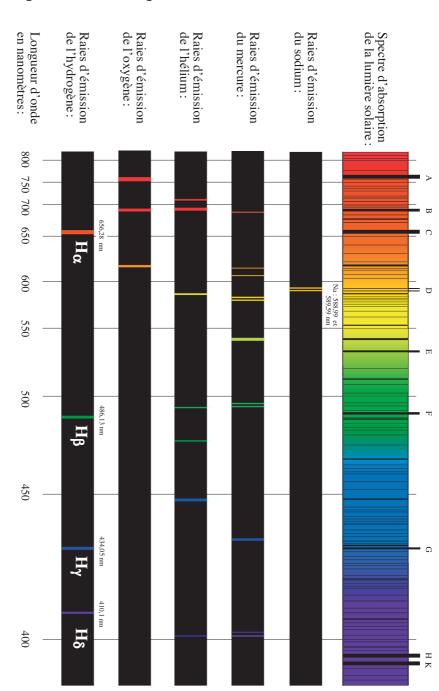


Commissions romandes de mathématique, de physique et de chimie

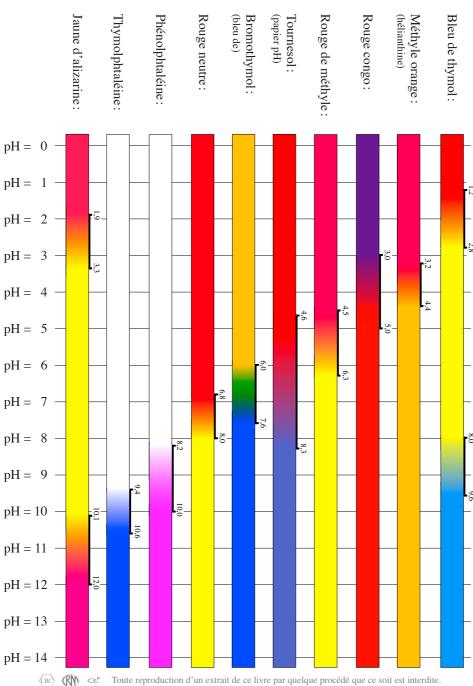
Formulaires et tables

Mathématiques Physique Chimie



Alphabet grec

Minuscule	Majuscule	Nom
α	A	alpha
β	В	bêta
γ	Γ	gamma
δ	Δ	delta
ε ou ϵ	E	epsilon
ζ	Z	zêta
η	Н	êta
θ ou ϑ	Θ	thêta
ι	I	iota
κ	K	kappa
λ	Λ	lambda
μ	M	mu
ν	N	nu
ξ	Ξ	ksi ou xi
0	О	omicron
π ou ϖ	П	pi
ρ ou ϱ	Р	rho
σ ου ς	Σ	sigma
au	Т	tau
v	Υ	upsilon
φ ou ϕ	Φ	phi
χ	X	khi ou chi
ψ	Ψ	psi
ω	Ω	oméga



Spectres d'absorption (soleil) et d'émission (éléments)

Zones de virage d'une sélection d'indicateurs acide/base

Formulaires et tables

Commissions romandes de mathématique, de physique et de chimie

Formulaires et tables

Mathématiques Physique Chimie

Ouvrages publiés par la Commission Romande de Mathématique

Ouvrages collectifs de la CRM

Nº 18 Géométrie 2

N° 21 Méthodes numériques (M.-Y. BACHMANN, H. CATTIN, P. ÉPINEY, F. HAEBERLI et G. Jenny)

Nº 23 Géométrie vectorielle et analytique plane

Nº 24 Géométrie vectorielle et analytique de l'espace

No 25 Analyse

Nº 26 Probabilités

Nº 27 Notions élémentaires

Nº 28 Algèbre linéaire

Cahiers de la CRM

Nº 1 Suites de nombres réels

Nº 2 Cryptologie

Nº 3 Équations algébriques et nombres complexes

Nº 4 Séries numériques et séries de Taylor

Nº 5 Arrêt sur image

Nº 6 Introduction à la théorie des graphes

Alex Willa

Nicolas Martignoni Martin Cuénod

Alex Willa

Daniel Poncet-Montange

Didier Müller

CRM, CRP et CRC

Formulaires et Tables (Mathématique, Physique, Chimie)

Sites web des commissions

Mathématiques www.sspmp.ch/crm/ Physique www.sspmp.ch/crp/ Chimie www.crc-chimie.ch/

Diffusion: CRM Diffusion

www.crm-diffusion.ch

© 2015 Éditions G d'Encre Collection: éducation www.editions-gdencre.ch ISBN 978-2-940501-41-0

Toute reproduction d'un extrait de ce livre par quelque procédé que ce soit, notamment par photocopie ou numérisation, est interdite.

Avant-propos

En 1985, les commissions romandes de mathématique, de physique et de chimie sortaient de presse un ouvrage commun intitulé «Formulaires et Tables», successeur de «Tables numériques et formulaires», destiné aux élèves des écoles secondaires de Suisse romande ainsi qu'aux étudiants des premières années d'études des écoles supérieures.

Tout au long des différentes éditions de « Formulaires et Tables », nous avons tout mis en œuvre pour rendre son utilisation aussi aisée que possible. Pour cette 6e édition, nous avons transféré une partie des tableaux de la partie Chimie ainsi que la liste des constantes physiques dans les rabats de la couverture pour une consultation facilitée.

Afin de marquer les trente ans de cet ouvrage issu d'une réflexion et d'un travail en commun de nos trois commissions, nous proposons en accompagnement une plateforme numérique permettant d'accéder au contenu de «Formulaires et Tables» sur une grande variété de supports électroniques.

Nous espérons que, tout comme les éditions précédentes, ce volume continuera à rendre service aux enseignants et aux candidats aux examens de maturité comme référence pour la préparation de ceux-ci, son usage étant autorisé par la Commission suisse de maturité pendant les épreuves écrites qu'elle organise.

Il se peut que quelques coquilles aient encore échappé à notre vigilance. Le cas échéant, nous vous serions reconnaissants de les communiquer à l'adresse électronique formulaire@crm-diffusion.ch. Nous serons d'autre part très attentifs aux remarques et suggestions qui pourraient améliorer nos prochaines éditions.

Nous tenons à exprimer nos vifs remerciements à toutes celles et tous ceux qui ont consacré leur temps et mis leurs compétences à l'élaboration de cet ouvrage. Nos remerciements vont enfin aux Éditions G d'Encre au Locle qui en ont permis une réalisation de qualité ainsi qu'à Gasser Media qui a rendu possible le passage de « Formulaires et Tables » à l'ère numérique.

Commissions romandes de mathématique, de physique et de chimie Mars 2015

Table des matières

Mathématiques	1
Notions de base	3
Éléments de logique	3
Ensemble	5
Analyse combinatoire	7
Calcul financier	9
Quelques nombres célèbres	10
Algèbre	13
Calcul algébrique	13
Polynômes	16
Nombres complexes	17
Structures algébriques	18
Algèbre linéaire	21
Déterminant	21
Système d'équations linéaires	22
Matrice	23
Application linéaire	25
Transformation linéaire	26
Trigonométrie	29
Trigonométrie plane	29
Trigonométrie sphérique	33
Géométrie	35
Géométrie classique	35
Géométrie vectorielle	49
Géométrie analytique plane	53
Géométrie analytique de l'espace	63
Analyse	69
Fonction réelle d'une variable réelle	69

Fonctions particulières	71
Limite et continuité	76
Calcul différentiel	78
Calcul intégral	81
Équation différentielle	88
Suite	89
Série	90
Méthodes numériques	95
Probabilités et statistique	103
Probabilités	103
Quelques lois de probabilité discrètes	106
Quelques lois de probabilité continues	107
Moyenne et variance de quelques lois	109
Approximations de lois	109
Loi de probabilité à deux variables	110
Statistique	111
Intervalle de confiance (bilatéral)	112
Test d'hypothèse	112
Tables numériques	113
Fonction de répartition Φ de la loi normale $N(0;1)$	114
Loi du χ^2 de Pearson	115
Loi du T de Student-Fisher	116
Tables de mortalité	117
Nombres premiers inférieurs à 5000	119
Factorisation des nombres composés inférieurs à 5000 et non divisibles par 2, 3 ou 5	120
Physique	123
Unités	125
Les unités de base du Système International d'Unités (SI)	125
Unités SI supplémentaires	
Unités dérivées SI	126
Unités définies indépendamment des unités SI de base	127
Formation de multiples et sous-multiples décimaux des unités	
Formulaire : Mécanique	129
Cinématique : Définitions	129
Cinématique : Mouvements particuliers	131

Dynamique du point matériel : Définitions	132
Dynamique du point matériel : Lois	134
Dynamique : Forces particulières et grandeurs associées	135
Dynamique : Systèmes de points matériels	137
Dynamique : Corps solides	138
Dynamique : Mouvements particuliers	141
Mécanique des fluides	143
Formulaire : Électricité	145
Électrostatique	145
Électrocinétique	148
Magnétisme	149
Courants alternatifs	151
Formulaire : Chaleur	153
Formulaire : Ondes et Optique	155
Généralités	155
Acoustique	156
Optique géométrique	157
Formulaire : Relativité	159
Formulaire : Atomes et particules	161
Constantes physiques	163
Unités diverses	165
Tables particulières	167
Masse volumique de l'eau, de l'alcool et du mercure en fonction de la température $\ .$	167
Masse volumique de l'eau en fonction de la température	168
Viscosités de quelques fluides	168
	169
	169
Énergies diverses	170
Puissances diverses	170
Variation de la pression atmosphérique avec l'altitude	171
Variation de la pression atmosphérique avec l'altitude	171 171
Variation de la pression atmosphérique avec l'altitude	171 171 172
Variation de la pression atmosphérique avec l'altitude	171 171

Intensités de quelques champs magnétiques	. 173
Indices de réfraction	. 174
Tableau des ondes électromagnétiques	. 176
Éclairements courants	. 176
Vitesses des ondes sonores. Pressions sonores et niveaux sonores	. 177
Fréquences de la gamme	. 177
Températures et pressions critiques de quelques substances	. 178
Permittivités relatives et résistivités de quelques isolants	. 178
Les particules fondamentales (Modèle standard)	. 179
Les interactions fondamentales	. 181
Énergie de liaison nucléaire	. 181
Réactions nucléaires	. 182
Radioprotection	. 183
Abondance de quelques isotopes naturels	. 185
Modes de désintégration de quelques isotopes radioactifs	. 187
Formulaire : Astronomie	189
Données et définitions générales	
Le système solaire	
Les étoiles	
La Voie Lactée	
Les galaxies	
Cosmologie	
Cosmologic	. 210
Tables générales	215
Chimie	กรร
Chimie	233
Formulaire de chimie	235
Tables de chimie	239
Constantes d'acidité de quelques couples acide-base à $25^{\circ}\mathrm{C}$. 239
Produit ionique de l'eau K_e et pH en fonction de T	. 239
pH de boissons et liquides divers	. 240
Concentrations usuelles de quelques acides et bases	. 240
Potentiels standards d'oxydo-réduction inorganiques	. 241
Potentiels standards d'oxydo-réduction en milieu biologique	. 242
Répartition naturelle des éléments	. 242
Énergies d'ionisation E_i [MJ·mol ⁻¹]	. 243
Énergies moyennes de dissociation D [kJ·mol ⁻¹]	. 243

	Rayons atomiques et ioniques		244
	Configuration électronique		245
	Constantes physico-chimiques de quelques espèces inorganiques		246
	Solubilité des composés ioniques		254
	Solubilité des gaz dans l'eau		254
	Nomenclature de quelques molécules et ions en solution		255
	Constantes physico-chimiques de composés organiques		256
	Fonctions organiques, par ordre de priorité décroissante		257
	Représentation des molécules organiques		258
	Résumé de chimie organique		259
	Valeur énergétique de quelques aliments		260
	Additifs alimentaires		260
В	iochimie	2	61
	Monosaccharides		263
	Polysaccharides		265
	Vitamines		266
	Utilité et besoins quotidiens de quelques vitamines pour l'être humain		268
	Acides aminés		270
	Acides gras		272
	Lipides		273
	Bases azotées		274
	Désoxyribonucléotides particuliers		274
	Nucléotides		275
	ARN et ADN		276
	La double hélice d'ADN		277
	Code génétique		277
_	dev		70

Mathématiques

Notions de base

Éléments de logique

Une proposition est un énoncé qui satisfait aux deux principes suivants :

- 1. Une proposition ne peut être que vraie (\mathcal{V}) ou fausse (\mathcal{F}) (**principe du tiers exclu**).
- 2. Une proposition ne peut être en même temps vraie et fausse (principe de non-contradiction).

On note p, q et r des propositions élémentaires ou composées.

Connecteurs ou opérateurs

	Dénomination française	Notation mathématique	
Conjonction	p et q	$p \wedge q$	
Disjonction	p ou q	$p \lor q$	
Inférence	si p alors q	$p \rightarrow q$	
Biconditionnelle	(si p alors q) et (si q alors p)	$p \leftrightarrow q$	
Négation	non p	\overline{p} (noté aussi $\neg p$)	

Tables de vérité

p	q	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$	\overline{p}
\mathcal{V}	\mathcal{V}	ν	ν	ν	ν	\mathcal{F}
ν	\mathcal{F}	\mathcal{F}	ν	\mathcal{F}	\mathcal{F}	\mathcal{F}
\mathcal{F}	ν	\mathcal{F}	ν	ν	\mathcal{F}	ν
\mathcal{F}	\mathcal{F}	\mathcal{F}	\mathcal{F}	ν	ν	ν

Une inférence vraie est une *implication*; elle est notée $p \Rightarrow q$. Une biconditionnelle vraie est une équivalence; elle est notée $p \Leftrightarrow q$.

Propriétés

Commutativité	$p \wedge q \Leftrightarrow q \wedge p$	$p \lor q \Leftrightarrow q \lor p$
Associativité	$(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$	$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$
Distributivité	$(p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r)$	$(p \lor q) \land r \Leftrightarrow (p \land r) \lor (q \land r)$
Lois de De Morgan	$\overline{p \vee q} \Leftrightarrow \overline{p} \wedge \overline{q}$	$\overline{p \wedge q} \Leftrightarrow \overline{p} \vee \overline{q}$

Équivalences et implications particulières

Réduction de l'inférence	$p \to q \Leftrightarrow \overline{p} \lor q$
Négation de l'inférence	$p \to q \Leftrightarrow p \wedge \overline{q}$
Contraposition	$p \to q \Leftrightarrow \overline{q} \to \overline{p}$
Réduction de la biconditionnelle	$p \leftrightarrow q \Leftrightarrow (p \to q) \land (q \to p)$
Raisonnement par l'absurde	$(p \to q) \land (p \to \overline{q}) \Rightarrow \overline{p}$
Syllogisme	$(p \to q) \land (q \to r) \Rightarrow (p \to r)$

Quantification

On note r(x) et s(x) deux fonctions logiques (ou conditions) où x appartient à un ensemble M non vide.

Quantificateur d'universalité

La proposition $(\forall x)$ r(x) est vraie si r(x) est vraie pour tout élément de M, fausse dans le cas contraire. Le symbole \forall se lit pour tout.

Quantificateur d'existence

La proposition $(\exists x)$ r(x) est vraie s'il existe un élément de M pour lequel r(x) est vraie, fausse dans le cas contraire. Le symbole \exists se lit il existe.

Propriétés

p	$(\forall x) \ r(x)$	$(\exists x) \ r(x)$	$(\forall x) \ (r(x) \to s(x))$	$(\exists x) \ (r(x) \land s(x))$
\overline{p}	$(\exists x) \ \overline{r(x)}$	$(\forall x) \ \overline{r(x)}$	$(\exists x) \ \left(r(x) \wedge \overline{s(x)}\right)$	$(\forall x) \ (\overline{r(x)} \lor \overline{s(x)})$

Ensemble

La notation $x\in A$ signifie que x est élément de l'ensemble A. L'ensemble vide, noté \varnothing , est l'ensemble ne contenant aucun élément.

Inclusion

On dit que A est inclus dans B (on dit aussi que A est une partie de B ou que A est un sousensemble de B) si, pour tout $x, x \in A \Rightarrow x \in B$. On note $A \subset B$.

$(A \subset B \text{ et } B \subset A) \Leftrightarrow A = B$	$(A \subset B \text{ et } B \subset C) \Rightarrow A \subset C$
---	---

Opérations

On note A, B et C des sous-ensembles d'un ensemble U (univers ou référentiel).

Intersection $A \cap B = \{x \mid x \in A \text{ et } x \in B\}$

Si $A \cap B = \emptyset$, alors les parties A et B sont dites disjointes.

Union $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$

Différence $A \smallsetminus B = \{x \, | \, x \in A \text{ et } x \not \in B\}$

 $A \smallsetminus B = A \cap \overline{B}$

Complémentaire $\overline{A} = \mathbb{C}_U A = \{x \mid x \in U \text{ et } x \notin A\}$

Propriétés

Commutativité	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Associativité	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributivité	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Lois de De Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A\cap B}=\overline{A}\cup\overline{B}$

Produit cartésien

 $A\times B=\{(x\,;y)\,|\,x\in A \text{ et }y\in B\}.$ L'élément $(x\,;y)$ est appelé couple.

 $A \times B \times C = \{(x;y;z) \mid x \in A \text{ et } y \in B \text{ et } z \in C\}$. L'élément (x;y;z) est appelé triplet.

Ensembles de nombres

Nombres naturels
$$\mathbb{N} = \{0; 1; 2; ...\}$$

Naturels non nuls
$$\mathbb{N}^* = \mathbb{N} \smallsetminus \{0\}$$

Nombres entiers
$$\mathbb{Z} = \{\ldots; -2; -1; 0; 1; 2; \ldots\}$$

Nombres rationnels
$$\mathbb{Q} = \left\{ \frac{p}{q} \,\middle|\, p \in \mathbb{Z} \text{ et } q \in \mathbb{N}^* \right\}$$

Nombres réels
$$\mathbb{R}$$

Nombres irrationnels
$$\mathbb{R} \setminus \mathbb{Q}$$

Nombres complexes
$$\mathbb{C} = \{z = a + bi \mid a, b \in \mathbb{R} \text{ et } i^2 = -1\}$$

Réels non nuls
$$\mathbb{R}^* = \mathbb{R} \setminus \{0\}$$

Réels négatifs
$$\mathbb{R}_{-} = \{x \mid x \in \mathbb{R} \text{ et } x < 0\}$$

Réels positifs
$$\mathbb{R}_+ = \{x \mid x \in \mathbb{R} \text{ et } x \geq 0\}$$

On utilise des notations analogues pour \mathbb{Z} et \mathbb{Q} .

