The spectrum of a ring

Aline Zanardini

Fall 2023

1 Rings and ideals

Definition 1.1. A <u>ring</u> (with unit) is a set A endowed with two binary operations $(a,b) \mapsto a + b$ and $(a,b) \mapsto a \cdot b$ which satisfy the following axioms:

- (A, +) is an abelian group
- (A, \cdot) is a monoid:
 - $(associativity) (a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - (unity) there exists $1_A \in A$ such that $1_A \cdot a = a = a \cdot 1_A$ for all $a \in A$
- The "multiplication" is distributive with respect to the "addition":
 - $-a \cdot (b+c) = a \cdot b + a \cdot c$
 - $-(b+c) \cdot a = b \cdot a + c \cdot a$

We say a ring $(A, +, \cdot)$ is commutative if the "multiplication" is commutative, i.e., $a \cdot b = b \cdot a$ for all $a, b \in A$.

Definition 1.2. Let $(A, +, \cdot)$ be a commutative ring. We say $I \subset A$ is an <u>ideal</u> of A, denoted by $I \subseteq A$, if I is a subgroup of (A, +) and for all $a \in A$ the set $aI \doteq \{a \cdot u : u \in I\}$ is contained in I. That is, given $u, v \in I$ and $a \in A$ the elements u + v and $a \cdot u$ are in I^{-1} .

Definition 1.3. Let $(A, +, \cdot)$ be a commutative ring and let $I \subseteq A$ with $I \neq A$. We say I is <u>prime</u> if given $a, b \in A$ such that $a \cdot b \in I$ we have that either $a \in I$ or $b \in I$.

Definition 1.4. Let $(A, +, \cdot)$ and $(B, \oplus, \times)^2$ be two rings. We say a function $\varphi : A \to B$ between the two underlying sets is a morphism of rings if $\varphi(1_A) = 1_B$ and for all $a, a' \in A$ we have

- $\varphi(a+a') = \varphi(a) \oplus \varphi(a')$
- $\varphi(a \cdot a') = \varphi(a) \times \varphi(a')$

¹If A is not commutative then any such I is called a left ideal.

²Here \oplus denotes the "addition" on B and \times the "multiplication"

2 $\mathbf{Spec}(A)$

Let $(A, +, \cdot)$ be a commutative ring. The spectrum of A (as a set), denoted by Spec(A) consists in the set of all prime ideals of A:

$$\operatorname{Spec}(A) = \{ \mathfrak{p} \le A \, ; \, \mathfrak{p} \text{ is prime} \}$$

Example 2.1. The points in $Spec(\mathbb{Z})$ are the ideals (0) and $p\mathbb{Z}$, where p is a prime number.

Example 2.2. The points in $Spec(\mathbb{C}[x])$ are the ideals (0) and the ideals $(x - \lambda)$, where $\lambda \in \mathbb{C}$

Now, given A we can construct a topology on Spec(A) in the following way:

- If $I \subseteq A$ is an ideal we let $V(I) \doteq \{ \mathfrak{p} \in \operatorname{Spec}(A) ; \mathfrak{p} \supset I \}$,
- and we declare that the closed subsets in $\operatorname{Spec}(A)$ are the subsets of the form V(I) for some $I \subseteq A$.

This gives a topology because

- $V((0)) = \operatorname{Spec}(A)$ and $V(A) = \emptyset$
- $V(I) \cup V(J) = V(IJ)$ where IJ is the ideal generated by finite sums of products of the form $u \cdot v$ with $u \in I$ and $v \in J$
- $V(I) \cap V(J) = V(I+J)$ where $I+J = \{u+v \; ; \; u \in I, v \in J\}$ is the smallest ideal of A which contains both I and J³

And it turns out that this topology is the topology generated by the collection of open subsets of the form

$$D_a \doteq \{ \mathfrak{p} \in \operatorname{Spec}(A) ; a \notin \mathfrak{p} \}$$

where $a \in A$.

Problem 2.3. If $\varphi: A \to B$ is a morphism of rings then you can check the following:

- (i) If $\mathfrak{p} \in Spec(B)$ then $\varphi^{-1}(\mathfrak{p}) \in Spec(A)$
- (ii) The function $Spec(B) \to Spec(A)$ given by $\mathfrak{p} \mapsto \varphi^{-1}(\mathfrak{p})$ is continuous (w.r.t. the topologies we defined above)

Problem 2.4. If $S \subset Spec(\mathbb{Z})$ is infinite, then you can check that S is closed if and only if $S = Spec(\mathbb{Z})$. This tells us that the topology in $Spec(\mathbb{Z})$ we defined above looks like the cofinite topology on the set of prime numbers, except that on $Spec(\mathbb{Z})$ the closure of (0) is the whole space.

³In fact given an arbitrary collection of ideals $\{I_{\alpha}\}$ of A we have that $\bigcap V(I_{\alpha}) = V\left(\sum I_{\alpha}\right)$ where $\sum I_{\alpha}$ is defined to be the smallest ideal of A containing all the I_{α} .