Série 6

18.10.2024

Objectifs pour cette série :

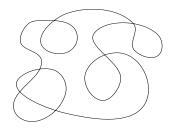
Dans cette série on étudie la courbure des courbures planes et sa signification géométrique. On commence aussi une révision du calcul différentiel.

A. Exercices standards.

Exercice 6.1. (a) Soit γ une courbe plane dont la courbure k est une fonction monotone de l'abscisse curviligne. Cette courbe peut-elle être une courbe \mathbb{C}^2 fermée ?

(b) Considérons les courbes planes suivantes : un cercle, une ellipse, une parabole, que l'on paramétrise naturellement. Pour chacune de ces courbes, représenter qualitativement le graphe de la fonction $s \to k(s)$ (ce graphe s'appelle le diagramme de courbure de la courbe considérée).

Exercice 6.2. Que vaut l'intégrale $\int_{\mathbb{R}^n} \kappa \, ds$ pour la courbe suivante ?



Exercice 6.3. Le tracé d'une route ou d'une voie de chemin de fer est habituellement constitué de segments de droites, d'arcs de cercles et d'arcs de chlotoïdes.

Voir https://fr.wikipedia.org/wiki/Trac%C3%A9_en_plan_(route).

- (a) Rappeler ce qu'est une chlotoïde.
- (b) Pour quelle raison, à votre avis, on utilise des arcs de chlotoïdes dans les tracés ferroviaires?

Exercice 6.4. Un peu de calcul différentiel :

- (a) Calculer la différentielle (au sens de Frechet) $d\varphi_A(H)$ de l'application $\varphi: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ définie par $\varphi(A) = A^3$, pour $A, H \in M_n(\mathbb{R})$ quelconques. Que peut-on dire du cas particulier où A et H commutent?
- (b) On considère deux applications différentiables $\phi, \psi: M_n(\mathbb{R}) \to M_n(\mathbb{R})$. Montrer la version suivante de la règle de Leibniz :

$$d(\phi \cdot \psi)_A(H) = d\phi_A(H)\psi(A) + \phi(A)d\psi_A(H),$$

où $(\phi \cdot \psi)(A) = \phi(A) \cdot \psi(A)$ (produit matriciel).

(c) En utilisant le résultat précédent, montrer que si $\phi: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ est définie par $\phi(A) = A^{-1}$, alors

$$d\phi_A(H) = -A^{-1}HA^{-1}.$$

Exercice 6.5. Prouver que l'application : $f: \mathbb{R}^2 \to \mathbb{R}^2$ données par

$$(y_1, y_2) = f(x_1, x_2) = (x_1 \cos(x_2), x_2 - x_1 x_2)$$

est un difféomorphisme au voisinage de (0,0).

Exercice 6.6. a.) Rappeler la définition de la notion de système de coordonnées curviligne.

b.) Prouver l'affirmation suivante ou donner un contre-exemple : $Si\ \{x_1, x_2\}\ et\ \{y_1, y_2\}\ sont\ deux$ systèmes de coordonnées curvilignes sur un ouvert U de \mathbb{R}^2 et si $y_2=x_2$, alors $\frac{\partial}{\partial y_2}=\frac{\partial}{\partial x_2}$.

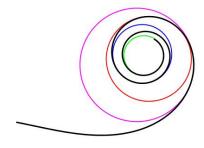
Exercice 6.7. Soient $p = (p_1, p_2)$ et $q = (q_1, q_2)$ deux points distincts de \mathbb{R}^2 . Prouver que les fonctions $u(x,y) = d((x,y),(p_1,p_2))$ et $v(x,y) = d((x,y),(q_1,q_2))$ (où $d(\cdot,\cdot)$ est la distance euclidienne dans \mathbb{R}^2) définissent un système de coordonnées curvilignes de classe C^{∞} dans chacun des demi-plans limités par la droite passant par p et q. Décrire les lignes de coordonnées.

B. Exercices complémentaires

Exercice 6.8. (a) Rappeler à quelle condition on peut définir le cercle osculateur d'une courbe $\alpha: I \to \mathbb{R}^n$ en un point donné.

- (b) Rappeler la définition du cercle osculateur.
- (c) Comment trouve-t-on le centre et le rayon du cercle osculateur en un point donné de la courbe? Préciser dans quel plan ce cercle est contenu.
- (d) Prouver le résultat suivant : $Soit \alpha : I \to \mathbb{R}^2$ une courbe plane C^3 dont la courbure est positive et strictement croissante. Alors les cercles osculateurs C(s) à α sont emboîtés dans le sens suivant : $Sis_1 < s_2$, alors $C(s_2)$ est contenu dans le disque bordé par $C(s_1)$.

Indications pour la question (d): Montrer d'abord que le rayon $\rho(s)$ de $\mathcal{C}(s)$ est une fonction décroissante de s. Puis montrer que la distance entre le centre de $\mathcal{C}(s_1)$ et $\mathcal{C}(s_2)$ est inférieure à la différence des rayons (pourquoi cela répond-il à la question?). Pour justifier cette dernière affirmation il est utile de supposer la courbe α paramétrée naturellement et de calculer la vitesse de $s \mapsto c(s)$ (la dérivée du centre c(s) de $\mathcal{C}(s)$ se calcule facilement dans le repère de Frenet).



Exercice 6.9. (a) Soit $\gamma:[0,\infty)\to\mathbb{R}^2$ une courbe plane de classe C^3 de longueur infinie dont la courbure est une fonction positive et strictement croissante. Prouver que la trace de cette courbe est bornée.

Pouvez vous donner une borne explicite (i.e. une constante C qui dépend du minimum de la courbure et telle que $\|\gamma(s) - \gamma(0)\| \le C$ pour tout s?)

(b) Montrer par un exemple que l'hypothèse de monotonie de la courbure est nécessaire. Plus précisément, montrer qu'il existe une courbe dont la courbure vérifie $k(s) \ge a > 0$ pour tout s et qui n'est pas bornée. (Il n'est pas nécessaire de produire une formule explicite, l'exemple peut simplement se dessiner).

Indication pour la question (a) : penser à l'exercice 6.7(d).

Exercice 6.10. Notons par $\gamma(s) = (x(x), y(s)) \in \mathbb{R}^2$ la chlotoïde paramétrée naturellement.

Pensez-vous que la limite

$$\lim_{s \to \infty} \gamma(s) \in \mathbb{R}^2$$

existe?

(Il s'agit de proposer un argument géométrique et non de calculer ou analyser les limites des intégrales de Fresnel; la question 6.7(d) est utile pour cet exercice).