Intervalles

On note a et b deux réels tels que a < b.

Intervalle fermé
$$[a;b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$\text{Intervalle ouvert} \quad]a\,;b[\qquad = \{x \in \mathbb{R} \,|\, a < x < b\}$$

$$[a\,;+\infty[\,=\{x\in\mathbb{R}\,|\,x\geq a\}$$

$$]-\infty\,;b]=\{x\in\mathbb{R}\,|\,x\leq b\}$$

Relation dans un ensemble

On note x, y et z trois éléments d'un ensemble et x R y pour signifier que x est en relation avec y. La relation R est

$$r\'{e}flexive$$
 si, pour tout x , $x R x$

$$sym\acute{e}trique$$
 si, pour tout $x, y, x R y \Rightarrow y R x$

transitive si, pour tout
$$x, y, z, (x R y \text{ et } y R z) \Rightarrow x R z$$

antisymétrique si, pour tout
$$x, y, (x R y \text{ et } y R x) \Rightarrow x = y$$

Une relation est appelée relation d'équivalence si elle est réflexive, symétrique et transitive. Une relation est appelée relation d'ordre si elle est réflexive, antisymétrique et transitive. On appelle relation d'ordre total une relation d'ordre qui est connexe.

Application d'un ensemble vers un ensemble

Une application f d'un ensemble A vers un ensemble B est une relation qui, à tout élément x de l'ensemble de départ A, associe un et un seul élément f(x) de l'ensemble d'arrivée B. L'élément f(x) est appelé l'image de x par f et on note f(A) l'ensemble des images par f.

f est injective si, pour tout x_1, x_2 , on a $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

f est surjective si f(A) = B

f est bijective si f est injective et surjective

Si f est une bijection de A vers B, la relation réciproque de f est une application de B vers A, notée f, telle que $x = f(y) \Leftrightarrow y = f(x)$

Analyse combinatoire

Factorielle

$$n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$$
 si $n \in \mathbb{N}^*$

0! = 1

$$n! = n \cdot (n-1)!$$

$$2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n = 2^{n} n!$$

$$1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) = \frac{(2n)!}{2^{n} n!}$$

Formule de Stirling

$$\begin{split} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n}\right) &< n! < \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \frac{1}{288n^2}\right) \\ n! &\approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \qquad \text{si n est très grand} \end{split}$$

Coefficients binomiaux

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \quad \text{où } n, k \in \mathbb{N} \ \text{ et } \ 0 \le k \le n$$

$$\binom{n}{0} = \binom{n}{n} = 1 \quad \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1} \quad \binom{n}{n-k} = \binom{n}{k}$$
$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = \sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Binôme de Newton

On note a, b deux nombres réels et n un entier naturel non nul.

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}b^n = \sum_{k=0}^n \binom{n}{k}a^{n-k}b^k$$

Triangle de Pascal

0	1				Coef	ficient	ts bin	omia	ıx (r	$\binom{n}{s}$ po	ur 0	$\leq k \leq$	$\leq n \leq 12$
1	1	1							(^	<i>i)</i>			
2	1	2	1										
3	1	3	3	1					(0)				
4	1	4	6	4	1			/	$\binom{\circ}{5}$	= 56			
5	1	5	10	10	5	1			(9)				
6	1	6	15	20	15	6	1/						
7	1	7	21	35	35	21	/7	1					
8 9	1	8	28	56	70	(56)	28	8	1				
9	1	9	36	84	126	126	84	36	9	1			
10	1	10	45	120	210	252	210	120	45	10	1		
11	1	11	55	165	330	462	462	330	165	55	11	1	
12	1	12	66	220	495	792	924	792	495	220	66	12	1
$n \atop k$	0	1	2	3	4	5	6	7	8	9	10	11	12

Dénombrement

Arrangement simple

Si, parmi n éléments distincts, on choisit k éléments distincts $(k \leq n)$ en les classant dans un ordre particulier, on forme un arrangement simple (de k éléments choisis parmi n). Le nombre A_k^n d'arrangements simples est

$$A_k^n = n(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}$$

Arrangement avec répétitions

Si, parmi n éléments distincts, on choisit k éléments distincts ou non (on peut choisir plusieurs fois le même) en les classant dans un ordre particulier, on forme un arrangement avec répétitions (de k éléments choisis parmi n).

Le nombre $\overline{A_k^n}$ d'arrangements avec répétitions est

$$\overline{A_k^n} = n^k$$

Permutation simple

Si on classe dans un ordre particulier n éléments distincts, on forme une permutation simple (de

Le nombre P_n de permutations simples est

$$P_n = n!$$

Permutation avec répétitions

Si on classe dans un ordre particulier n éléments dont n_1 sont identiques de type 1, n_2 identiques de type $2, \ldots, n_p$ identiques de type $p(n_1 + n_2 + \ldots + n_p = n)$, on forme une permutation avec répétitions (de ces n éléments).

Le nombre $\overline{P}(n_1, n_2, \dots, n_p)$ de permutations avec répétitions est

$$\overline{P}(n_1, n_2, \dots, n_p) = \frac{n!}{n_1! \, n_2! \, \dots \, n_p!}$$

Combinaison simple

Si, parmi n éléments distincts, on choisit k éléments distincts $(k \leq n)$ sans les classer dans un ordre particulier, on forme une combinaison simple (de k éléments choisis parmi n). Le nombre \mathbb{C}^n_k de combinaisons simples est

$$C_k^n = \frac{n(n-1)\dots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Combinaison avec répétitions

Si, parmi n éléments distincts, on choisit k éléments distincts ou non (on peut choisir plusieurs fois le même) sans les classer dans un ordre particulier, on forme une combinaison avec répétitions (de k éléments choisis parmi n).

Le nombre $\overline{C_k^n}$ de combinaisons avec répétitions est

$$\overline{C_k^n} = \frac{(n+k-1)!}{k!(n-1)!} = \binom{n+k-1}{k}$$

Calcul financier

Intérêts simples et composés

Capital initial (valeur actuelle)	C_0
Valeur acquise après n années	C_n
Taux d'intérêt annuel	i
Intérêt produit après n années	I_n
Facteur de capitalisation annuel	r = 1 + i
Facteur d'actualisation annuel	$v = \frac{1}{r}$

Intérêts simples	Intérêts composés
$I_n = C_0 i n$	$I_n = C_0(r^n - 1)$
$C_n = C_0 \left(1 + i n \right)$	$C_n = C_0 r^n$
$C_0 = \frac{C_n}{1 + i n}$	$C_0 = C_n v^n$

Conversion de taux

Un taux annuel i, un taux mensuel m et un taux journalier j génèrent les mêmes rendements si

$$1 + i = (1 + m)^{12} = (1 + j)^{365}$$

Annuité et rente

i : taux d'intérêt annuel $r=1+i \qquad v=\frac{1}{r}$	Paiements échus au début de chaque année	Paiements échus à la fin de chaque année
Valeur acquise à la fin de la n -ième année par n versements-unités	$\ddot{s}_{\overline{n} } = r \frac{r^n - 1}{r - 1}$	$s_{\overline{n} } = \frac{r^n - 1}{r - 1}$
Valeur actuelle d'une rente-unité payable n fois	$\ddot{a}_{\overline{n} } = \frac{1 - v^n}{1 - v} = \frac{1 - r^n}{r^{n-1}(1 - r)}$	$a_{\overline{n}} = v \frac{1 - v^n}{1 - v} = \frac{1 - r^n}{r^n (1 - r)}$
Valeur actuelle d'une rente-unité perpétuelle	$\ddot{a}_{\overline{\infty} } = \frac{1}{1-v} = \frac{r}{r-1}$	$a_{\overline{\infty}} = \frac{v}{1 - v} = \frac{1}{r - 1}$

Amortissement d'une dette et paiement de ses intérêts

Annuité ρ à verser n fois en fin d'année pour rembourser une dette D: $\rho = \frac{D}{a_{\overline{n}}}$

Dette restante après avoir versé m annuités ρ : $D_m = D r^m - \rho s_{\overline{m}}$

Quelques nombres célèbres

Le nombre π

 $\pi = 3.14159\ 26535\ 89793\ 23846\ 26433\ 83279\ 50288\ 41971\ 69399\ 37510\ 58209\ 74944\ 59230\ 78164$ $06286\ 20899\ 86280\ 34825\ 34211\ 70680\dots$

Le nombre e

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$$
 $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$

 $e = 2.71828 \ 18284 \ 59045 \ 23536 \ 02874 \ 71352 \ 66249 \ 77572 \ 47093 \ 69995 \ 95749 \ 66967 \ 62772 \ 40776$ $30353\ 54759\ 45713\ 82178\ 52516\ 64274\dots$

Le nombre d'or

$$\Phi = \frac{\sqrt{5} + 1}{2} \qquad \qquad \frac{1}{\Phi} = \Phi - 1$$

 $\Phi = 1.61803\ 39887\ 49894\ 84820\ 45868\ 34365\ 63811\ 77203\ 09179\ 80576\ 28621\ 35448\ 62270\ 52604$ $62818\ 90244\ 97072\ 07204\ 18939\ 11375\dots$

La constante d'Euler

$$\gamma = \lim_{n \to +\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} - \ln(n) \right)$$

 $\gamma = 0.57721$ 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48677 26777 66467 09369 47063 29174 67495 . . .

Les triplets de Pythagore

Trois nombres entiers positifs a, b et c forment un triplet de Pythagore si $a^2 + b^2 = c^2$ Si m et n sont des entiers positifs tels que m > n, les nombres suivants forment un triplet de Pythagore :

$$a = 2mn, b = m^2 - n^2 \text{ et } c = m^2 + n^2$$

Quelques triplets de Pythagore :

3	5	7	8	9	11	12	13	16	20	28	33	36	39	48	65
4	12	24	15	40	60	35	84	63	21	45	56	77	80	55	72
5	13	25	17	41	61	37	85	65	29	53	65	85	89	73	97

Les quadruplets de Pythagore

Quatre nombres entiers positifs a,b, c et d forment un quadruplet de Pythagore si $a^2+b^2+c^2=d^2$ Quelques quadruplets de Pythagore :

1	2	1	4	2	6	3	2	2	1	8	1	6	6	4	4	4	8
2	3	4	4	6	6	4	5	10	12	9	6	6	10	5	8	13	11
2	6	8	7	9	7	12	14	11	12	12	18	17	15	20	19	16	16
3	7	9	9	11	11	13	15	15	17	17	19	19	19	21	21	21	21

Algèbre

Calcul algébrique

Identités

$(a+b)^2 = a^2 + 2ab + b^2$	$(a-b)^2 = a^2 - 2ab + b^2$						
$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$						
$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$							
coefficients binomiaux $\binom{n}{k}$, voir page 7							
$a^2 - b^2 = (a - b)(a + b)$	$a^2 + b^2$ n'est pas factorisable dans les réels						
$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$						
$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$							
$(a+b+c)^2 = a^2 + b^2$	$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$						

Puissances et racines

On note a et b des nombres strictement positifs; $\sqrt[n]{a}$ n'est définie que pour $n \in \mathbb{N}^*$.

$$a^{0} = 1$$
 $a^{p} = a \cdot a^{p-1}$ $a^{-q} = \frac{1}{a^{q}}$ $a^{\frac{1}{q}} = \sqrt[q]{a}$ $a^{\frac{p}{q}} = \sqrt[q]{a^{p}}$

$a^p a^q = a^{p+q}$	$\frac{a^p}{a^q} = a^{p-q}$	$(a^p)^q = a^{pq}$	$a^p b^p = (ab)^p$	$\frac{a^p}{b^p} = \left(\frac{a}{b}\right)^p$
$\left(\sqrt[n]{a}\right)^n = a$	$\left(\sqrt[q]{a}\right)^p = \sqrt[q]{a^p}$	$\sqrt[p]{\sqrt[q]{a}} = \sqrt[pq]{a}$	$\sqrt[q]{a}\sqrt[q]{b} = \sqrt[q]{ab}$	$\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$

Logarithmes

On note a et b deux nombres réels strictement positifs et différents de 1.

$$y = \log_a(x) \iff a^y = x$$
 y est le logarithme en base a de x, pour $x \in \mathbb{R}_+^*$

$$\log_a(xy) = \log_a(x) + \log_a(y) \qquad \log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$
$$\log_a\left(\frac{1}{y}\right) = -\log_a(y) \qquad \log_a\left(x^p\right) = p \log_a(x)$$

Logarithmes particuliers

$$y = \log(x) \Leftrightarrow 10^y = x$$
 y est le $logarithme$ décimal de x (base 10) $y = \ln(x) \Leftrightarrow e^y = x$ y est le $logarithme$ naturel de x (base e)

Changement de base

$$\log_a(x) = \frac{\log(x)}{\log(a)} = \frac{\ln(x)}{\ln(a)} = \frac{\log_b(x)}{\log_b(a)}$$

Valeur absolue

$$|a| = \begin{cases} a & \text{si } a \ge 0 \\ -a & \text{si } a < 0 \end{cases}$$

$ ab = a \cdot b $	$\left \frac{a}{b} \right = \frac{ a }{ b }$	$\sqrt{a^2} = a $	$ a - b \le a+b \le a + b $
------------------------	--	--------------------	---------------------------------------

Symbole et formules de sommation

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$

$$\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i \qquad \sum_{i=1}^{n} kx_i = k \sum_{i=1}^{n} x_i \qquad \sum_{i=1}^{n} k = nk$$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4} = \left(\sum_{i=1}^{n} i\right)^2$$

$$\sum_{i=1}^{n} i^4 = 1^4 + 2^4 + 3^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}$$

$$\sum_{i=1}^{n} (2i-1) = 1 + 3 + 5 + \dots + (2n-1) = n^2$$

$$\sum_{i=1}^{n} (2i-1)^2 = 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

$$\sum_{i=0}^{n} x^i = 1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}$$

$$\sum_{i=0}^{n-1} (i+1)x^i = 1 + 2x + 3x^2 + \dots + nx^{n-1} = \frac{nx^{n+1} - (n+1)x^n + 1}{(x-1)^2}$$

On utilise un symbole analogue pour le produit de plusieurs facteurs ou pour la réunion de plusieurs ensembles :

$$\prod_{i=1}^{n} x_i = x_1 \cdot x_2 \cdot \ldots \cdot x_n \qquad \bigcup_{i=1}^{n} E_i = E_1 \cup E_2 \cup \ldots \cup E_n$$

Moyennes

Moyenne	de deux nombres a_1, a_2	de n nombres a_1, a_2, \ldots, a_n
arithmétique (A)	$\frac{a_1 + a_2}{2}$	$\frac{a_1 + a_2 + \ldots + a_n}{n}$
pondérée	$\frac{\lambda_1 a_1 + \lambda_2 a_2}{\lambda_1 + \lambda_2}$	$\frac{\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n}{\lambda_1 + \lambda_2 + \ldots + \lambda_n}$
géométrique (G)	$\sqrt{a_1 a_2}$	$\sqrt[n]{a_1 a_2 \dots a_n}$
harmonique (H)	$\frac{2}{\frac{1}{a_1} + \frac{1}{a_2}} = \frac{2a_1a_2}{a_1 + a_2}$	$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}}$
quadratique (Q)	$\sqrt{\frac{a_1^2 + a_2^2}{2}}$	$\sqrt{\frac{a_1^2 + a_2^2 + \ldots + a_n^2}{n}}$

Propriété $H \leq G \leq A \leq Q$

Polynômes

Polynôme du deuxième degré à coefficients réels

$$P(x) = ax^2 + bx + c \quad (a \neq 0)$$

Les zéros du polynôme P sont les solutions de l'équation du deuxième degré P(x) = 0

Zéros et factorisation

L'expression $\Delta = b^2 - 4ac$ est le discriminant de P.

Si $\Delta > 0$, le polynôme P admet deux zéros réels

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
 $x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$

et on a l'identité

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

Si $\Delta = 0$, le polynôme P admet un seul zéro réel

$$x_1 = x_2 = \frac{-b}{2a}$$

et on a l'identité

$$ax^{2} + bx + c = a(x - x_{1})^{2}$$

Si $\Delta < 0$, le polynôme P n'admet pas de zéro réel et n'est pas décomposable en un produit de polynômes du premier degré à coefficients réels.

Padmet cependant deux zéros complexes conjugués $x_{1,2} = \frac{-b \pm i \sqrt{-\Delta}}{2a}$

Relations de Viète

$$x_1 + x_2 = -\frac{b}{a} \quad x_1 x_2 = \frac{c}{a}$$

Polynôme de degré n

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0 \quad (c_n \neq 0)$$

Les zéros du polynôme P sont les solutions de l'équation P(x) = 0

Pour les polynômes de degré supérieur à 2, les zéros sont généralement estimés par des méthodes numériques (voir page 97).

Divisibilité de P(x) par x-a

Pour tout nombre réel a, il existe un polynôme Q défini par l'identité P(x) = (x - a)Q(x) + P(a)

$$P(x)$$
 est divisible par $x - a \Leftrightarrow P(a) = 0$

Le schéma de Horner est un algorithme qui permet de déterminer les coefficients du polynôme Q et la valeur P(a):

$$\underbrace{d_{n-1} \quad d_{n-2} \quad d_{n-3} \quad \dots \quad d_1 \quad d_0}_{\text{coefficients de } Q} \quad P(a) = \begin{cases} c_n & c_{n-1} & c_{n-2} & \dots \\ d_{n-1} & d_{n-2} & d_{n-3} & \dots \\ d_{n-1} & d_{n-2} & d_{n-3} & \dots \\ d_{n-1} & d_{n-1} & d_{n-2} & d_{n-1} \\ P(a) & d_{n-1} & d_{n-1} & d_{n-1} \\ P(a) & d_{n-1} & d_{n-1}$$

avec
$$\begin{cases} d_{n-1} &= c_n \\ d_{i-1} &= c_i + ad_i \ (1 \le i \le n-1) \\ P(a) &= c_0 + ad_0 \end{cases}$$

Relations de Viète

Si
$$P(x) = c_n(x - x_1)(x - x_2) \dots (x - x_n)$$
, alors x_1, x_2, \dots, x_n sont les zéros de P e

Si
$$P(x)=c_n(x-x_1)(x-x_2)\dots(x-x_n)$$
, alors x_1,x_2,\dots,x_n sont les zéros de P et
$$\boxed{x_1+x_2+\dots+x_n=-\frac{c_{n-1}}{c_n} \mid x_1x_2\dots x_n=(-1)^n\frac{c_0}{c_n}}$$

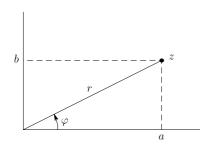
Nombres complexes

On note i un nombre tel que $i^2 = -1$.

