# Borel $\sigma$ -algebra

## Aline Zanardini

#### Fall 2023

# 1 $\sigma$ -algebras

**Definition 1.1.** Let X be a set. A  $\sigma$ -algebra on X is a non-empty collection C of subsets of X such that

- (i) C is closed under countable unions and
- (ii) C is closed under taking complements

In particular, if  $\mathcal{C}$  is a  $\sigma$ -algebra on X, then  $\mathcal{C}$  is also closed under countable intersections and we always have  $\emptyset, X \in \mathcal{C}$ .

 $\sigma$ -algebras vs. topologies Note that the axioms above are very similar to those defining what a topology is. However, topologies are closed under <u>arbitrary</u> unions and only closed under <u>finite</u> intersections. Moreover, topologies are not necessarily closed under taking complements – otherwise all open subsets would also be closed subsets.

Nonetheless, any topological space comes equipped with the  $\sigma$ -algebra generated by the collection of open subsets, i.e., the topology.

### 1.1 The Borel $\sigma$ -algebra

In general, given a set X and a collection of subsets of X, say  $\mathcal{A}$ , one can consider the smallest  $\sigma$ -algebra on X which contains  $\mathcal{A}$ , denoted by  $\mathcal{C}(\mathcal{A})$ . This  $\sigma$ -algebra  $\mathcal{C}(\mathcal{A})$  is given by the intersection of all  $\sigma$ -algebras  $\mathcal{C}$  on X such that  $\mathcal{A} \subset \mathcal{C}$ .

**Definition 1.2.** If  $(X, \tau)$  is a topological space, then the  $\sigma$ -algebra  $C(\tau)$  is called the Borel  $\sigma$ -algebra of  $(X, \tau)$  – the smallest  $\sigma$ -algebra on X which contains the topology  $\tau$ . Any subset of X that lies in  $C(\tau)$  is called a Borel subset.

**Example 1.3.** On  $(\mathbb{R}, \tau_{usual})$ , the corresponding Borel  $\sigma$ -algebra is the smallest  $\sigma$ -algebra on X which contains all the intervals (since they generate the usual topology).

**Question 1.4.** Let  $(X, \tau)$  be a topological space, and consider its Borel  $\sigma$ -algebra  $C(\tau)$ . What is the smallest topology on X that contains  $C(\tau)$ ?

Remark 1.5. If C is a  $\sigma$ -algebra on X which is generated by a <u>countable</u> collection A of subsets of X, then letting B be the collection of all finite intersections of elements of A we can show that B is a basis for a topology on X and, moreover,  $C = C(\tau^B)$ , where  $\tau^B$  denotes the topology generated by the collection B.