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1 Final and initial topologies

Consider the following two motivating questions:

Question 1.1. Given a set X and a collection of topological spaces (Yi, τi) together with functions
fi : X → Yi can we construct a topology on τX on the source space X such that all the functions fi
are continuous?

Question 1.2. Given a set Y and a collection of topological spaces (Xi, τi) together with functions
gi : Xi → Y can we construct a topology on τY on the target space Y such that all the functions gi
are continuous?

If we can answer Question 1.1 positively, then such a topology τX is called initial with respect
to the collection of functions fi : X → Yi. And the answer is yes! We can construct τX . Since
continuity translates into “inverse images of open sets are open”, we can consider

B = {f−1(Vi) ; Vi ∈ τi}

and we simply let τX be the coarsest (smallest) topology on X making all sets in B open. But
more is true, such τX will be unique because an initial topology (with respect to the collection of
functions fi : X → Yi) must satisfy the following universal property:

� If (Z, τZ) is any topological space and φ : Z → X is a function, then φ is continuous if and
only if fi ◦ φ is continuous for all i.

Similarly, if we can answer Question 1.2 positively, then such a topology τY is called final with
respect to the collection of functions gi : Xi → Y . Again we can indeed construct τY , we simply let

τY = {V ⊂ Y ; g−1(V ) ∈ τi for all i}

which is the finest (largest) topology on Y making all the gi continuous. And this topology will
further be unique because it satisfies the following universal property:

� If (Z, τZ) is any topological space and φ : Y → Z is a function, then φ is continuous if and
only if φ ◦ gi is continuous for all i.

1.1 The subspace and the product topologies

Definition 1.3. Let (Y, τY ) be a topological space and let X ⊂ Y be a subset. The subspace topology
on X is the initial topology with respect to the inclusion ιX : X → Y .
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Why would we want to construct a topology on X so that the inclusion becomes continuous?
Because we would like for the restriction of a continuous function Y → Z toX to still be a continuous
function.

Definition 1.4. Let (Y1, τ1) and (Y2, τ2) be topological spaces. Then the product topology on X =
Y1×Y2 is the initial topology with respect to the collection {πi : Y1×Y2 → Yi}, where each πi denotes
the usual i-th projection (y1, y2) 7→ yi.

1.2 The quotient and the disjoint union topologies

Definition 1.5. Let (X1, τ1) and (X2, τ2) be topological spaces. Then the disjoint union (or sum)
topology on Y = X1 ⊔ X2 = {(x, i) ; x ∈ Xi} is the final topology with respect to the collection
{gi : Xi → Y }, where each gi denotes the usual inclusion x 7→ (x, i).

Definition 1.6. Let (X, τ) be a topological space, let Y be a set and let π : X → Y be a surjection.
Then the quotient topology on Y determined by π is the final topology with respect to π.

2 Some category theory

Definition 2.1. A category C consists of the following data:

� A class of objects denoted by Ob(C)

� For every two objects X,Y ∈ Ob(C), there exists a set Hom(X,Y ) whose elements are called
morphisms from X to Y

� For every three objects X,Y, Z ∈ Ob(C), there exists an associative operation

◦ : Hom(X,Y )×Hom(Y,Z) → Hom(X,Z)

called composition.

� For every object X ∈ Ob(C), there exists a morphism idX ∈ Hom(X,X) such that for all
objects Y ∈ Ob(C) and all morphisms f ∈ Hom(X,Y ) we have f ◦ idX = f = idY ◦ f .

Example 2.2. The category Top whose objects are topological spaces and the morphisms are the
continuous functions.

Definition 2.3. Let C be a category and pick X,Y ∈ Ob(C). We say f ∈ Hom(X,Y ) is an
isomorphism if there exists g ∈ Hom(Y,X) such that f ◦ g = idY and g ◦ f = idX .

Thus, the isomorphisms in Top are the homeomorphisms.