Forme algébrique z = a + bi où $a, b \in \mathbb{R}$

a est la partie réelle de z, notée Re(z)

b est la partie imaginaire de z, notée $\mathrm{Im}(z)$


Forme trigonométrique $z = r(\cos(\varphi) + i\sin(\varphi)) = r\operatorname{cis}(\varphi)$ avec $r \in \mathbb{R}_+$ et $\varphi \in \mathbb{R}$

r est le module de z, noté |z|

 φ est l'argument de z, noté $\arg(z)$

 $z = r e^{i\varphi}$ Forme exponentielle

Relations entre formes algébrique, trigonométrique et exponentielle

$\tan(\varphi) = \frac{b}{a}$
$\sin(\varphi) = \frac{b}{\sqrt{a^2 + b^2}}$
$b = r\sin(\varphi)$
$e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$

Opérations

Forme algébrique	Formes trigonométrique et exponentielle
$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$	
$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$	$z_1 z_2 = r_1 r_2 \operatorname{cis}(\varphi_1 + \varphi_2) = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$
$\frac{z_1}{z_2} = \frac{(a_1a_2 + b_1b_2)}{a_2^2 + b_2^2} + \frac{(a_2b_1 - a_1b_2)}{a_2^2 + b_2^2}i$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\varphi_1 - \varphi_2) = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$
$\frac{1}{z} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$	$\frac{1}{z} = \frac{1}{r}\operatorname{cis}(-\varphi) = \frac{1}{r}e^{-i\varphi}$
	$z^n = r^n \operatorname{cis}(n\varphi) = r^n e^{in\varphi}$

Formule de Moivre

$$\left(\cos(\varphi) + i\sin(\varphi)\right)^n = \cos(n\varphi) + i\sin(n\varphi)$$

Racines n-ièmes

On note $z = r \operatorname{cis}(\varphi)$ un nombre complexe non nul.

L'équation $w^n=z, n\in\mathbb{N}^*$, possède n solutions distinctes :

$$w_k = \sqrt[n]{r} \operatorname{cis}\left(\frac{\varphi + k \cdot 2\pi}{n}\right) = \sqrt[n]{r} e^{i\frac{\varphi + k \cdot 2\pi}{n}} \qquad k = 0, 1, 2, \dots, n - 1$$

Conjugué

Le conjugué de z est $\overline{z} = a - bi = r \operatorname{cis}(-\varphi) = r e^{-i\varphi}$.

$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$	$\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}$	$z\overline{z} = z ^2$
$\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$	$\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z})$	$\overline{\overline{z}} = z$	$\frac{1}{z} = \frac{\overline{z}}{ z ^2}$

Structures algébriques

Loi de composition interne

Une loi de composition interne (ou opération interne) \top dans un ensemble E est une application de $E \times E$ vers E.

$$\begin{array}{ccc} E \times E & \to & E \\ (a,b) & \mapsto & a - b \end{array}$$

Un ensemble muni d'une ou de plusieurs lois de composition internes est une structure algébrique.

Propriétés

On note \neg et \star deux lois de composition internes définies dans un ensemble E et a, a', b, c, ndes éléments de E.

→ est commutative	a - b = b - a	pour tout a, b
— est associative	(a - b) - c = a - (b - c)	pour tout a, b, c
n est élément neutre pour \neg	a - n = n - a = a	pour tout a
a' est le $sym\'etrique$ de a pour $ au$	a' - a = a - a' = n	
* est distributive par rapport à →	$\begin{array}{rcl} a \star (b + c) &=& (a \star b) + (a \star c) \\ (a + b) \star c &=& (a \star c) + (b \star c) \end{array}$	pour tout a, b, c

Groupe

La structure (E, -) est un groupe

- $\Leftrightarrow \begin{cases} 1. & \text{la loi de composition interne } \mathbf{\upphi} \text{ est associative} \\ 2. & \text{il existe dans } E \text{ un élément neutre pour } \mathbf{\upphi} \\ 3. & \text{tout élément de } E \text{ possède un symétrique pour } \mathbf{\upphi} \end{cases}$

Si, de plus, — est commutative, le groupe est dit abélien ou commutatif. Dans un groupe abélien, la loi de composition est souvent notée +.

Corps

La structure $(E, +, \cdot)$ est un corps

- $\Leftrightarrow \begin{cases} 1. & (E\,,\,+\,) \text{ est un groupe commutatif dont 0 est l'élément neutre} \\ 2. & (E\,\smallsetminus\,\{0\}\,,\,\cdot\,) \text{ est un groupe dont 1 est l'élément neutre} \\ 3. & l'opération \,\cdot\, \text{ est distributive par rapport à l'opération} \,+\, \end{cases}$

Le corps est dit commutatif si l'opération · est commutative.

Espace vectoriel réel

Un ensemble non vide E est un espace vectoriel réel s'il est muni

- 1. d'une loi de composition interne, notée +, telle que la structure (E, +) est un groupe abélien
- 2. d'une loi de composition externe

$$\begin{array}{cccc} \mathbb{R} \times E & \to & E \\ (\lambda \,, \, u) & \mapsto & \lambda \cdot u \end{array}$$

vérifiant les propriétés suivantes

$$\alpha \cdot (\beta \cdot u) = (\alpha \beta) \cdot u$$

$$1 \cdot u = u$$

$$\alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v$$

$$(\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u$$

quels que soient les nombres réels α , β et les éléments u, v de E.

Les éléments de E sont appelés vecteurs et les éléments de $\mathbb R$ sont appelés scalaires.

Algèbre linéaire

Déterminant

Déterminant d'ordre deux

Si
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
 et $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, alors $\operatorname{Det}(\vec{a}; \vec{b}) = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$.

Interprétation géométrique

La valeur obtenue est, au signe près, l'aire du parallélogramme construit sur \vec{a} et \vec{b} .

Propriétés

Déterminant d'ordre trois

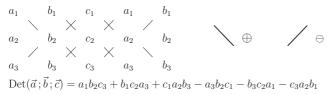
$$\begin{split} &\text{Si } \vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \text{ et } \vec{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}, \\ &\text{alors} \quad \text{Det}(\vec{a}\,; \vec{b}\,; \vec{c}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & c_1 \\ b_3 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}. \end{split}$$

Le déterminant a été calculé en le développant selon la première colonne. On peut aussi le calculer selon la première ligne :

$$\mathrm{Det}(\vec{a}\,;\vec{b}\,;\vec{c}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

Interprétation géométrique

La valeur obtenue est, au signe près, le volume du parallélépipè de construit sur \vec{a}, \vec{b} et \vec{c} .


Propriétés

$$\begin{aligned} & \operatorname{Det}(\vec{a} + \vec{d}\,; \vec{b}\,; \vec{c}) = \operatorname{Det}(\vec{a}\,; \vec{b}\,; \vec{c}) + \operatorname{Det}(\vec{d}\,; \vec{b}\,; \vec{c}) \\ & \operatorname{Det}(\vec{a}\,; \vec{b}\,; \vec{c}) = \operatorname{Det}(\vec{b}\,; \vec{c}\,; \vec{a}) = \operatorname{Det}(\vec{c}\,; \vec{a}\,; \vec{b}) \\ & \operatorname{Det}(\vec{a}\,; \vec{b}\,; \vec{c}) = \operatorname{Det}(\vec{a}\,; \vec{b}\,; \vec{c}) = \operatorname{Det}(\vec{a}\,; \vec{b}\,; \vec{c}) \\ & \operatorname{Det}(\vec{a}\,; \vec{a}\,; \vec{c}) = 0 \end{aligned} \qquad \qquad \begin{aligned} & \operatorname{Det}(\vec{a}\,; \vec{b}\,; \vec{c}) = \lambda \operatorname{Det}(\vec{a}\,; \vec{b}\,; \vec{c}) \\ & \operatorname{Det}(\vec{b}\,; \vec{a}\,; \vec{c}) = -\operatorname{Det}(\vec{a}\,; \vec{b}\,; \vec{c}) \\ & \operatorname{Det}(\vec{a}\,; \vec{a}\,; \vec{c}) = \operatorname{Det}(\vec{a}\,; \vec{b}\,; \vec{c}) \end{aligned}$$

Le procédé de calcul et les propriétés des déterminants d'ordre trois se généralisent aux ordres supérieurs.

Règle de Sarrus

Cette règle n'est valable que pour l'ordre 3.

Système d'équations linéaires

Système de deux équations à deux inconnues

$$\begin{cases} a_1 x_1 + b_1 x_2 = c_1 \\ a_2 x_1 + b_2 x_2 = c_2 \end{cases}$$

Le nombre $D = \text{Det}(\vec{a}; \vec{b})$ est le déterminant principal du système.

Le système admet une solution unique si et seulement si $D \neq 0$

$$x_1 = \frac{\operatorname{Det}(\vec{c}; \vec{b})}{D} \quad x_2 = \frac{\operatorname{Det}(\vec{a}; \vec{c})}{D} \quad \text{(règle de Cramer)}$$

Le système admet une infinité de solutions si D=0 et $\mathrm{Det}(\vec{c};\vec{b})=\mathrm{Det}(\vec{a};\vec{c})=0$.

Le système n'admet aucune solution si D=0 et $(\operatorname{Det}(\vec{c};\vec{b})\neq 0$ ou $\operatorname{Det}(\vec{a};\vec{c})\neq 0)$.

Système de trois équations à trois inconnues

$$\begin{cases} a_1x_1 + b_1x_2 + c_1x_3 = d_1 \\ a_2x_1 + b_2x_2 + c_2x_3 = d_2 \\ a_3x_1 + b_3x_2 + c_3x_3 = d_3 \end{cases}$$

Le nombre $D = \text{Det}(\vec{a}; \vec{b}; \vec{c})$ est le déterminant principal du système.

Le système admet une solution unique si et seulement si $D \neq 0$

$$x_1 = \frac{\operatorname{Det}(\vec{d}; \vec{b}; \vec{c})}{D} \quad x_2 = \frac{\operatorname{Det}(\vec{a}; \vec{d}; \vec{c})}{D} \quad x_3 = \frac{\operatorname{Det}(\vec{a}; \vec{b}; \vec{d})}{D} \quad \text{(règle de Cramer)}$$

Le système admet une infinité de solutions si $D=\mathrm{Det}(\vec{d}\,;\vec{b}\,;\vec{c})=\mathrm{Det}(\vec{a}\,;\vec{d}\,;\vec{c})=\mathrm{Det}(\vec{a}\,;\vec{b}\,;\vec{d})=0$ et si l'espace engendré par les vecteurs \vec{a} , \vec{b} et \vec{c} est de dimension 2.

Le système n'admet aucune solution si D=0 et si au moins un des 3 déterminants, $\mathrm{Det}(\vec{d}\,;\vec{b}\,;\vec{c})$, $\operatorname{Det}(\vec{a}; \vec{d}; \vec{c})$ et $\operatorname{Det}(\vec{a}; \vec{b}; \vec{d})$, est différent de 0.

Ces résultats se généralisent aux systèmes de n équations linéaires à n inconnues, $n \geq 4$.

Matrice

On note
$$A = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} = (a_{ij}).$$

Cette matrice est de type $n \times m$ (n lignes, m colonnes).

Les nombres a_{ij} sont les éléments de la matrice.

Opérations sur les matrices

Somme de deux matrices

$$A + B = C = (c_{ij})$$
 avec $c_{ij} = a_{ij} + b_{ij}$

Chaque élément de la matrice A + B est égal à la somme des éléments correspondants de A et de B.

On ne peut additionner que des matrices de même type.

Produit d'une matrice par un nombre réel λ

$$\lambda A = C = (c_{ij})$$
 avec $c_{ij} = \lambda a_{ij}$

Chaque élément de la matrice A est multiplié par λ .

Produit d'une matrice $n \times m$ par une matrice $m \times p$

On note $A = (a_{ij})$ une matrice de type $n \times m$ et $B = (b_{jk})$ une matrice de type $m \times p$. Le produit ABest alors une matrice $C=(c_{ik})$ de type $n\times p$ définie par $c_{ik}=a_{i1}b_{1k}+a_{i2}b_{2k}+\ldots+a_{im}b_{mk}=\sum_{i=1}^{m}a_{ij}b_{jk}$

$$\begin{pmatrix}
a_{i1} & a_{i2} & \dots & a_{im}
\end{pmatrix}
\begin{pmatrix}
& b_{1k} \\
& b_{2k} \\
& \vdots \\
& b_{mk}
\end{pmatrix} =
\begin{pmatrix}
& \vdots \\
\dots & c_{ik} & \dots
\end{pmatrix}$$

Chaque élément c_{ik} de la matrice AB est égal à la somme des produits des éléments de la i-ème ligne de A par les éléments de la k-ième colonne de B.

On ne peut multiplier deux matrices que si le nombre de colonnes de la première est égal au nombre de lignes de la deuxième.

Matrices particulières

Une matrice nulle, notée O, est une matrice dont tous les éléments sont nuls.

La matrice opposée de la matrice A est la matrice $-A = (-a_{ij})$

La matrice transposée de la matrice A, notée tA , est la matrice obtenue en échangeant les lignes et les colonnes de A. Ainsi, si A est de type $n \times m$, alors ^tA est de type $m \times n$ et on a ^tA = C = (c_{ij}) avec $c_{ij} = a_{ji}$

Propriétés

On suppose que les matrices sont de type adéquat pour effectuer les opérations considérées.

$$A + (B+C) = (A+B) + C \quad A+B = B+A \quad A+O = A \quad A+(-A) = O$$

$$1A = A \quad \lambda(\mu A) = (\lambda \mu)A \quad \lambda(A+B) = \lambda A + \lambda B \quad (\lambda + \mu)A = \lambda A + \mu A$$

$$A(BC) = (AB)C \quad A(B+C) = AB + AC \quad (A+B)C = AC + BC$$

En général, AB est différent de BA.

$$^{t}(A+B) = {}^{t}A + {}^{t}B$$
 $^{t}(\lambda A) = \lambda {}^{t}A$ $^{t}(AB) = {}^{t}B {}^{t}A$

Matrice carrée $n \times n$

La matrice unité est
$$I = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Une matrice carrée A possède une matrice inverse, notée A^{-1} , si $AA^{-1} = A^{-1}A = I$.

La matrice inverse de A existe si et seulement si $Det(A) \neq 0$.

$$A^{-1} = \frac{1}{\operatorname{Det}(A)} {}^{t} \Big((-1)^{i+j} D_{ij} \Big)$$

 D_{ij} est le déterminant d'ordre n-1 que l'on obtient en supprimant dans A la i-ème ligne et la j-ème colonne.

Si
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, alors
$$\boxed{A^{-1} = \frac{1}{\operatorname{Det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}} \text{ avec } \operatorname{Det}(A) = ad - bc.$$

Propriétés

AI = IA = A	$^{t}(A^{-1}) = (^{t}A)^{-1}$	$(AB)^{-1} = B^{-1}A^{-1}$
Det(AB) = Det(A)Det(B)	$\operatorname{Det}(A^{-1}) = \frac{1}{\operatorname{Det}(A)}$	$\mathrm{Det}({}^t\!A)=\mathrm{Det}(A)$

Application linéaire

On note E et F deux espaces vectoriels.

Une application f de E vers F est linéaire si, quels que soient les éléments u et v de E et le scalaire λ , les deux conditions suivantes sont remplies :

1.
$$f(u+v) = f(u) + f(v)$$

2.
$$f(\lambda u) = \lambda f(u)$$

Matrice associée à une application linéaire

Si on choisit une base de E et une base de F, les colonnes de la matrice M associée à f sont les composantes des images par f des vecteurs de la base de E, exprimées dans la base de F.

On note X et Y les matrices-colonne des composantes des vecteurs x et y.

$$y = f(x) \Leftrightarrow Y = MX$$

Transformation linéaire

Une transformation linéaire f est une application linéaire d'un espace vectoriel vers lui-même.

Matrice de changement de base

On note $B = (e_1, e_2, \dots, e_n)$ et $B' = (e'_1, e'_2, \dots, e'_n)$ deux bases d'un espace vectoriel et P la matrice de passage de B à B'.

$$\operatorname{Si} \left\{ \begin{aligned} e_1' &=& a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n \\ e_2' &=& a_{12}e_1 + a_{22}e_2 + \dots + a_{n2}e_n \\ \vdots &&&& \\ e_n' &=& a_{1n}e_1 + a_{2n}e_2 + \dots + a_{nn}e_n \end{aligned} \right., \text{ on a } P = \left(\begin{aligned} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{aligned} \right).$$

On note X et X' les matrices-colonnes des composantes d'un même vecteur dans les bases B

$$X = PX' \quad X' = P^{-1}X$$

Si M est la matrice associée à f relativement à la base B, alors la matrice associée à f relativement à la base B' est

$$M' = P^{-1}MP$$

Valeur et vecteur propre

Le scalaire λ est une valeur propre de f s'il existe un vecteur u non nul vérifiant $f(u) = \lambda u$.

On appelle vecteur propre de f associé à une valeur propre λ tout vecteur u vérifiant $f(u) = \lambda u$.

Les valeurs propres sont les solutions de l'équation caractéristique $\operatorname{Det}(M-\lambda I)=0, M$ étant une matrice associée à f.

