 1.
• f is an open map, i.e. f maps open sets to open sets : it suffices to show that f(Vi0)

is open for any basis set Vi0 . So let x ∈ Vi0 . It suffices to then argue that there is
some open set S of ([0, 1]N, dΠ) containing f(x) such that S ∩ f(X) ⊆ f(Vi0). Using
the claim above, we can again find a further basis element Ui0 containing x with
cl(Ui0) ⊆ Vi0 , and thus also a function fi0 = fUi0

,Vi0
such that fi0(x) = 0 and fi0 = 1

outside Vi0 . In particular f−1([0, 1)) ⊆ Vi0 . Thus, if we define S = Πi∈NSi with
Si = [0, 1] for all i ̸= i0 and Si0 = [0, 1), then S is open and S ∩ f(X) ⊆ f(Vi0). Thus
we conclude that f(Vi0) is open.

□
19Notice that it might happen that Ui = Vi. When?
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[⋆ End of the non-examinable section ⋆]

And that’s all there is.
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