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1 Final and initial topologies

Consider the following two motivating questions:

Question 1.1. Given a set X and a collection of topological spaces (Y;, ;) together with functions
fi : X = Y; can we construct a topology on Tx on the source space X such that all the functions f;
are continuous?

Question 1.2. Given a set'Y and a collection of topological spaces (X;,T;) together with functions
gi : X; = Y can we construct a topology on Ty on the target space Y such that all the functions g;
are continuous?

If we can answer Question 1.1 positively, then such a topology 7x is called initial with respect
to the collection of functions f; : X — Y;. And the answer is yes! We can construct 7x. Since
continuity translates into “inverse images of open sets are open”, we can consider

B={f"'(Vi); Vien}

and we simply let 7x be the coarsest (smallest) topology on X making all sets in B open. But
more is true, such 7x will be unique because an initial topology (with respect to the collection of
functions f; : X — Y;) must satisfy the following universal property:

e If (Z,77) is any topological space and ¢ : Z — X is a function, then ¢ is continuous if and
only if f; o ¢ is continuous for all i.

Similarly, if we can answer Question 1.2 positively, then such a topology 7y is called final with
respect to the collection of functions g; : X; — Y. Again we can indeed construct 7y, we simply let

v ={VcY;g (V) e rforall i}

which is the finest (largest) topology on Y making all the g; continuous. And this topology will
further be unique because it satisfies the following universal property:

o If (Z,77) is any topological space and ¢ : Y — Z is a function, then ¢ is continuous if and
only if ¢ o g; is continuous for all 7.

1.1 The subspace and the product topologies

Definition 1.3. Let (Y, 7y) be a topological space and let X C'Y be a subset. The subspace topology
on X 1is the initial topology with respect to the inclusion tx : X — Y.



Why would we want to construct a topology on X so that the inclusion becomes continuous?
Because we would like for the restriction of a continuous function Y — Z to X to still be a continuous
function.

Definition 1.4. Let (Y1, m1) and (Y2, 72) be topological spaces. Then the product topology on X =
Y1 x Ys is the initial topology with respect to the collection {m; : Y1 x Yy — Y;}, where each 7; denotes
the usual i-th projection (y1,y2) — ;.

1.2 The quotient and the disjoint union topologies

Definition 1.5. Let (X1,71) and (X2, 72) be topological spaces. Then the disjoint union (or sum,)
topology on' Y = X1 U Xo = {(z,i); z € X;} is the final topology with respect to the collection
{g9i : Xi; = Y}, where each g; denotes the usual inclusion x — (x,1).

Definition 1.6. Let (X, 7) be a topological space, let'Y be a set and let m: X — Y be a surjection.
Then the quotient topology on'Y determined by 7 is the final topology with respect to .

2 Some category theory

Definition 2.1. A category C consists of the following data:
e A class of objects denoted by Ob(C)

e For every two objects X,Y € Ob(C), there exists a set Hom(X,Y') whose elements are called
morphisms from X toY

e For every three objects X,Y,Z € Ob(C), there exists an associative operation
o: Hom(X,Y) x Hom(Y,Z) — Hom(X, Z)
called composition.

e For every object X € Ob(C), there exists a morphism idxy € Hom(X,X) such that for all
objects Y € Ob(C) and all morphisms f € Hom(X,Y) we have foidxy = f =idy o f.

Example 2.2. The category Top whose objects are topological spaces and the morphisms are the
continuous functions.

Definition 2.3. Let C be a category and pick X, Y € Ob(C). We say f € Hom(X,Y) is an
isomorphism if there exists g € Hom(Y, X) such that f o g = idy and go f = idx.

Thus, the isomorphisms in Top are the homeomorphisms.

2.1 Products and coproducts

Definition 2.4. Let C be a category and let Y1,Ys € Ob(C). Then the product of Y1 and Ys in C,
if it exists, is the object denoted by Y1 X Ya equipped with morphisms m; € Hom(Yy, X Y3,Y;) and
satisfying the following universal property:

e Given any object Z € Ob(C) with morphisms f; € Hom(Z,Y;) there exists a unique morphism
f € Hom(Z,Y1 x Ya) which factors the f; through the ;.

Thus, the cartesian product with the product topology is a (categorical) product in Top.



Definition 2.5. Let C be a category and let X1, Xo € Ob(C). Then the coproduct of X1 and X,
in C, if it exists, is the object denoted by X1 U Xo equipped with morphisms g; € Hom(X;, X1 U Xa)
and satisfying the following universal property:

e Given any object Z € Ob(C) with morphisms f; € Hom(X;, Z) there exists a unique morphism
f € Hom(Xy1 U Xa,Z) such that f; = fog;

And, similarly, the disjoint union with the disjoint union topology is a (categorical) coproduct
in Top.

2.2 Equalizers and coequalizers

Definition 2.6. Let C be a category, let X,Y € Ob(C) and let f,g € Hom(X,Y). Then the
equalizer of this data, if it exists, is the object A € Ob(C) equipped with a morphism a € Hom(A, X)
such that f oa = goa and satisfying the following universal property:

e Given any object Z € Ob(C) and a morphism ¢ € Hom(Z,X) such that f o p = go ¢ there
exists a unique morphism ¢ € Hom(Z, A) such that ao @ = .

f
In Top the equalizer of X :Y is the set A = {z € X; f(x) = g(x)} equipped with the
g
subspace topology where the morphism a : A — X is the inclusion.

In fact more is true, if (X,7) is a topological space and A C X, then A equipped with the

s
subspace topology and the inclusion morphism A — X is an equalizer of X 3 Y ., where:

*
e Y = X/ ~ is the quotient of X by the equivalence relation given by identifying all the points
in A and we equip Y with the corresponding quotient topology

e 7: X — X/ ~ is the canonical quotient map x > [z]
e x: X — X/ ~ is the constant map x — [a], where a € A

Definition 2.7. Let C be a category, let X, Y € Ob(C) and let f,g € Hom(X,Y). Then the
coequalizer of this data, if it exists, is the object B € Ob(C) equipped with a morphism b € Hom(Y, B)
such that bo f = bo g and satisfying the following universal property:

e Given any object Z € Ob(C) and a morphism ¢ € Hom(Y,Z) such that p o f = @ o g there
exists a unique morphism ¢ € Hom(B, Z) such that p o b= .

f
In Top the coequalizer of X SY is the set Y/ ~, the quotient of Y by the equivalence
g
relation on Y given by identifying all points in f(A) (with A as above), equipped with the quotient
topology where the morphism b : Y — Y/ ~ is the corresponding quotient map.
And, again, more is true, if (Y, 7) is a topological space and 7 : Y — B is a surjection, then
B equipped with the quotient topology determined by 7 together with the quotient morphism
idy
7 :Y — B is a coequalizer of Y 3 Y , where:
f

e f is defined by f(y) = B(n(y)) and B : B — Y is any morphism such that 7(5(7(y))) = 7(y)

Remark 2.8. Products and equalizers are examples of (categorical) limits, whereas coproducts and
coequalizers are examples of (categorical) colimits.