Matrices associées à quelques transformations linéaires du plan

Homothétie de centre O et de rapport k

 $\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$ Rotation de centre O et d'angle α

Cisaillement de paramètre k

Affinité d'axe Ox, de direction Oy et de paramètre k

Matrices associées à quelques transformations linéaires de l'espace

Homothétie de centre O et de rapport k

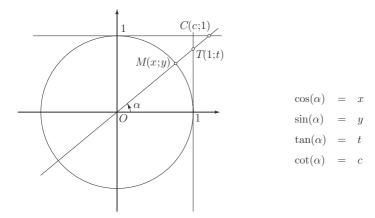
 $\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) & 0\\
\sin(\alpha) & \cos(\alpha) & 0\\
0 & 0 & 1
\end{pmatrix}$ Rotation d'angle α autour de l'axe Oz

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Projection parallèle à l'axe Oz sur le plan Oxy

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Projection parallèle au plan Oyz sur l'axe Ox

Symétrie par rapport au plan Oxy

Trigonométrie


Trigonométrie plane

Conversion des mesures d'angles

On note respectivement d, r et g la mesure d'un angle en degrés, en radians et en grades.

Pour un même angle, on a $\frac{d}{180} = \frac{r}{\pi} = \frac{g}{200}$

Définition des fonctions trigonométriques

Relations entre fonctions trigonométriques d'un même arc

$\cos^2(\alpha) + \sin^2(\alpha) = 1$	$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$	$\cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)}$
$\cot(\alpha) = \frac{1}{\tan(\alpha)}$	$\frac{1}{\cos^2(\alpha)} = 1 + \tan^2(\alpha)$	$\frac{1}{\sin^2(\alpha)} = 1 + \cot^2(\alpha)$

Valeurs exactes des fonctions trigonométriques d'arcs particuliers

(γ	$\cos(\alpha)$	$\sin(\alpha)$	$tan(\alpha)$
0°	0	1	0	0
30°	$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	0	1	-

Périodicité des fonctions trigonométriques

$$\cos(\alpha + 2\pi) = \cos(\alpha)$$
 $\sin(\alpha + 2\pi) = \sin(\alpha)$ $\tan(\alpha + \pi) = \tan(\alpha)$

Relations entre fonctions trigonométriques de certains arcs

$\cos(-\alpha) = \cos(\alpha)$	$\sin(-\alpha) = -\sin(\alpha)$	$\tan(-\alpha) = -\tan(\alpha)$
$\cos(\pi - \alpha) = -\cos(\alpha)$	$\sin(\pi - \alpha) = \sin(\alpha)$	$\tan(\pi - \alpha) = -\tan(\alpha)$
$\cos(\pi + \alpha) = -\cos(\alpha)$	$\sin(\pi + \alpha) = -\sin(\alpha)$	$\tan(\pi + \alpha) = \tan(\alpha)$
$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$	$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos(\alpha)$	$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot(\alpha)$
$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin(\alpha)$	$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos(\alpha)$	$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot(\alpha)$

Fonctions trigonométriques d'une somme et d'une différence d'arcs

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$

$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$

$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$

Fonctions trigonométriques du double et du triple d'un arc

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 1 - 2\sin^2(\alpha) = 2\cos^2(\alpha) - 1$$
$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$
$$\tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}$$
$$\cos(3\alpha) = \cos(\alpha)(1 - 4\sin^2(\alpha)) = \cos(\alpha)(4\cos^2(\alpha) - 3)$$
$$\sin(3\alpha) = \sin(\alpha)(4\cos^2(\alpha) - 1) = \sin(\alpha)(3 - 4\sin^2(\alpha))$$
$$\tan(3\alpha) = \frac{\tan(\alpha)(3 - \tan^2(\alpha))}{1 - 3\tan^2(\alpha)}$$

Fonctions trigonométriques de la moitié d'un arc

$$\cos^{2}\left(\frac{\alpha}{2}\right) = \frac{1 + \cos(\alpha)}{2} \qquad \sin^{2}\left(\frac{\alpha}{2}\right) = \frac{1 - \cos(\alpha)}{2}$$
$$\tan^{2}\left(\frac{\alpha}{2}\right) = \frac{1 - \cos(\alpha)}{1 + \cos(\alpha)} \quad \tan\left(\frac{\alpha}{2}\right) = \frac{1 - \cos(\alpha)}{\sin(\alpha)} = \frac{\sin(\alpha)}{1 + \cos(\alpha)}$$

Fonctions trigonométriques exprimées à l'aide de $t = \tan\left(\frac{\alpha}{2}\right)$

$$\cos(\alpha) = \frac{1-t^2}{1+t^2} \left| \sin(\alpha) = \frac{2t}{1+t^2} \right| \tan(\alpha) = \frac{2t}{1-t^2}$$

Transformation d'une somme en produit

$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

$$\tan(\alpha) + \tan(\beta) = \frac{\sin(\alpha+\beta)}{\cos(\alpha)\cos(\beta)}$$

$$\tan(\alpha) - \tan(\beta) = \frac{\sin(\alpha-\beta)}{\cos(\alpha)\cos(\beta)}$$

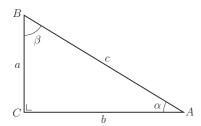
$$\tan(\alpha) - \tan(\beta) = \frac{\sin(\alpha-\beta)}{\cos(\alpha)\cos(\beta)}$$

$$\tan(\alpha) - \tan(\beta) = \frac{\sin(\alpha-\beta)}{\cos(\alpha)\cos(\beta)}$$

$$a\cos(\alpha) + b\sin(\alpha) = A\cos(\alpha-\varphi) \text{ avec } A = \sqrt{a^2 + b^2} \text{ et } \varphi \text{ tel que } \cos(\varphi) = \frac{a}{A} \text{ et } \sin(\varphi) = \frac{b}{A}$$

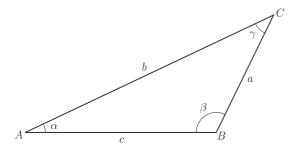
Transformation d'un produit en somme

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha+\beta) + \cos(\alpha-\beta))$$
$$\cos(\alpha)\sin(\beta) = \frac{1}{2}(\sin(\alpha+\beta) - \sin(\alpha-\beta))$$
$$\sin(\alpha)\sin(\beta) = \frac{1}{2}(-\cos(\alpha+\beta) + \cos(\alpha-\beta))$$


Équations trigonométriques simples

$$cos(x) = a \Leftrightarrow \begin{cases} x = \arccos(a) + k \cdot 2\pi \text{ ou} \\ x = -\arccos(a) + k \cdot 2\pi \end{cases}$$

$$\sin(x) = a \iff \begin{cases} x = \arcsin(a) + k \cdot 2\pi \text{ ou} \\ x = \pi - \arcsin(a) + k \cdot 2\pi \end{cases}$$


$$\tan(x) = a \iff x = \arctan(a) + k \cdot \pi$$

Triangle rectangle

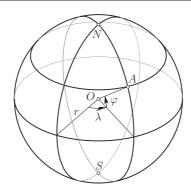
$$\cos(\alpha) = \frac{b}{c} = \sin(\beta) \quad \tan(\alpha) = \frac{a}{b} = \cot(\beta)$$
$$\sin(\alpha) = \frac{a}{c} = \cos(\beta) \quad \cot(\alpha) = \frac{b}{a} = \tan(\beta)$$

Triangle quelconque

Théorème du cosinus

$$a^{2} = b^{2} + c^{2} - 2bc\cos(\alpha)$$
$$b^{2} = a^{2} + c^{2} - 2ac\cos(\beta)$$
$$c^{2} = a^{2} + b^{2} - 2ab\cos(\gamma)$$

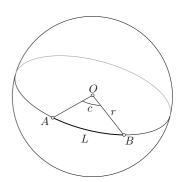
Théorème du sinus


$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

Trigonométrie sphérique

Notations et terminologie

En mathématiques	En géographie	En astronomie
angle φ (de -90° à 90°)	latitude de A (de 90°S à 90°N)	déclinaison δ (de -90° à $90^{\circ})$
angle λ (de -180° à $180^{\circ})$	longitude de A (de 180°W à 180°E)	ascension droite α (de 0 à 24h)
petit cercle par A (avec φ constant)	parallèle par A	
demi grand cercle par A (avec λ constant)	méridien de A	méridien de A

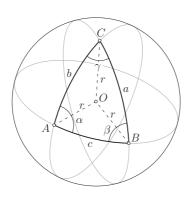

Distance de deux points

On note $A(\varphi_A;\lambda_A)$ et $B(\varphi_B;\lambda_B)$ deux points (non diamétralement opposés) de la sphère et $c \in [0^{\circ}; 180^{\circ}]$ leur distance angulaire.

On note AB l'arc mineur entre A et B, c'est-à-dire le plus petit des deux arcs d'extrémités A et B du grand cercle passant par A et B.

La distance de
$$A$$
 à B est la longueur de l'arc $\stackrel{\frown}{AB}$ et on a $L = rc\frac{\pi}{180^{\circ}}$

avec
$$\cos(c) = \sin(\varphi_A)\sin(\varphi_B) + \cos(\varphi_A)\cos(\varphi_B)\cos(\lambda_A - \lambda_B)$$


Triangle sphérique quelconque

On appelle triangle sphérique ABC la figure formée par trois points A, B et C (non situés sur un même grand cercle) et les trois arcs mineurs \overrightarrow{AB} , \overrightarrow{BC} et \overrightarrow{CA} .

On note a, b et c les distances angulaires (exprimées en degrés) entre A, B et C.

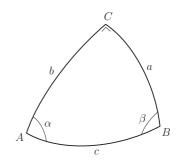
$0 < a < 180^{\circ}$	$0 < b < 180^{\circ}$	$0 < c < 180^{\circ}$	$0 < a + b + c < 360^{\circ}$	
a+b>c	b+c>a	c + a > b		
$0 < \alpha < 180^{\circ}$	$0 < \beta < 180^{\circ}$	$0<\gamma<180^\circ$	$180^{\circ} < \alpha + \beta + \gamma < 540^{\circ}$	
$\alpha + 180^{\circ} > \beta + \gamma \qquad \beta + 180^{\circ} > \alpha + \gamma \qquad \gamma + 180^{\circ} > \alpha + \beta$				
$\alpha < \beta < \gamma \Leftrightarrow a < b < c$				

Excès sphérique
$$\varepsilon = \alpha + \beta + \gamma - 180^{\circ}$$

Aire du triangle sphérique $A = r^2 \varepsilon \frac{\pi}{180^{\circ}}$ (formule de Girard)

Théorème du sinus
$$\frac{\sin(a)}{\sin(\alpha)} = \frac{\sin(b)}{\sin(\beta)} = \frac{\sin(c)}{\sin(\gamma)}$$

Théorème du cosinus pour les côtés $\cos(a) = \cos(b)\cos(c) + \sin(b)\sin(c)\cos(\alpha)$


Théorème du cosinus pour les angles $\cos(\alpha) = -\cos(\beta)\cos(\gamma) + \sin(\beta)\sin(\gamma)\cos(a)$

Théorème des cotangentes $\sin(\alpha)\cot(\beta) = \cot(b)\sin(c) - \cos(\alpha)\cos(c)$

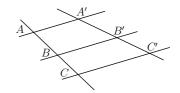
Triangle sphérique rectangle

On note ABC un triangle sphérique rectangle en C ($\gamma=90^\circ).$

$\sin(a) = \sin(c)\sin(\alpha)$	$\tan(a) = \tan(c)\cos(\beta)$
$\sin(b) = \sin(c)\sin(\beta)$	$\tan(b) = \tan(c)\cos(\alpha)$
$\tan(a) = \sin(b)\tan(\alpha)$	$\cos(\beta) = \cos(b)\sin(\alpha)$
$\tan(b) = \sin(a)\tan(\beta)$	$\cos(\alpha) = \cos(a)\sin(\beta)$
$\cos(c) = \cos(a)\cos(b)$	$\cos(c) = \cot(\alpha)\cot(\beta)$

Géométrie

Géométrie classique

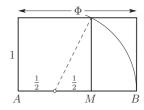

On note (AB) la droite passant par A et B,

[AB] le segment d'extrémités A et B,

AB la longueur de [AB].

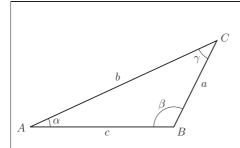
Théorème de Thalès

$$(AA') \parallel (BB') \parallel (CC') \Longrightarrow \frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC}$$


Section d'or

Le point M détermine une section d'or du segment $[AB] \iff$

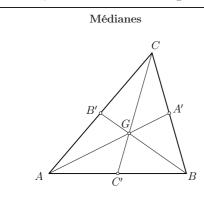
$$\frac{AB}{AM} = \frac{AM}{MB}$$


$$AB = \frac{\sqrt{5} + 1}{2}AM = \Phi \cdot AM$$

Le nombre Φ est appelé nombre d'or (voir page 10).

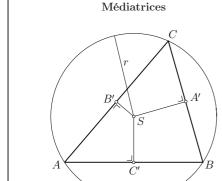
Triangles

On note \mathcal{A} l'aire du triangle et p le demi-périmètre : $p = \frac{1}{2}(a+b+c)$


$$\sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{(p-b)(p-c)}{bc}}$$

$$\cos\left(\frac{\alpha}{2}\right) = \sqrt{\frac{p(p-a)}{bc}}$$

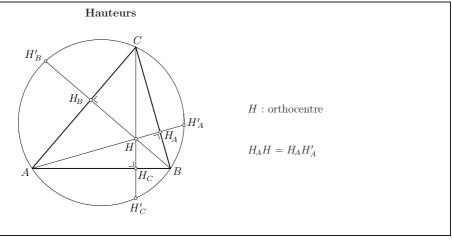
$$\tan\left(\frac{\alpha}{2}\right) = \sqrt{\frac{(p-b)(p-c)}{p(p-a)}}$$


On note A', B' et C' les milieux des segments [BC], [AC] et [AB]

G : centre de gravité ou barycentre

$$AG = \frac{2}{3}AA'$$

$$AA' = \frac{1}{2}\sqrt{2(b^2 + c^2) - a^2}$$



S : centre du cercle circonscrit

p: demi-périmètre

$$r = \frac{abc}{4\sqrt{p(p-a)(p-b)(p-c)}}$$

$$r = \frac{a}{2\sin(\alpha)}$$

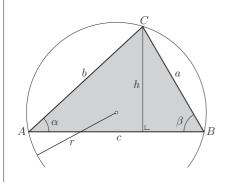
Le centre de gravité G, le centre S du cercle circonscrit et l'orthocentre H d'un triangle sont alignés (droite d'Euler) et on a 3 SG = SH

Bissectrices

 ${\cal O}\;$: centre du cercle inscrit

 $\mathcal{O}_{\!A}$: centre du cercle exinscrit dans l'angle de sommet A

p: demi-périmètre


$$\rho = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$$

$$AA_1 = \frac{\sqrt{bc((b+c)^2 - a^2)}}{b+c}$$

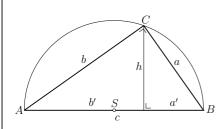
$$\rho_A = \sqrt{\frac{p(p-b)(p-c)}{p-a}}$$

$$\frac{AB_1}{B_1C} = \frac{AB_2}{B_2C} = \frac{AB}{BC}$$

Aire

$$A = \frac{1}{2}ch$$

$$\mathcal{A} = \frac{1}{2}bc\sin(\alpha) = \frac{a^2\sin(\beta)\sin(\gamma)}{2\sin(\alpha)}$$


$$\mathcal{A} = \frac{abc}{4r} = 2r^2 \sin(\alpha) \sin(\beta) \sin(\gamma)$$

$$\mathcal{A} = \rho p = \rho_A(p - a)$$

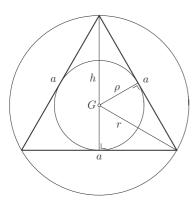
$$\mathcal{A} = \sqrt{p(p-a)(p-b)(p-c)}$$

où p est le demi-périmètre

Triangle rectangle

$$A = \frac{1}{2}ab$$

Théorème de Pythagore $c^2 = a^2 + b^2$


Théorème d'Euclide

$$a^2 = a'c$$
 et $b^2 = b'c$

Théorème de la hauteur $h^2 = a'b'$

Le centre S du cercle circonscrit est le milieu de l'hypoténuse.

Triangle équilatéral

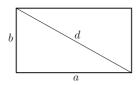
$$h = \frac{a\sqrt{3}}{2}$$

$$h = \frac{a\sqrt{3}}{2} \qquad \qquad \mathcal{A} = \frac{a^2\sqrt{3}}{4}$$

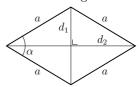
$$r = \frac{2}{3}h = \frac{a\sqrt{3}}{3}$$

$$\rho = \frac{a\sqrt{3}}{6} \qquad \qquad \rho_A = \frac{a\sqrt{3}}{2}$$

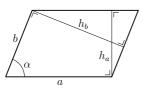
$$\rho_A = \frac{a\sqrt{3}}{2}$$


Le centre de gravité G, le centre S du cercle circonscrit et l'orthocentre H sont confondus.

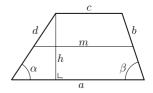
Quadrilatères


On note \mathcal{A} l'aire du quadrilatère.

