Série 9

A. Exercices standards.

Exercice 9.1. (Courbe comme intersection de deux surfaces). Notons $\mathcal{C} \subset \Omega$ l'ensemble des points de Ω tels que

$$f(x, y, z) = g(x, y, z) = 0,$$

où Ω est un domaine de \mathbb{R}^3 et $f,g\in C^k(\Omega)$ avec $k\geq 1$. Supposons que pour un point $(x_0,y_0,z_0)\in\mathcal{C}$ la matrice

$$\left(\begin{array}{ccc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial z}
\end{array}\right)$$

est de rang 2.

- (a) Expliquer pourquoi on peut paramétriser l'ensemble \mathcal{C} dans un voisinage de (x_0, y_0, z_0) comme courbe régulière $\gamma: I \to \Omega$ de classe C^k .
- (b) Que peut-on dire du vecteur tangent $\dot{\gamma}(t)$?

Exercice 9.2. Rappelons que par définition une application $f: M \to N$ entre deux sous-variétés différentiables est un difféomorphisme si elle est bijective et f ainsi que f^{-1} sont différentiables.

- (a) Prouver que pour tout $p \in M$, la différentielle $df_p: T_pM \to T_{f(p)}N$ est un isomorphisme d'espaces vectoriels.
- (b) En déduire qu'il n'existe aucun difféomorphisme entre deux variétés non vides qui n'ont pas la même dimension.
- (c) Montrer par un exemple qu'une application différentiable bijective $f: M \to N$ entre deux sousvariétés différentiables n'est pas toujours un difféomorphisme (ont peut supposer $\dim(M) = 1$).

Exercice 9.3. (a) On a vu à précédemment que O(n) est une sous-variété de $M_n(\mathbb{R})$. Décrire l'espace tangent $T_IO(n)$ de cette variété au point I (= la matrice identité).

- (b) Prouver que $SL_n(\mathbb{R})$ est une sous-variété de $M_n(\mathbb{R})$. Quelle est sa dimension?
- (c) Décrire l'espace tangent $T_I SL_n(\mathbb{R})$.

Exercice 9.4. Une surface est dite réglée si c'est une réunion de droites. De façon plus précise, soit $\gamma: I \to \mathbb{R}^3$ une courbe C^1 et $\mathbf{b}: I \to \mathbb{R}^3$ un champ de vecteurs de classe C^1 le long de γ . La surface réglée associée est définie par la paramétrisation:

$$\psi(u, v) = \gamma(u) + v\mathbf{b}(u).$$

- (a) Donner les conditions nécessaires et suffisantes pour qu'une surface réglée ainsi définie soit en effet une surface régulière localement (c'est-à-dire pour que l'application ψ soit une immersion).
- (b) Soit \mathcal{C} une courbe de \mathbb{R}^3 . On appelle *cône de sommet* $q \in \mathbb{R}^3$ *et de base* \mathcal{C} la réunion des droites passant par q et un point de \mathcal{C} . Donner des conditions nécessaires et suffisantes pour qu'un cône soit une surface régulière au voisinage de sa base. Puis expliciter une paramétrisation de ce cône.
- (c) Expliquer ce qu'est un ruban de Möbius et donner une paramétrisation de cette surface comme surface réglée dans \mathbb{R}^3 .

Exercice 9.5. Montrer que l'hyperboloïde \mathcal{H} à une nappe $x^2 + y^2 - z^2 = 1$ est une surface doublement réglée (i.e. réglée de deux manières différentes), puis donner une paramétrisation régulière de cette surface basée sur l'un de ces réglages.

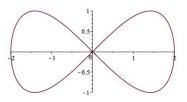
Indication : Ecrire l'équation sous la forme $x^2 - 1 = z^2 - y^2$ et factoriser. En déduire algébriquement l'équation d'une droite contenue dans \mathcal{H} , puis la paramétrer et la faire tourner autour de l'axe Oz.

B. Exercice supplémentaire.

Exercice 9.6. Dans cet exercice nous construisons un exemple d'immersion injective qui n'est pas un plongement.

La lemniscate de Gerono est la courbe plane définie par l'équation $4x^2 - 4y^2 - x^4 = 0$, c'est-à-dire l'ensemble

$$\mathcal{C} = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 - 4y^2 - x^4 = 0\}.$$



- (a) Montrer que \mathcal{C} n'est pas une sous-variété différentiable de \mathbb{R}^2 .
- (b) La restriction de cette courbe à $\mathbb{R}^2 \setminus \{(0,0)\}$ est-elle une sous-variété différentiable?
- (c) Vérifier que $\gamma: \left(-\frac{\pi}{2}, \frac{3\pi}{2}\right) \to \mathbb{R}^2$ définie par $\gamma(t) = (2\cos(t), \sin(2t))$ est une paramétrisation régulière de \mathcal{C} .

De façon précise, démontrer que

- (i) γ est une immersion de l'intervalle ouvert $\left(-\frac{\pi}{2}, \frac{3\pi}{2}\right)$ dans le plan.
- (ii) γ est injective.
- (iii) γ défini une bijection entre l'intervalle ouvert $\left(-\frac{\pi}{2}, \frac{3\pi}{2}\right)$ et la courbe \mathcal{C} .
- (iv) Expliquer ce qu'il se passe sur γ lorsque $t \to -\frac{\pi}{2}$ et $t \to +\frac{3\pi}{2}$.
- (v) Prouver que γ n'est pas un plongement de l'intervalle $\left(-\frac{\pi}{2}, \frac{3\pi}{2}\right)$ dans le plan. (c'est-à-dire que ça n'est pas un homéomorphisme sur son image).

2