2.1 Products and coproducts

Definition 2.4. Let C be a category and let Y1, Y2 ∈ Ob(C). Then the product of Y1 and Y2 in C,
if it exists, is the object denoted by Y1 × Y2 equipped with morphisms πi ∈ Hom(Y1 × Y2, Yi) and
satisfying the following universal property:

� Given any object Z ∈ Ob(C) with morphisms fi ∈ Hom(Z, Yi) there exists a unique morphism
f ∈ Hom(Z, Y1 × Y2) which factors the fi through the πi.

Thus, the cartesian product with the product topology is a (categorical) product in Top.
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Definition 2.5. Let C be a category and let X1, X2 ∈ Ob(C). Then the coproduct of X1 and X2

in C, if it exists, is the object denoted by X1 ⊔X2 equipped with morphisms gi ∈ Hom(Xi, X1 ⊔X2)
and satisfying the following universal property:

� Given any object Z ∈ Ob(C) with morphisms fi ∈ Hom(Xi, Z) there exists a unique morphism
f ∈ Hom(X1 ⊔X2, Z) such that fi = f ◦ gi

And, similarly, the disjoint union with the disjoint union topology is a (categorical) coproduct
in Top.

2.2 Equalizers and coequalizers

Definition 2.6. Let C be a category, let X,Y ∈ Ob(C) and let f, g ∈ Hom(X,Y ). Then the
equalizer of this data, if it exists, is the object A ∈ Ob(C) equipped with a morphism a ∈ Hom(A,X)
such that f ◦ a = g ◦ a and satisfying the following universal property:

� Given any object Z ∈ Ob(C) and a morphism φ ∈ Hom(Z,X) such that f ◦ φ = g ◦ φ there
exists a unique morphism φ̃ ∈ Hom(Z,A) such that a ◦ φ̃ = φ.

In Top the equalizer of X
f
))

g
55 Y is the set A = {x ∈ X ; f(x) = g(x)} equipped with the

subspace topology where the morphism a : A → X is the inclusion.
In fact more is true, if (X, τ) is a topological space and A ⊂ X, then A equipped with the

subspace topology and the inclusion morphism A → X is an equalizer of X
π ))

∗
55 Y , where:

� Y = X/ ∼ is the quotient of X by the equivalence relation given by identifying all the points
in A and we equip Y with the corresponding quotient topology

� π : X → X/ ∼ is the canonical quotient map x 7→ [x]

� ∗ : X → X/ ∼ is the constant map x 7→ [a], where a ∈ A

Definition 2.7. Let C be a category, let X,Y ∈ Ob(C) and let f, g ∈ Hom(X,Y ). Then the
coequalizer of this data, if it exists, is the object B ∈ Ob(C) equipped with a morphism b ∈ Hom(Y,B)
such that b ◦ f = b ◦ g and satisfying the following universal property:

� Given any object Z ∈ Ob(C) and a morphism φ ∈ Hom(Y, Z) such that φ ◦ f = φ ◦ g there
exists a unique morphism φ̃ ∈ Hom(B,Z) such that φ̃ ◦ b = φ.

In Top the coequalizer of X
f
))

g
55 Y is the set Y/ ∼, the quotient of Y by the equivalence

relation on Y given by identifying all points in f(A) (with A as above), equipped with the quotient
topology where the morphism b : Y → Y/ ∼ is the corresponding quotient map.

And, again, more is true, if (Y, τ) is a topological space and π : Y → B is a surjection, then
B equipped with the quotient topology determined by π together with the quotient morphism

π : Y → B is a coequalizer of Y
idY ))

f

55 Y , where:

� f is defined by f(y) = β(π(y)) and β : B → Y is any morphism such that π(β(π(y))) = π(y)

Remark 2.8. Products and equalizers are examples of (categorical) limits, whereas coproducts and
coequalizers are examples of (categorical) colimits.
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