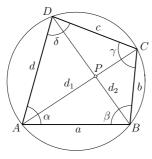
Rectangle


$$A = a b$$
$$d = \sqrt{a^2 + b^2}$$

Losange


$$A = \frac{1}{2} d_1 d_2 = a^2 \sin(\alpha)$$
$$d_1^2 + d_2^2 = 4 a^2$$

Parallélogramme

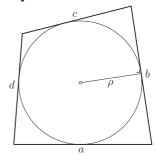

 $\mathcal{A} = a h_a = b h_b = a b \sin(\alpha)$

Trapèze

$$\mathcal{A} = \frac{1}{2}(a+c) h = m h$$
$$m = \frac{1}{2}(a+c)$$
$$h = d\sin(\alpha) = b\sin(\beta)$$

Quadrilatère inscrit

p: demi-périmètre

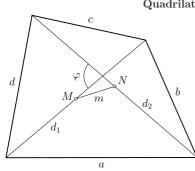

$$\mathcal{A} = \sqrt{(p-a)(p-b)(p-c)(p-d)}$$

$$\alpha + \gamma = \beta + \delta = 180^\circ$$

 $a c + b d = d_1 d_2$

 $PA \cdot PC = PB \cdot PD$

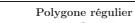
Quadrilatère circonscrit

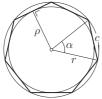


p: demi-périmètre

$$A = p\rho$$

a+c=b+d





$$\begin{split} \mathcal{A} &= \tfrac{1}{2} \, d_1 d_2 \sin(\varphi) \\ a^2 + b^2 + c^2 + d^2 &= d_1{}^2 + d_2{}^2 + 4 \, m^2 \\ \text{où} \quad m = MN, \, M \text{ et } N \text{ étant les} \\ & \text{milieux des deux diagonales} \end{split}$$

Polygones

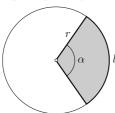
On note n le nombre de sommets du polygone et \mathcal{A} son aire. Pour un polygone régulier, on note rle rayon du cercle circonscrit et ρ le rayon du cercle inscrit (apothème).

$$\mathcal{A} = \frac{1}{2} n c \rho = n \rho^2 \tan\left(\frac{\alpha}{2}\right) = \frac{1}{2} n r^2 \sin(\alpha)$$

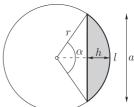
$$\alpha = \frac{360^{\circ}}{n}$$

$$c = 2\sqrt{r^2 - \rho^2} = 2r \sin\left(\frac{\alpha}{2}\right) = 2\rho \tan\left(\frac{\alpha}{2}\right)$$

Polygone convexe



Somme des angles $(n-2)180^{\circ}$ Nombre de diagonales



Cercle et éléments de cercle

Secteur circulaire

Segment circulaire

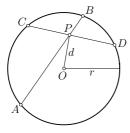
Aire du cercle

$$\mathcal{A}=\pi\,r^2$$

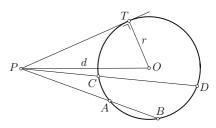
Périmètre du cercle

$$L=2\pi\,r$$

Longueur de l'arc de cercle $l = \alpha r$ (α en radians)

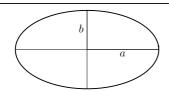

$$(\alpha \text{ en radians})$$

Aire du secteur circulaire


$$A_{\text{sect}} = \frac{1}{2} r l = \frac{1}{2} \alpha r^2$$
 (α en radians)

Aire du segment circulaire
$$\mathcal{A}_{\text{segm}} = \frac{1}{2} (l \, r - a(r - h)) = \frac{1}{2} \, r^2 (\alpha - \sin(\alpha))$$
 (α en radians)

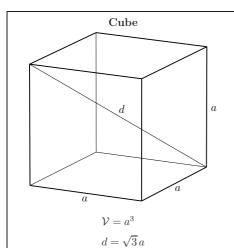
Puissance d'un point par rapport à un cercle

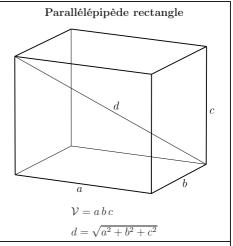

$$PA \cdot PB = PC \cdot PD$$

$$PA \cdot PB = PC \cdot PD = PT^2$$

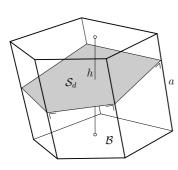
La puissance d'un point P situé à la distance d du centre d'un cercle de rayon r est le nombre $\overrightarrow{PA} \cdot \overrightarrow{PB} = d^2 - r^2$. Ce nombre est indépendant du choix de la sécante (AB).

Ellipse

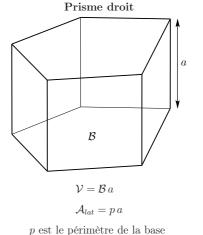


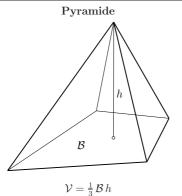

Aire de l'ellipse $\mathcal{A} = \pi a b$

Autres propriétés, voir page 57.

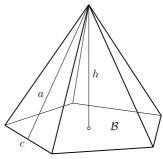

Polyèdres

On note $\mathcal V$ le volume, $\mathcal B$ l'aire de la base et $\mathcal A_{lat}$ l'aire latérale du polyèdre.





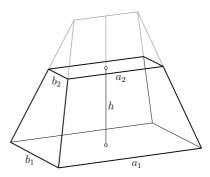
$$\mathcal{V} = \mathcal{B} h = \mathcal{S}_d a$$


$$\mathcal{A}_{lat} = p_s \, a$$

 \mathcal{S}_d est l'aire de la section droite p_s est le périmètre de cette section


Pyramide régulière

$$V = \frac{1}{3} \mathcal{B} h$$
$$A_{lat} = \frac{1}{2} n c a$$


n est le nombre de faces latérales

Tronc de pyramide régulière

$$\mathcal{V} = \frac{1}{3} h \left(\mathcal{B}_1 + \mathcal{B}_2 + \sqrt{\mathcal{B}_1 \mathcal{B}_2} \right)$$
$$\mathcal{A}_{lat} = \frac{1}{2} n \left(c_1 + c_2 \right) a$$

Tas de sable ou obélisque

$$\mathcal{V} = \frac{1}{6} h \left(a_1 b_1 + (a_1 + a_2)(b_1 + b_2) + a_2 b_2 \right)$$

Polyèdre convexe

Théorème d'Euler s - a + f = 2

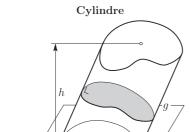
s est le nombre de sommets

a est le nombre d'arêtes

f est le nombre de faces

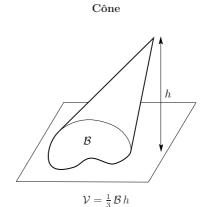
Les cinq polyèdres platoniciens

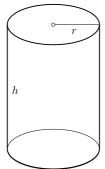
		Les em	q polycures pla	tometens	
	Tétraèdre	Hexaèdre (cube)	Octaèdre	Dodécaèdre	Icosaèdre
s	4	8	6	20	12
a	6	12	12	30	30
f	4	6	8	12	20
\mathcal{A}	$\sqrt{3} c^2$	$6 c^2$	$2\sqrt{3}c^2$	$3\sqrt{25+10\sqrt{5}}c^2$	$5\sqrt{3}c^2$
\mathcal{V}	$\frac{\sqrt{3}c^2}{\sqrt{2}}$	c^3	$2\sqrt{3}c^2$ $\frac{\sqrt{2}}{3}c^3$	$\frac{15+7\sqrt{5}}{4}c^3$	$\frac{5\sqrt{3}c^2}{\frac{5(3+\sqrt{5})}{12}c^3}$
r	$\frac{\sqrt{6}}{4}c$ $\frac{\sqrt{6}}{12}c$	$\frac{\sqrt{3}}{2}c$	$\frac{\sqrt{2}}{2}c$ $\frac{\sqrt{6}}{6}c$	$\frac{\sqrt{3}(1+\sqrt{5})}{4}c$	$\frac{\sqrt{2(5+\sqrt{5})}}{4}c$
ρ	$\frac{\sqrt{6}}{12}c$	$\frac{1}{2}c$	$\frac{\sqrt{6}}{6}c$	$\frac{\sqrt{250+110\sqrt{5}}}{20}c$	$\frac{\sqrt{3}(3+\sqrt{5})}{12}c$


 \boldsymbol{c} est la longueur d'une arête \mathcal{A} est l'aire totale \mathcal{V} est le volume

r est le rayon de la sphère circonscrite ρ est le rayon de la sphère inscrite

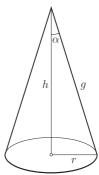
Corps ronds


On note $\mathcal V$ le volume, $\mathcal B$ l'aire de la base, $\mathcal A_{lat}$ l'aire latérale et $\mathcal A$ l'aire totale du corps.


$$V = \mathcal{B} h = \mathcal{S}_d g$$
$$\mathcal{A}_{lat} = p h = p_s g$$

 \mathcal{B}

p est le périmètre de la base \mathcal{S}_d est l'aire de la section droite p_s est le périmètre de cette section

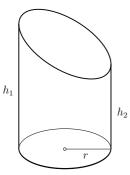

Cylindre circulaire droit

$$\mathcal{V}=\pi\,r^2\,h$$

$$\mathcal{A}_{lat} = 2\pi \, r \, h$$

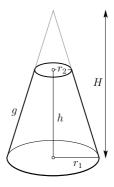
Cône circulaire droit

$$\mathcal{V} = \frac{1}{3} \pi r^2 h$$


$$\mathcal{A}_{lat} = \pi r g = \frac{1}{2} g^2 \varphi$$
$$g = \frac{r}{\sin(\alpha)}$$

$$g = \frac{r}{\sin(\alpha)}$$

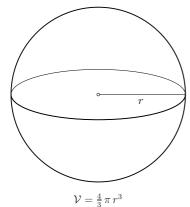
$$\varphi = 2\pi \sin(\alpha)$$


 φ est l'angle du développement (en radians)

Tronc de cylindre circulaire droit

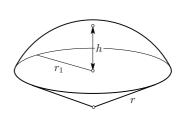
$$\mathcal{V} = \pi r^2 \frac{h_1 + h_2}{2}$$
$$\mathcal{A}_{lat} = \pi r (h_1 + h_2)$$

Tronc de cône circulaire droit


$$\mathcal{V} = \frac{1}{3} \pi h (r_1^2 + r_1 r_2 + r_2^2)$$

$$\mathcal{A}_{lat} = \pi g (r_1 + r_2)$$

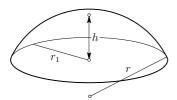
$$g = \sqrt{h^2 + (r_1 - r_2)^2}$$


$$h = \frac{H(r_1 - r_2)}{r_1}$$

Sphère

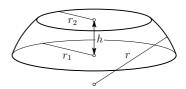
$$\mathcal{A} = 4\pi r^2$$

Secteur sphérique


$$\mathcal{V} = \frac{2}{3} \pi r^2 h$$

$$\mathcal{A} = \pi r (2h + r_1)$$

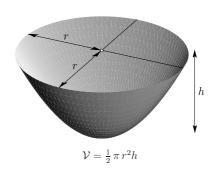
$$r_1 = \sqrt{h (2r - h)}$$



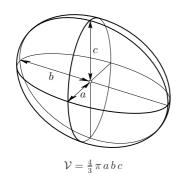
Calotte

$$\mathcal{V} = \frac{1}{3}\pi h^2 (3r - h) = \frac{1}{6}\pi h (3r_1^2 + h^2)$$
$$\mathcal{A}_{lat} = 2\pi r h = \pi (r_1^2 + h^2)$$
$$r_1 = \sqrt{h(2r - h)}$$

Segment sphérique

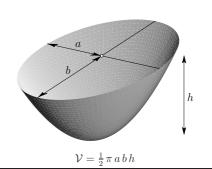

$$V = \frac{1}{6} \pi h (3r_1^2 + 3r_2^2 + h^2)$$
$$A_{lat} = 2\pi r h$$

Tore



$$\mathcal{V} = 2 \pi^2 R r^2 = \frac{1}{4} \pi^2 (a+b)(a-b)^2$$

 $\mathcal{A} = 4 \pi^2 R r = \pi^2 (a^2 - b^2)$


Paraboloïde de révolution

Ellipsoïde

Paraboloïde elliptique

Corps de révolution : théorèmes de Guldin dd $\overset{\circ}{G}$ D $\mathcal{A}_{lat} = 2\pi \, d \, l$ $\mathcal{V} = 2\pi \, d \, A$ l est la longueur et ${\cal G}$ le centre de gravité A est l'aire de la surface D et G son centre de la courbe Γ . de gravité.

Pour le calcul de la longueur d'une courbe, de l'aire d'une surface ou du centre de gravité, voir page 86.

La surface D ne coupe pas l'axe.

La courbe Γ ne coupe pas l'axe.

Géométrie vectorielle

Le signe ① indique que la base de référence est orthonormée.

On note \vec{a}, \vec{b} et \vec{c} des vecteurs, $\vec{0}$ le vecteur nul et λ, μ des nombres réels.

Propriétés

$$\vec{a} + \vec{b} = \vec{b} + \vec{a} \qquad \lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b} \qquad \vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

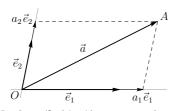
$$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c} \qquad (\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a} \qquad 0 \vec{a} = \vec{0}$$

$$\vec{a} + \vec{0} = \vec{a} \qquad (\lambda \mu)\vec{a} = \lambda(\mu \vec{a}) \qquad \lambda \vec{0} = \vec{0}$$

$$\vec{a} + (-\vec{a}) = \vec{0} \qquad 1 \vec{a} = \vec{a} \qquad -1 \vec{a} = -\vec{a}$$

Dépendance linéaire

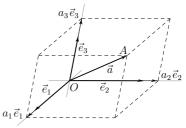
Deux vecteurs sont linéairement dépendants si l'un est un multiple de l'autre.


Plus généralement, des vecteurs sont linéairement dépendants si l'un d'eux s'exprime comme combinaison linéaire des autres.

Deux vecteurs du plan \vec{a} et \vec{b} sont linéairement dépendants \Leftrightarrow Det $(\vec{a}; \vec{b}) = 0$

Trois vecteurs de l'espace \vec{a}, \vec{b} et \vec{c} sont linéairement dépendants \Leftrightarrow $\mathrm{Det}(\vec{a}; \vec{b}; \vec{c}) = 0$

Composantes d'un vecteur relativement à une base


Dans le plan

Une base $\mathcal{B}=(\vec{e}_1;\vec{e}_2)$ est un couple de vecteurs linéairement indépendants

$$\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Dans l'espace

Une base $\mathcal{B}=(\vec{e_1};\vec{e_2};\vec{e_3})$ est un triplet de vecteurs linéairement indépendants

$$\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

Opérations avec les composantes

Si
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
 et $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, alors
$$\vec{a} + \vec{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$$

$$\vec{a} = \begin{pmatrix} \lambda a_1 \\ a_2 \end{pmatrix}$$

$$\vec{a} + \vec{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$$

$$\vec{a} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \end{pmatrix}$$

$$\vec{a} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \\ \lambda a_3 \end{pmatrix}$$

$$\vec{a} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \\ \lambda a_3 \end{pmatrix}$$

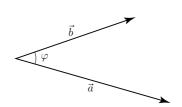
Base orthonormée

On note $\|\vec{a}\|$ la norme d'un vecteur \vec{a} . Si \vec{a} et \vec{b} sont orthogonaux, on note $\vec{a} \perp \vec{b}$

Dans le plan	Dans l'espace
$(\vec{e}_1; \vec{e}_2)$ est une base orthonormée si	$(\vec{e}_1; \vec{e}_2; \vec{e}_3)$ est une base orthonormée si
$\ \vec{e}_1\ = \ \vec{e}_2\ = 1$ et $\vec{e}_1 \perp \vec{e}_2$	$\ \vec{e}_1\ = \ \vec{e}_2\ = \ \vec{e}_3\ = 1$ et $\vec{e}_1 \perp \vec{e}_2$, $\vec{e}_1 \perp \vec{e}_3$, $\vec{e}_2 \perp \vec{e}_3$

Produit scalaire de deux vecteurs

Dans le plan Dans l'espace Si $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ et $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, alors Si $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ et $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, alors $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2$ $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$


Propriétés

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \qquad (\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b})$$

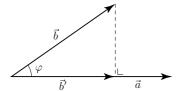
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} \qquad \vec{a} \cdot \vec{a} > 0 \Leftrightarrow \vec{a} \neq \vec{0}$$

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| \ ||\vec{b}|| \cos(\varphi)$$

$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$

(11)

Norme d'un vecteur


$$\|\vec{a}\| = \sqrt{\vec{a} \cdot \vec{a}}$$

Dans le plan	Dans l'espace
Si $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$, alors $\ \vec{a}\ = \sqrt{a_1^2 + a_2^2}$	Si $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, alors $\ \vec{a}\ = \sqrt{a_1^2 + a_2^2 + a_3^2}$

$$\begin{split} \|\lambda \vec{a}\| &= |\lambda| \; \|\vec{a}\| \\ \|\vec{a} + \vec{b}\| &\leq \|\vec{a}\| + \|\vec{b}\| \end{split} \qquad \begin{aligned} |\vec{a} \cdot \vec{b}| &\leq \|\vec{a}\| \; \|\vec{b}\| \\ \vec{a} \cdot \vec{b} &= \frac{1}{2} \left(\|\vec{a}\|^2 + \|\vec{b}\|^2 - \|\vec{a} - \vec{b}\|^2 \right) \end{aligned}$$

Projection orthogonale de \vec{b} sur \vec{a}

On note $\vec{b}^{\,\prime}$ la projection orthogonale de \vec{b} sur \vec{a} .

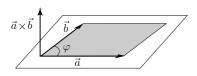
$$\vec{b}' = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \vec{a} \qquad \|\vec{b}'\| = \frac{|\vec{a} \cdot \vec{b}|}{\|\vec{a}\|} \qquad \vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b}'$$

Angle de deux vecteurs

On note
$$\varphi$$
 l'angle de \vec{a} et \vec{b} (0 $\leq \varphi \leq$ 180°).

$$\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}$$

Produit vectoriel de deux vecteurs

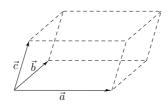


Composantes du produit vectoriel

Si
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 et $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, alors $\vec{a} \times \vec{b} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$

On note aussi ce produit $\vec{a} \wedge \vec{b}$.

Propriétés


- 1. $\vec{a} \times \vec{b}$ est orthogonal aux vecteurs \vec{a} et \vec{b} .
- 2. Si \vec{a} et \vec{b} sont linéairement indépendants, alors $(\vec{a}; \vec{b}; \vec{a} \times \vec{b})$ est une base de l'espace, orientée positivement (règle du tire-bouchon).
- 3. $\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \sin(\varphi)$. Ce nombre est égal à l'aire du parallélogramme construit sur \vec{a} et \vec{b} .

$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a}) \qquad (\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b})$$

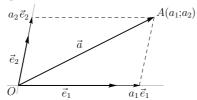
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \qquad \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

$$\vec{a} \times \vec{b} = \vec{0} \quad \Leftrightarrow \quad \vec{a} \text{ et } \vec{b} \text{ sont linéairement dépendants}$$

Produit mixte de trois vecteurs

Le nombre $\left[\vec{a}\,;\vec{b}\,;\vec{c}\,\right]$ est, au signe près, le volume du parallélépipè de construit sur $\vec{a},\,\vec{b}$ et $\vec{c}.$

Géométrie analytique plane

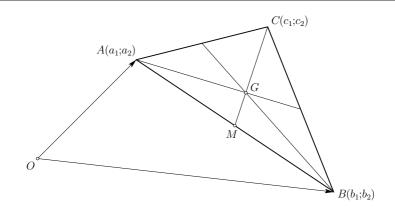

Le signe ① indique que le repère de référence est orthonormé.

On note $(O; \vec{e_1}; \vec{e_2})$ un repère du plan. Le point O est l'origine du repère, le couple $(\vec{e_1}; \vec{e_2})$ est la base associée au repère.

Les coordonnées d'un point A sont les composantes du vecteur $O\acute{A}$.

On écrit
$$A(a_1; a_2)$$
 si $\overrightarrow{OA} = a_1 \vec{e}_1 + a_2 \vec{e}_2 = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$

Les nombres a_1 et a_2 sont respectivement l'abscisse et l' $ordonn\acute{e}e$ du point A.

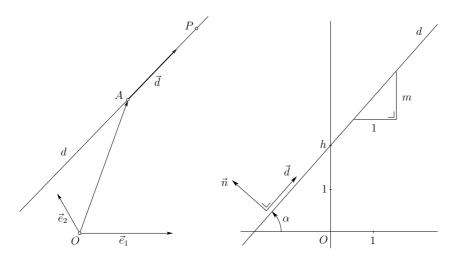


Vecteur défini par deux points
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \end{pmatrix}$$

Longueur d'un segment
$$AB = \|\overrightarrow{AB}\| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}$$

Milieu d'un segment
$$\overrightarrow{OM} = \frac{1}{2} \big(\overrightarrow{OA} + \overrightarrow{OB} \big)$$

$$\Leftrightarrow M \left(\frac{a_1 + b_1}{2} \, ; \, \frac{a_2 + b_2}{2} \right)$$


Centre de gravité d'un triangle
$$\overrightarrow{OG} = \frac{1}{3} (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$$

 $\Leftrightarrow G\left(\frac{a_1 + b_1 + c_1}{3}; \frac{a_2 + b_2 + c_2}{3}\right)$

Droite

On note d une droite passant par le point $A(a_1; a_2)$ et de vecteur directeur $\vec{d} = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$.

Un point $P(x\,;y)$ appartient à la droite d si et seulement si l'une des conditions suivantes est vérifiée :

$$\overrightarrow{OP} \; = \; \overrightarrow{OA} + \lambda \, \overrightarrow{d} \; , \quad \lambda \in \mathbb{R} \label{eq:equation:equation}$$

$$\begin{cases} x = a_1 + \lambda d_1 \\ y = a_2 + \lambda d_2 \end{cases}, \quad \lambda \in \mathbb{R}$$

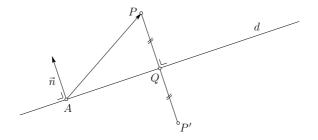
$$ax + by + c = 0$$

$$y = mx + h$$

$$\frac{x - a_1}{d_1} = \frac{y - a_2}{d_2}$$

$$y - a_2 = m(x - a_1)$$

Les vecteurs $\vec{n} = \begin{pmatrix} -d_2 \\ d_1 \end{pmatrix}$ et $\begin{pmatrix} a \\ b \end{pmatrix}$ sont des vecteurs normaux à la droite d.

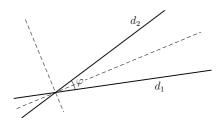

Le nombre $m = \frac{d_2}{d_1} = -\frac{a}{b}$ est la pente de la droite d.

Les vecteurs $\begin{pmatrix} 1 \\ m \end{pmatrix}$ et $\begin{pmatrix} b \\ -a \end{pmatrix}$ sont des vecteurs directeurs de la droite d.

L'angle α est l'angle directeur de la droite d. On a $\tan(\alpha)=m.$

Le nombre h est l'ordonnée à l'origine de la droite d.

On note $P(x_0; y_0)$ un point et d une droite d'équation ax + by + c = 0.



Distance du point
$$P$$
 à la droite d
$$\delta(P;d) = \frac{\left|\overrightarrow{AP} \cdot \overrightarrow{n}\right|}{\parallel \overrightarrow{n} \parallel} = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}} \qquad \qquad \bigcirc$$

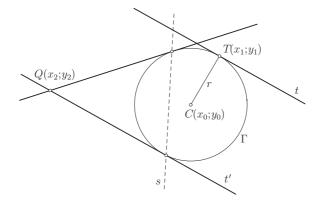
Projection orthogonale de
$$P$$
 sur d $\overrightarrow{OQ} = \overrightarrow{OP} - \frac{\overrightarrow{AP} \cdot \vec{n}}{\|\vec{n}\|^2} \vec{n}$ \Box

Symétrique de
$$P$$
 par rapport à d $\overrightarrow{OP'} = \overrightarrow{OP} - 2 \frac{\overrightarrow{AP} \cdot \vec{n}}{\|\vec{n}\|^2} \vec{n}$

On note d_1 une droite d'équation $a_1x + b_1y + c_1 = 0$; \vec{n}_1 désigne un vecteur normal et m_1 la pente de la droite d_1 . Les notations pour une droite d_2 sont définies de manière analogue.

Critères de parallélisme
$$d_1 \parallel d_2 \ \Leftrightarrow \ m_1 = m_2 \ \Leftrightarrow \ \vec{n}_2 = \lambda \, \vec{n}_1 \text{ avec } \lambda \in \mathbb{R}$$

Critères de perpendicularité
$$d_1 \perp d_2 \Leftrightarrow m_1 m_2 = -1 \Leftrightarrow \vec{n}_1 \cdot \vec{n}_2 = 0$$


Angle aigu de deux droites
$$\cos(\varphi) = \frac{\mid \vec{d_1} \cdot \vec{d_2} \mid}{\mid \mid \vec{d_1} \mid \mid \mid \mid \vec{d_2} \mid} = \frac{\mid \vec{n_1} \cdot \vec{n_2} \mid}{\mid \mid \vec{n_1} \mid \mid \mid \vec{n_2} \mid} \quad \bigcirc$$

$$\tan(\varphi) = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| \qquad \qquad \Box$$

Bissectrices de deux droites
$$\frac{a_1x+b_1y+c_1}{\sqrt{a_1^2+b_1^2}}=\pm \frac{a_2x+b_2y+c_2}{\sqrt{a_2^2+b_2^2}}$$

Cercle

On note P(x;y) un point et Γ un cercle de centre $C(x_0;y_0)$ et de rayon r.

Équation du cercle

$$P \in \Gamma \iff \|\overrightarrow{CP}\| = r \iff (x - x_0)^2 + (y - y_0)^2 = r^2$$

Tangente en un point T

$$P \in t \quad \Leftrightarrow \quad \overrightarrow{CT} \cdot \overrightarrow{TP} = 0 \quad \Leftrightarrow \quad (x_1 - x_0)(x - x_1) + (y_1 - y_0)(y - y_1) = 0$$

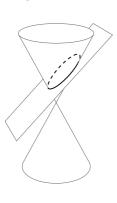
$$P \in t \quad \Leftrightarrow \quad \overrightarrow{CT} \cdot \overrightarrow{CP} = r^2 \quad \Leftrightarrow \quad (x_1 - x_0)(x - x_0) + (y_1 - y_0)(y - y_0) = r^2$$

$$P \in t \Leftrightarrow \overrightarrow{CT} \cdot \overrightarrow{CP} = r^2 \Leftrightarrow (x_1 - x_0)(x - x_0) + (y_1 - y_0)(y - y_0) = r^2$$

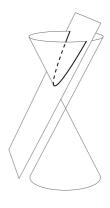
Tangentes de pente m

Pet ou
$$P \in t'$$
 $\Leftrightarrow y - y_0 = m(x - x_0) \pm r\sqrt{m^2 + 1}$

Polaire d'un point Q


$$P \in s \quad \Leftrightarrow \quad \overrightarrow{CQ} \cdot \overrightarrow{CP} = r^2 \quad \Leftrightarrow \quad (x_2 - x_0)(x - x_0) + (y_2 - y_0)(y - y_0) = r^2$$

Puissance d'un point Q


$$\|\overrightarrow{CQ}\|^2 - r^2 = (x_2 - x_0)^2 + (y_2 - y_0)^2 - r^2$$

Coniques

Une conique est l'intersection d'un cône de révolution et d'un plan.

Hyperbole

 ${\bf Ellipse}$

пурега

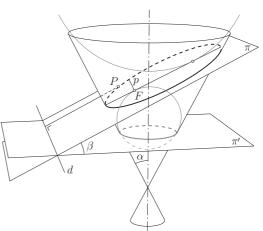
Parabole

P : point quel conque de la conique

F: foyer

d: directrice

 π : plan de la conique


 π' : plan du cercle de contact sphère-cône

 $\alpha\,$: demi-angle d'ouverture du cône

 β : angle des plans π et π'

e : excentricité définie par $e = \frac{\sin(\beta)}{\cos(\alpha)}$

 $p\,$: demi-paramètre

Propriété caractéristique

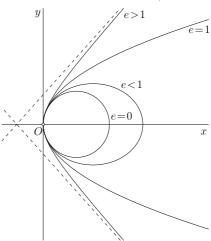
Si
$$e \neq 0$$
, alors $PF = e \cdot \delta(P; d)$

Si e = 0, la conique est un cercle de centre F et de rayon PF.

Équation générale

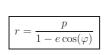
$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$$
 où $(A; B; C) \neq (0; 0; 0)$

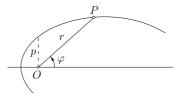
Soit
$$L = \begin{vmatrix} A & B & D \\ B & C & E \\ D & E & F \end{vmatrix}$$
 et $l = \begin{vmatrix} A & B \\ B & C \end{vmatrix}$


Si $L \neq 0$ et l > 0 la conique est une ellipse si (A + C)L < 0

l=0 la conique est une parabole

l < 0 la conique est une hyperbole


Si L=0, la conique est dégénérée.


Équation cartésienne (l'origine est un sommet et l'axe des x est l'axe focal)

 $(1-e^2)x^2 + y^2 = 2px$

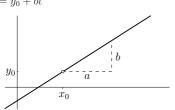
Équation en coordonnées polaires (le pôle est un foyer et l'axe polaire est l'axe focal)

Si $0 \le e < 1$ la conique est une ellipse (un cercle si e = 0)

e = 1la conique est une parabole

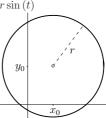
e > 1la conique est une hyperbole

	Ellipse	Hyperbole	Parabole
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Définition	$PF_1 + PF_2 = 2a$	$ PF_1 - PF_2 = 2a$	$PF = \delta(P; d)$
Demi-distance focale c	$c^2 = a^2 - b^2$	$c^2 = a^2 + b^2$	
Excentricité	$e = \frac{c}{a} < 1$ $(e = 0 : cercle)$	$e = \frac{c}{a} > 1$	e = 1
Demi- paramètre	$p = \frac{b^2}{a}$	$p = \frac{b^2}{a}$	p
Foyers	$F_1(c;0), F_2(-c;0)$	$F_1(c;0), F_2(-c;0)$	$F(\frac{p}{2};0)$
Équation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$y^2 = 2px$
Tangente en $P_1(x_1; y_1)$	$\frac{x_1 x}{a^2} + \frac{y_1 y}{b^2} = 1$	$\frac{x_1 x}{a^2} - \frac{y_1 y}{b^2} = 1$	$y_1y = px + px_1$
Tangentes de pente m	$y = mx \pm \sqrt{a^2m^2 + b^2}$	$y = mx \pm \sqrt{a^2m^2 - b^2}$	$y = mx + \frac{p}{2m}$
Directrices	$x = \pm \frac{a^2}{c} = \pm \frac{a}{e}$	$x = \pm \frac{a^2}{c} = \pm \frac{a}{e}$	$x = -\frac{p}{2}$
Asymptotes		$y = \pm \frac{b}{a}x$	
Équations paramétriques	$\begin{cases} x = a\cos(t) \\ y = b\sin(t) \end{cases}$	$\begin{cases} x = \pm a \cosh(t) \\ y = b \sinh(t) \end{cases}$	$\begin{cases} x = pt^2 \\ y = \sqrt{2} pt \end{cases}$

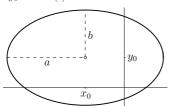


Courbes planes

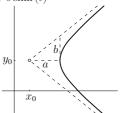
Équations paramétriques


Droite

 $\int x = x_0 + at$ $y = y_0 + bt$


Cercle

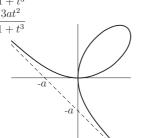
 $x = x_0 + r\cos\left(t\right)$ $y = y_0 + r\sin\left(t\right)$


Ellipse

 $\int x = x_0 + a\cos(t)$ $\begin{cases} y = y_0 + b\sin(t) \end{cases}$

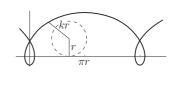
Demi-hyperbole

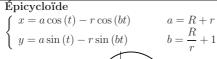
 $x = x_0 + a\cosh(t)$ $y = y_0 + b \sinh(t)$

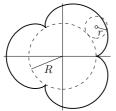

Parabole

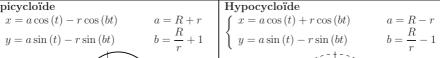
 $x = pt^2$ $y = \sqrt{2} pt$

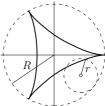
Astroïde


 $x = a\cos^3(t)$ $y = a\sin^3(t)$

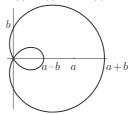

Folium de Descartes




Cycloïde


 $\begin{cases} x = r(t - k\sin(t)) \\ y = r(1 - k\cos(t)) \end{cases}$

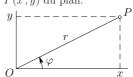




$$\begin{cases} x = a\cos(\omega_1 t + \varphi_1) \\ y = b\cos(\omega_2 t + \varphi_2) \end{cases}$$

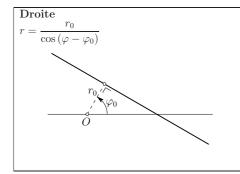
Limaçon de Pascal

$$\begin{cases} x = a\cos^2(t) + b\cos(t) \\ y = a\cos(t)\sin(t) + b\sin(t) \end{cases}$$

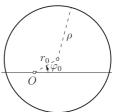


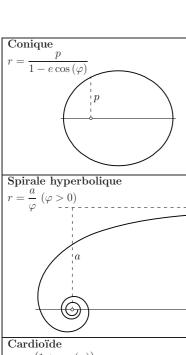
Coordonnées polaires

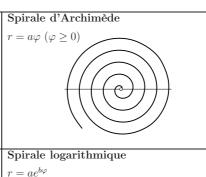
On note r et φ les coordonnées polaires d'un point P(x;y) du plan.

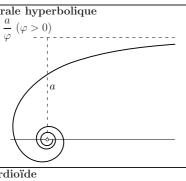

$$x = r\cos(\varphi) \quad r = \sqrt{x^2 + y^2}$$

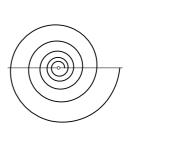
$$y = r\sin(\varphi) \quad \cos(\varphi) = \frac{x}{r} \text{ et } \sin(\varphi) = \frac{y}{r}$$

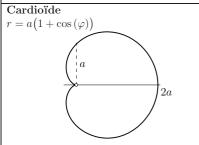

La formule $\tan(\varphi) = \frac{y}{x}$ permet de déterminer l'angle φ à 180° près.

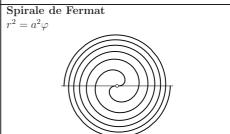

Équation en coordonnées polaires

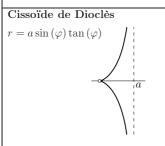


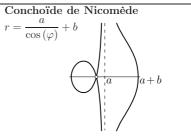

Cercle

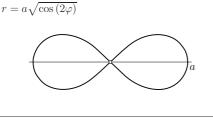

$$r^{2} - 2r_{0}r\cos(\varphi - \varphi_{0}) + r_{0}^{2} - \rho^{2} = 0$$

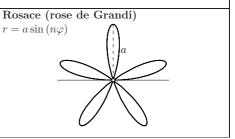






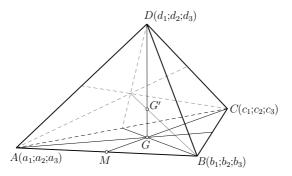






Lemniscate de Bernoulli

Géométrie analytique de l'espace


Le signe ① indique que le repère de référence est orthonormé.

On note $(O; \vec{e}_1; \vec{e}_2; \vec{e}_3)$ un repère de l'espace. Le point O est l'origine du repère, le triplet $(\vec{e}_1; \vec{e}_2; \vec{e}_3)$ est la base associée au repère.

Les coordonnées d'un point A sont les composantes du vecteur \overrightarrow{OA} .

On écrit
$$A(a_1; a_2; a_3)$$
 si $\overrightarrow{OA} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$

Les nombres a_1 , a_2 et a_3 sont respectivement l'abscisse et l'ordonnée et la cote du point A.

Vecteur défini par deux points
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ b_3 - a_3 \end{pmatrix}$$

Longueur d'un segment
$$AB = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + (b_3 - a_3)^2}$$

$$\overrightarrow{OM} \ = \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OB} \right)$$

$$\Leftrightarrow \ M\left(\frac{a_1+b_1}{2}\,;\,\frac{a_2+b_2}{2}\,;\,\frac{a_3+b_3}{2}\right)$$

Aire d'un triangle
$$A = \frac{1}{2} \|\overrightarrow{AB} \times \overrightarrow{AC}\|$$

Centre de gravité d'un triangle
$$\overrightarrow{OG} = \frac{1}{3} (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$$

$$\Leftrightarrow \ G\left(\frac{a_{1}+b_{1}+c_{1}}{3}\,;\,\frac{a_{2}+b_{2}+c_{2}}{3}\,;\,\frac{a_{3}+b_{3}+c_{3}}{3}\right)$$

Volume d'un tétraèdre
$$\mathcal{V} = \frac{1}{6} \left| \text{Det} \left(\overrightarrow{AB} \, ; \overrightarrow{AC} \, ; \overrightarrow{AD} \right) \right|$$
 \bigoplus

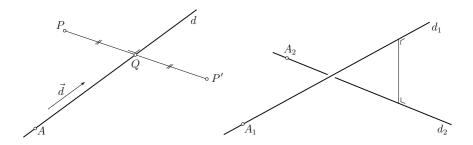
Centre de gravité d'un tétraèdre
$$\overrightarrow{OG'} = \frac{1}{4} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} \right)$$

Droite

On note d une droite passant par le point $A(a_1; a_2; a_3)$ et de vecteur directeur $\vec{d} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$

Un point P(x; y; z) appartient à la droite d si et seulement si l'une des conditions suivantes est vérifiée :

Équation vectorielle
$$\overrightarrow{OP} = \overrightarrow{OA} + \lambda \overrightarrow{d}$$
 $\lambda \in \mathbb{R}$


Équations cartésiennes
$$\frac{x-a_1}{d_1} = \frac{y-a_2}{d_2} = \frac{z-a_3}{d_3}$$

On note P un point et d une droite passant par A et de vecteur directeur \vec{d} .

Distance du point
$$P$$
 à la droite d
$$\delta(P;d) = \frac{\left\|\overrightarrow{AP} \times \overrightarrow{d}\right\|}{\|\overrightarrow{d}\|}$$

Projection orthogonale de
$$P$$
 sur d $\overrightarrow{OQ} = \overrightarrow{OA} + \frac{\overrightarrow{AP} \cdot \overrightarrow{d}}{\|\overrightarrow{d}\|^2} \overrightarrow{d}$ \bigcirc

Symétrique de
$$P$$
 par rapport à d $\overrightarrow{OP'} = 2\overrightarrow{OA} - \overrightarrow{OP} + 2 \frac{\overrightarrow{AP} \cdot \overrightarrow{d}}{\|\overrightarrow{d}\|^2} \overrightarrow{d}$

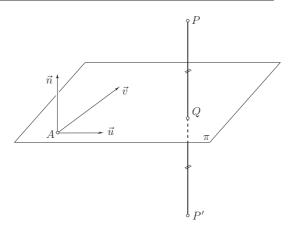
On note d_1 une droite passant par A_1 et de vecteur directeur $\vec{d_1}$ et d_2 une droite passant par A_2 et de vecteur directeur \vec{d}_2 .

Distance de deux droites
$$\delta(d_1;d_2) = \frac{\left| \left(\vec{d_1} \times \vec{d_2} \right) \cdot \overrightarrow{A_1 A_2} \right|}{\| \vec{d_1} \times \vec{d_2} \|} \qquad \qquad \textcircled{\begin{tabular}{c} \end{tabular}}$$
 non parallèles

$$\textbf{Angle aigu de deux droites} \quad \cos(\varphi) = \frac{|\vec{d_1} \cdot \vec{d_2}|}{\|\vec{d_1}\| \|\vec{d_2}\|} \qquad \quad \sin(\varphi) = \frac{\|\vec{d_1} \times \vec{d_2}\|}{\|\vec{d_1}\| \|\vec{d_2}\|} \qquad \quad \oplus$$

Plan

On note π un plan passant par le point $A(a_1; a_2; a_3)$ et de vecteurs directeurs non colinéaires \vec{u}


Le vecteur
$$\vec{n} = \vec{u} \times \vec{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 est un vecteur normal au plan π .

Un point P(x;y;z) appartient au plan π si et seulement si l'une des conditions suivantes est vérifiée :

Equation vectorielle
$$OP = OA + \lambda u + \mu v \qquad \lambda, \mu \in \mathbb{R}$$

$$\begin{cases} x = a_1 + \lambda u_1 + \mu v_1 \\ y = a_2 + \lambda u_2 + \mu v_2 \\ z = a_3 + \lambda u_3 + \mu v_3 \end{cases} \quad \lambda, \mu \in \mathbb{R}$$

Équation cartésienne
$$ax + by + cz + d = 0$$

Autres formes
$$\vec{n} \cdot \overrightarrow{AP} = 0$$

$$\cot(\overrightarrow{AP}; \vec{u}; \vec{v}) = 0$$

On note $P(x_0; y_0; z_0)$ un point et π un plan d'équation ax + by + cz + d = 0

Distance du point
$$P$$
 au plan π
$$\delta(P;\pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Projection orthogonale de
$$P$$
 sur π $\overrightarrow{OQ} = \overrightarrow{OP} - \frac{\overrightarrow{AP} \cdot \vec{n}}{\|\vec{n}\|^2} \vec{n}$ \bigcirc

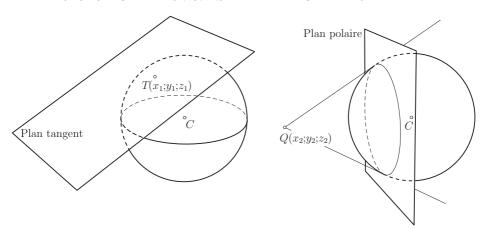
Symétrique de
$$P$$
 par rapport à π $\overrightarrow{OP'} = \overrightarrow{OP} - 2 \frac{\overrightarrow{AP} \cdot \overrightarrow{n}}{\|\overrightarrow{n}\|^2} \overrightarrow{n}$ \bigcirc

On note π_1 un plan d'équation $a_1x + b_1y + c_1z + d_1 = 0$; \vec{n}_1 désigne un vecteur normal à ce plan. Les notations pour un plan π_2 sont définies de manière analogue et \vec{d} désigne un vecteur directeur d'une droite donnée.

Critère de parallélisme	$\pi_1 \parallel \pi_2 \iff \vec{n}_2 = \lambda \vec{n}_1, \ \lambda \in \mathbb{R}$	

Critère de perpendicularité
$$\pi_1 \perp \pi_2 \Leftrightarrow \vec{n}_1 \cdot \vec{n}_2 = 0$$

Intersection de deux plans Si les vecteurs
$$\vec{n}_1$$
 et \vec{n}_2 sont linéairement indépendants, l'intersection est une droite dont $\vec{n}_1 \times \vec{n}_2$ est un vecteur directeur.


$$\textbf{Angle aigu de deux plans} \qquad \cos(\varphi) = \frac{\mid \vec{n}_1 \cdot \vec{n}_2 \mid}{\mid \mid \vec{n}_1 \mid \mid \mid \mid \vec{n}_2 \mid \mid} \qquad \qquad \sin(\varphi) = \frac{\mid \vec{n}_1 \times \vec{n}_2 \mid}{\mid \mid \vec{n}_1 \mid \mid \mid \mid \vec{n}_2 \mid \mid} \qquad \qquad \bigcirc$$

Angle aigu d'une droite et
$$\sin(\varphi) = \frac{\mid \vec{d} \cdot \vec{n}_1 \mid}{\mid \mid \vec{d} \mid \mid \mid \mid \vec{n}_1 \mid \mid} = \cos(90^\circ - \varphi)$$

$$\textcircled{\Box}$$
 d'un plan

Plans bissecteurs
$$\frac{a_1x + b_1y + c_1z + d_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}} = \pm \; \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_2^2 + b_2^2 + c_2^2}} \; \qquad \qquad \bigcirc$$

Sphère

On note P(x; y; z) un point et $C(x_0; y_0; z_0)$ le centre d'une sphère de rayon r.

Équation de la sphère

$$\|\overrightarrow{CP}\| = r$$
 \Leftrightarrow $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$

Plan tangent en un point T

$$\overrightarrow{CT} \cdot \overrightarrow{TP} = 0 \quad \Leftrightarrow \quad (x_1 - x_0)(x - x_1) + (y_1 - y_0)(y - y_1) + (z_1 - z_0)(z - z_1) = 0$$

$$\overrightarrow{CT} \cdot \overrightarrow{CP} = r^2 \quad \Leftrightarrow \quad (x_1 - x_0)(x - x_0) + (y_1 - y_0)(y - y_0) + (z_1 - z_0)(z - z_0) = r^2$$

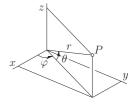
$$CT \cdot CP = r^2 \Leftrightarrow (x_1 - x_0)(x - x_0) + (y_1 - y_0)(y - y_0) + (z_1 - z_0)(z - z_0) = r^2$$

Plan polaire d'un point Q

$$\overrightarrow{CQ} \cdot \overrightarrow{CP} = r^2 \Leftrightarrow (x_2 - x_0)(x - x_0) + (y_2 - y_0)(y - y_0) + (z_2 - z_0)(z - z_0) = r^2$$

Puissance d'un point Q

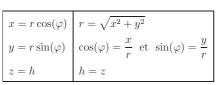
$$\|\overrightarrow{CQ}\|^2 - r^2 = (x_2 - x_0)^2 + (y_2 - y_0)^2 + (z_2 - z_0)^2 - r^2$$

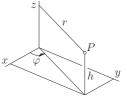

Coordonnées sphériques d'un point

On note r, φ et θ les coordonnées sphériques d'un point P(x; y; z) de l'espace.

$$x = r\cos(\theta)\cos(\varphi) \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r\cos(\theta)\sin(\varphi) \qquad \cos(\varphi) = \frac{x}{\sqrt{x^2 + y^2}} \text{ et } \sin(\varphi) = \frac{y}{\sqrt{x^2 + y^2}}$$


$$z = r\sin(\theta) \qquad \sin(\theta) = \frac{z}{r} \qquad (-90^\circ \le \theta \le 90^\circ)$$



La formule $\tan(\varphi) = \frac{y}{x}$ permet de déterminer l'angle φ à 180° près.

Coordonnées cylindriques d'un point

On note r, φ et h les coordonnées cylindriques d'un point P(x; y; z) de l'espace.

La formule $\tan(\varphi) = \frac{y}{x}$ permet de déterminer l'angle φ à 180° près.

Analyse

Fonction réelle d'une variable réelle

On note f et g deux fonctions réelles d'une variable réelle x.

L'image de x par la fonction f est notée f(x).

L'ensemble de définition de la fonction f, noté D_f , est l'ensemble des nombres réels qui ont une image par f.

L'ensemble image de la fonction f, noté Im(f), est l'ensemble de toutes les images par f des éléments de D_f .

Le graphe de la fonction f est l'ensemble des couples (x; f(x)), où $x \in D_f$. La représentation graphique de la fonction f est la courbe d'équation cartésienne y = f(x) dans un plan muni d'un système d'axes perpendiculaires.

Caractéristiques d'une fonction

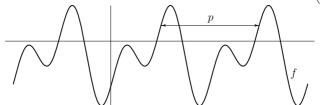
Zéro

Le nombre a est un $z\acute{e}ro$ de la fonction f si f(a)=0

Parité

La fonction f est paire si f(-x) = f(x) pour tout $x \in D_f$.

La représentation graphique de f est alors symétrique par rapport à l'axe des y.


La fonction f est impaire si f(-x) = -f(x) pour tout $x \in D_f$.

La représentation graphique de f est alors symétrique par rapport à l'origine.

Périodicité

La fonction f est périodique s'il existe un nombre p > 0 tel que f(x+p) = f(x) pour tout $x \in D_f$. La période de f est le plus petit p > 0 vérifiant cette propriété.

La représentation graphique de f est alors invariante par translation de vecteur $\begin{pmatrix} p \\ 0 \end{pmatrix}$.

Croissance

On note I une partie de l'ensemble de définition de la fonction f.

La fonction f est	si pour tout $x_1, x_2 \in I$:	
croissante sur I	$x_1 < x_2 \implies f(x_1) \le f(x_2)$	
$strictement\ croissante\ sur\ I$	$x_1 < x_2 \implies f(x_1) < f(x_2)$	
$d\acute{e}croissante$ sur I	$x_1 < x_2 \implies f(x_1) \ge f(x_2)$	
$strictement\ d\'ecroissante\ sur\ I$	$x_1 < x_2 \implies f(x_1) > f(x_2)$	

Une fonction monotone $sur\ I$ est une fonction qui est soit croissante sur I soit décroissante sur I.

Bornes

On note I une partie de l'ensemble de définition de la fonction f.

La fonction f est majorée $sur\ I$ s'il existe un nombre réel M tel que $f(x) \leq M$ pour tout $x \in I$; M est un majorant de f sur I. La borne supérieure d'une fonction f majorée sur I est son plus petit majorant ; on le note sup f(x).

On définit de manière analogue une fonction minorée $sur\ I$, un minorant et la borne inférieure de f sur I.

Une fonction bornée sur I est une fonction qui est à la fois majorée et minorée sur I.

Extremums

Le nombre f(a) est un maximum local de la fonction f s'il existe un intervalle ouvert I contenant a tel que, pour tout $x \in I \cap D_f$, on a $f(x) \leq f(a)$.

Le nombre f(a) est le maximum absolu de la fonction f si, pour tout $x \in D_f$, on a $f(x) \le f(a)$ On définit de manière analogue un minimum local et le minimum absolu de f.

Convexité

On note f une fonction dérivable sur un intervalle I.

La fonction f est	si pour tout $x, a \in I$:
convexe sur I	$f(x) \ge f(a) + (x - a)f'(a)$
concave sur I	$f(x) \le f(a) + (x - a)f'(a)$

Lorsque f est convexe, sa représentation graphique est située au-dessus de ses tangentes.

Opérations sur les fonctions

Addition	f + g	(f+g)(x) = f(x) + g(x)
Soustraction	f-g	(f-g)(x) = f(x) - g(x)
Multiplication	$f \cdot g$	$(f \cdot g)(x) = f(x)g(x)$
Multiplication par un réel λ	$\lambda \cdot f$	$(\lambda \cdot f)(x) = \lambda f(x)$
Division	$\frac{f}{g}$	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$
Composition	$g \circ f$	$(g \circ f)(x) = g(f(x))$

Fonction réciproque

Si $f: A \to B$ est une fonction bijective, alors la fonction réciproque de f est la fonction $f: B \to A$ définie par $rf(y) = x \Leftrightarrow y = f(x)$

Lorsque le repère est orthonormé, les représentations graphiques des fonctions f et f sont symétriques par rapport à la droite d'équation y = x

$$({}^r f \circ f)(x) = x \text{ pour tout } x \in A$$
 $(f \circ {}^r f)(y) = y \text{ pour tout } y \in B$

Fonctions particulières

Fonction réciproque des fonctions trigonométriques

$-1 \le x \le 1$	$\arcsin(x) = y$	\Leftrightarrow	$x = \sin(y)$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$-1 \le x \le 1$	arccos(x) = y	\Leftrightarrow	$x = \cos(y)$	$0 \le y \le \pi$
$x \in \mathbb{R}$	$\arctan(x) = y$	\Leftrightarrow	$x = \tan(y)$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$
$x \in \mathbb{R}$	$\operatorname{arccot}(x) = y$	\Leftrightarrow	$x = \cot(y)$	$0 < y < \pi$

Définitions et propriétés des fonctions trigonométriques, voir pages 29 et suivantes.

Exponentielle et logarithme de base a

On note a un nombre tel que a > 0 et $a \neq 1$

$a^x = y$	\iff $x = \log_a(y)$
$a^x = e^{x \ln(a)}$	$\log_a(x) = \frac{\ln(x)}{\ln(a)}$

On note aussi $\exp_a(x) = a^x$

Autres propriétés des puissances et des logarithmes, voir pages 13 et 14.

Exponentielle de base e et logarithme naturel

$e^x = y$ \Leftarrow	$\Rightarrow \qquad x = \ln(y)$
$e^x = \lim_{n \to +\infty} \left(1 + \frac{x}{n} \right)^n$	$\ln(x) = \int_{1}^{x} \frac{1}{t} dt$
$e^0 = 1$	$\ln(1) = 0$
$e^1 = e$	ln(e) = 1
$e^{x+y} = e^x \cdot e^y$	$\ln(uv) = \ln(u) + \ln(v)$
$e^{x-y} = \frac{e^x}{e^y}$	$\ln\left(\frac{u}{v}\right) = \ln(u) - \ln(v)$
$(e^x)^y = e^{xy}$	$\ln(u^v) = v \ln(u)$

On note aussi $\exp(x) = e^x$

Fonctions hyperboliques

$$\sinh(x) = \frac{e^x - e^{-x}}{2} \quad \cosh(x) = \frac{e^x + e^{-x}}{2} \quad \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \quad \coth(x) = \frac{1}{\tanh(x)}$$

$$\cosh^2(x) - \sinh^2(x) = 1 \quad \tanh(x) = \frac{\sinh(x)}{\cosh(x)} \quad \frac{1}{\cosh^2(x)} = 1 - \tanh^2(x)$$

$$\sinh(-x) = -\sinh(x) \quad \cosh(-x) = \cosh(x) \quad \tanh(-x) = -\tanh(x)$$

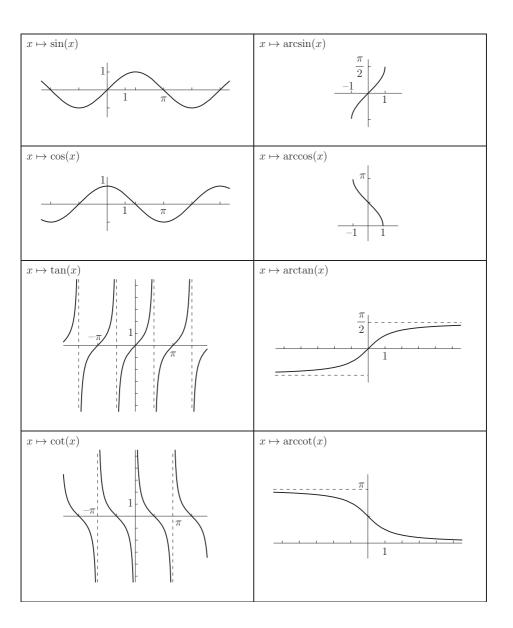
$$\sinh(x + y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y) \quad \sinh(2x) = 2\sinh(x)\cosh(x)$$

$$\cosh(x + y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y) \quad \cosh(2x) = \sinh^2(x) + \cosh^2(x)$$

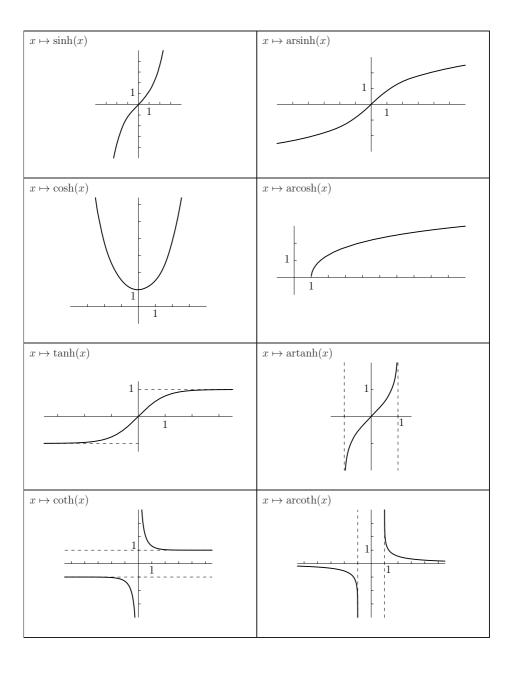
$$\tanh(x + y) = \frac{\tanh(x) + \tanh(y)}{1 + \tanh(x) \tanh(y)} \quad \tanh(2x) = \frac{2\tanh(x)}{1 + \tanh^2(x)}$$

$$\sinh^2\left(\frac{x}{2}\right) = \frac{\cosh(x) - 1}{2} \quad \cosh^2\left(\frac{x}{2}\right) = \frac{\cosh(x) + 1}{2} \quad \tanh\left(\frac{x}{2}\right) = \frac{\cosh(x) - 1}{\sinh(x)} = \frac{\sinh(x)}{\cosh(x) + 1}$$
Formule de Moivre
$$(\cosh(x) + \sinh(x))^n = \cosh(nx) + \sinh(nx)$$

Fonction réciproque des fonctions hyperboliques


$x \in \mathbb{R}$	$\operatorname{arsinh}(x) = y$	\Leftrightarrow	$x = \sinh(y)$	$y \in \mathbb{R}$
$x \ge 1$	$\operatorname{arcosh}(x) = y$	\Leftrightarrow	$x = \cosh(y)$	$y \ge 0$
-1 < x < 1	$\operatorname{artanh}(x) = y$	\Leftrightarrow	$x = \tanh(y)$	$y \in \mathbb{R}$
x < -1 ou $x > 1$	$\operatorname{arcoth}(x) = y$	\Leftrightarrow	$x = \coth(y)$	$y \neq 0$

$\operatorname{arsinh}(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$	$\operatorname{arcosh}(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$
$\operatorname{artanh}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$	$\operatorname{arcoth}(x) = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right)$



Représentation graphique de quelques fonctions

$x \mapsto x^2$	$x \mapsto x^3$
$x \mapsto \sqrt{x}$	$x \mapsto \sqrt[3]{x}$
$x \mapsto x $	$x \mapsto \frac{1}{x}$
$x \mapsto \operatorname{sgn}(x)$	$x \mapsto [x]$
$x \mapsto e^x$	$x \mapsto \ln(x)$

Limite et continuité

Limite

On note f une fonction définie sur un intervalle ouvert contenant a, sauf éventuellement en a.

Le nombre L est la limite de f en a si f(x) est arbitrairement proche de L dès que x est suffisamment proche de $a \ (x \neq a)$.

On dit aussi que f(x) tend vers L lorsque x tend vers a. On note $\lim f(x) = L$

Formellement, le nombre L est la limite de f en a si, pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que $0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon$

Propriétés

On note f et g des fonctions dont la limite en a existe et λ un nombre réel.

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} (\lambda f(x)) = \lambda \lim_{x \to a} f(x)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{si } \lim_{x \to a} g(x) \neq 0$$

Quelques limites

On note n un entier naturel, a et b des nombres réels positifs et x un nombre réel.

$$\lim_{n \to +\infty} a^n = +\infty \qquad \text{si } a > 1 \qquad \lim_{n \to +\infty} \sqrt[n]{a} = 1 \quad \text{si } a > 0 \qquad \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{n \to +\infty} a^n = 0 \qquad \text{si } 0 < a < 1 \quad \lim_{n \to +\infty} \sqrt[n]{n} = 1 \qquad \qquad \lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n = e^x$$

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\tan(x)}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0 \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a)$	
$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$	$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln(a)}$	
$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$	$\lim_{x \to +\infty} \frac{\ln(x)}{x^a} = 0$	$\lim_{x \to +\infty} \frac{\ln^b(x)}{x^a} = 0$
$\lim_{\substack{x \to 0 \\ x > 0}} x \ln(x) = 0$	$\lim_{\substack{x \to 0 \\ x > 0}} x^a \ln(x) = 0$	$\lim_{\substack{x \to 0 \\ x > 0}} x^a \ln^b(x) = 0$
$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$	$\lim_{x \to +\infty} \frac{e^{ax}}{x} = +\infty$	$\lim_{x \to +\infty} \frac{e^{ax}}{x^b} = +\infty$
$\lim_{x \to +\infty} \frac{x}{e^x} = 0$	$\lim_{x \to +\infty} \frac{x}{e^{ax}} = 0$	$\lim_{x \to +\infty} \frac{x^b}{e^{ax}} = 0$

Théorème de L'Hospital

On note a un nombre réel, f et g deux fonctions dérivables dans un intervalle ouvert contenant aet telles que $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ existe.

Si
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
 ou si $\lim_{x \to a} |f(x)| = \lim_{x \to a} |g(x)| = +\infty$, alors
$$\boxed{\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}}$$

Cette règle s'applique également aux calculs de limites lorsque x tend vers $+\infty$ ou vers $-\infty$.

Asymptotes

Asymptote verticale

La droite d'équation x = a est une asymptote verticale de la fonction f si $\lim |f(x)| = +\infty$ ou $\lim |f(x)| = +\infty$

Asymptote horizontale

La droite d'équation y = h est une asymptote horizontale de la fonction f lorsque x tend vers $+\infty$ $\operatorname{si} \lim_{x \to +\infty} f(x) = h$

On traite de manière analogue le cas où x tend vers $-\infty$.

Asymptote oblique

La droite d'équation y = mx + h est une asymptote oblique de la fonction f lorsque x tend vers $+\infty$ si $\lim_{x \to +\infty} (f(x) - (mx + h)) = 0$

Si f(x) ne peut pas s'écrire facilement sous la forme $f(x) = mx + h + \delta(x)$ avec $\lim_{x \to a} \delta(x) = 0$, on peut déterminer m et h en calculant :

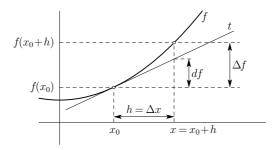
$$m = \lim_{x \to +\infty} \frac{f(x)}{x}$$
 et $h = \lim_{x \to +\infty} (f(x) - mx)$

On traite de manière analogue le cas où x tend vers $-\infty$.

Continuité

On note f une fonction définie dans un intervalle ouvert contenant a.

La fonction f est continue en a si $\lim_{x\to a} f(x) = f(a)$


Théorème de la valeur intermédiaire

Une fonction continue sur un intervalle fermé [a;b] admet sur cet intervalle un maximum absolu, un minimum absolu, et prend toutes les valeurs entre ces extremums.

Calcul différentiel

Dérivée d'une fonction

Dérivée de
$$f$$
 en x_0

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Le nombre $f'(x_0)$ est la pente de la tangente à la courbe en $(x_0; f(x_0))$

Autres formes:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

Autres notations:

Si
$$y = f(x)$$
, alors $f'(x) = \frac{df}{dx} = \frac{dy}{dx} = y'$

Différentielle de f en x_0

$$df = f'(x_0) \, \Delta x$$

Tangente t en x_0

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Fonction dérivée

$$f' \colon x \mapsto f'(x)$$

Dérivée seconde

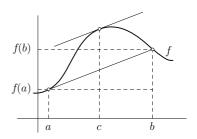
$$f'' = (f')'$$

Autres notations:

Si
$$y = f(x)$$
, alors $f''(x) = \frac{d^2 f}{dx^2} = \frac{d^2 y}{dx^2} = y''$

Règles de dérivation

(f+g)'(x) = f'(x) + g'(x)	$(\lambda \cdot f)'(x) = \lambda f'(x), \ \lambda \in \mathbb{R}$
f'(x) = f'(x) g(x) + f(x) g'(x)	$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$
$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$	$({}^rf)'(x) = \frac{1}{f'({}^rf(x))}$


Dérivée de fonctions usuelles

f(x)	f'(x)	f(x)	f'(x)	
a	0	\sqrt{x}	$\frac{1}{2\sqrt{x}}$	
x	1	$\frac{1}{x}$	$-\frac{1}{x^2}$	
x^n	nx^{n-1}	x	sgn(x)	$x \neq 0$
e^x	e^x	ln(x)	$\frac{1}{x}$	
a^x	$a^x \ln(a)$	$\log_a(x)$	$\frac{1}{x \ln(a)}$	
$\sin(x)$	$\cos(x)$	$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	
$\cos(x)$	$-\sin(x)$	$\arccos(x)$	$-\frac{1}{\sqrt{1-x^2}}$	
tan(x)	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$	$\arctan(x)$	$\frac{1}{1+x^2}$	
$\cot(x)$	$-\frac{1}{\sin^2(x)} = -1 - \cot^2(x)$	$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$	
sinh(x)	$\cosh(x)$	$\operatorname{arsinh}(x)$	$\frac{1}{\sqrt{x^2+1}}$	
$\cosh(x)$	$\sinh(x)$	$\operatorname{arcosh}(x)$	$\frac{1}{\sqrt{x^2 - 1}}$	
tanh(x)	$\frac{1}{\cosh^2(x)} = 1 - \tanh^2(x)$	$\operatorname{artanh}(x)$	$\frac{1}{1-x^2}$	x < 1
$\coth(x)$	$-\frac{1}{\sinh^2(x)} = 1 - \coth^2(x)$	$\operatorname{arcoth}(x)$	$\frac{1}{1-x^2}$	x > 1

Théorèmes

Théorème des accroissements finis

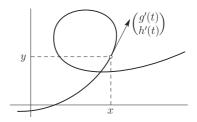
Si f est une fonction continue sur l'intervalle $[a\,;b]$ et dérivable sur l'intervalle $]a\,;b[,$ alors il existe au moins un nombre c dans]a;b[tel que $f'(c) = \frac{f(b) - f(a)}{b - a}$

Dérivée première et croissance

On note f une fonction dérivable sur un intervalle I.

$$f$$
 croissante sur I \Leftrightarrow $f'(x) \ge 0$ pour tout x de I f décroissante sur I \Leftrightarrow $f'(x) \le 0$ pour tout x de I

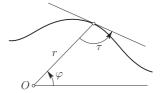
Dérivée seconde et convexité


On note f une fonction deux fois dérivable sur un intervalle I.

$$f$$
 convexe sur I \Leftrightarrow $f''(x) \ge 0$ pour tout x de I f concave sur I \Leftrightarrow $f''(x) \le 0$ pour tout x de I

Courbe donnée sous forme paramétrique

Équations paramétriques :
$$\begin{cases} x = g(t) \\ y = h(t) \end{cases}$$


$$\frac{dy}{dx} = \frac{h'(t)}{g'(t)} = m(t) \quad \frac{d^2y}{dx^2} = \frac{m'(t)}{g'(t)}$$

Courbe donnée sous forme polaire

Équation polaire : $r = f(\varphi)$ On note τ l'angle entre le rayon vecteur et la tangente.

$$\tan(\tau) = \frac{f(\varphi)}{f'(\varphi)}$$

Rayon de courbure

On note R le rayon de courbure d'une courbe.

Équation cartésienne	y = f(x)	$R = \frac{\left(1 + f'^{2}(x)\right)^{\frac{3}{2}}}{\left f''(x)\right }$
Équations paramétriques	$\begin{cases} x = g(t) \\ y = h(t) \end{cases}$	$R = \frac{\left(g'^{2}(t) + h'^{2}(t)\right)^{\frac{3}{2}}}{\left g'(t)h''(t) - g''(t)h'(t)\right }$
Équation polaire	$r = f(\varphi)$	$R = \frac{\left(f^2(\varphi) + f'^2(\varphi)\right)^{\frac{3}{2}}}{\left f^2(\varphi) + 2f'^2(\varphi) - f(\varphi)f''(\varphi)\right }$

Dérivée vectorielle

$$\vec{u}^{\,\prime}(t) = \frac{d\vec{u}}{dt} = \lim_{\Delta t \rightarrow 0} \frac{\vec{u}(t + \Delta t) - \vec{u}(t)}{\Delta t}$$

$$\vec{u}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} \Longrightarrow \vec{u}'(t) = \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix}$$

$$(\vec{u} + \vec{v})' = \vec{u}' + \vec{v}' \qquad (\vec{u} \cdot \vec{v})' = \vec{u}' \cdot \vec{v} + \vec{u} \cdot \vec{v}'$$
$$(f(t)\vec{u})' = f'(t)\vec{u} + f(t)\vec{u}' \quad (\vec{u} \times \vec{v})' = (\vec{u}' \times \vec{v}) + (\vec{u} \times \vec{v}')$$

Lorsque t représente le temps, les dérivées se notent aussi $\dot{x}(t)$, $\dot{y}(t)$, $\dot{z}(t)$ et $\dot{\vec{u}}(t)$

Calcul intégral

Primitive

Une fonction F est une primitive d'une fonction f dans l'intervalle I si F'(x) = f(x) dans I. Si F_1 et F_2 sont deux primitives de f sur I, alors $F_2 = F_1 + c$ où c est une constante. On note $\int f(x) \, dx = F(x) + c$ une primitive quelconque de f.

Recherche de primitives

Par linéarité	$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$
	$\int \lambda f(x) dx = \lambda \int f(x) dx$
Par parties	$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$
Par substitution	$\int g(f(x))f'(x) dx = G(f(x)) + c$
	où G est une primitive de g
Par changement de variable	$\int g(x) dx = \int g(f(t)) f'(t) dt$
	où $x = f(t)$ avec f bijective

Primitive de quelques fonctions

f(x)	F(x)	f(x)	F(x)
a	ax	x^n	$\frac{x^{n+1}}{n+1}$
1	$\ln x $	1	$\frac{n+1}{-1}$ $\frac{-1}{(n-1)x^{n-1}}$
\overline{x}		$\overline{x^n}$,
\sqrt{x}	$\left[\frac{2}{3}x\sqrt{x}\right]$	$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$
$\frac{1}{(x-a)(x-b)}$	$\left \frac{1}{a-b} \ln \left \frac{x-a}{x-b} \right \right $	$\frac{ax+b}{cx+d}$	$\left \frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d \right $
$\frac{1}{x^2 + a^2}$	$\frac{1}{a}\arctan\left(\frac{x}{a}\right)$		$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $
e^x	e^x	$\ln(x)$	$x(\ln(x)-1)$
a^x	$\frac{a^x}{\ln(a)}$	$\log_a(x)$	$x(\log_a(x) - \log_a(e))$
xe^{ax}	$\frac{1}{a^2}(ax-1)e^{ax}$	$x \ln(ax)$	$\frac{x^2}{4} (2\ln(ax) - 1)$
$\sin(x)$	$-\cos(x)$	$\arcsin(x)$	$x \arcsin(x) + \sqrt{1 - x^2}$
$\cos(x)$	$\sin(x)$	$\arccos(x)$	$x \arccos(x) - \sqrt{1-x^2}$
tan(x)	$-\ln \cos(x) $	$\arctan(x)$	$x\arctan(x) - \frac{1}{2}\ln(1+x^2)$
$\cot(x)$	$ \ln \sin(x) $	$\operatorname{arccot}(x)$	$x\operatorname{arccot}(x) + \frac{1}{2}\ln(1+x^2)$
$\sin^2(x)$	$\frac{1}{2}(x-\sin(x)\cos(x))$	$\frac{1}{\sin^2(x)}$	$-\cot(x)$
$\cos^2(x)$	$\frac{1}{2}(x+\sin(x)\cos(x))$	$\frac{1}{\cos^2(x)}$	$\tan(x)$
$\tan^2(x)$	$\tan(x) - x$	$\frac{1}{\sin(x)}$	$\ln \left \frac{1 - \cos(x)}{\sin(x)} \right $
$\cot^2(x)$	$-\cot(x) - x$	$\frac{1}{\cos(x)}$	$\ln \left \frac{1 + \sin(x)}{\cos(x)} \right $
$\frac{1}{1+\sin(x)}$	$\frac{-\cos(x)}{1+\sin(x)}$	$\frac{1}{1-\sin(x)}$	$\frac{\cos(x)}{1 - \sin(x)}$
$1 + \sin(x)$ 1	$ \begin{vmatrix} 1 + \sin(x) \\ \sin(x) \end{vmatrix} $	1	` /
$\frac{1}{1+\cos(x)}$	$\frac{\sin(x)}{1+\cos(x)}$	$\frac{1}{1-\cos(x)}$	$\frac{-\sin(x)}{1-\cos(x)}$
$x\sin(ax)$	$-\frac{1}{a}x\cos(ax) + \frac{1}{a^2}\sin(ax)$	$x\cos(ax)$	$\frac{1}{a}x\sin(ax) + \frac{1}{a^2}\cos(ax)$
$e^{ax}\sin(bx)$	$\frac{e^{ax}}{a^2 + b^2} (a\sin(bx) - b\cos(bx))$	$e^{ax}\cos(bx)$	$\frac{e^{ax}}{a^2 + b^2} \left(a\cos(bx) + b\sin(bx) \right)$

f(x)	F(x)	f(x)	F(x)
sinh(x)	$\cosh(x)$	$\operatorname{arsinh}(x)$	$x \operatorname{arsinh}(x) - \sqrt{x^2 + 1}$
$\cosh(x)$	$\sinh(x)$	$\operatorname{arcosh}(x)$	$x \operatorname{arcosh}(x) - \sqrt{x^2 - 1}$
tanh(x)	$\ln\big(\cosh(x)\big)$	$\operatorname{artanh}(x)$	$x \operatorname{artanh}(x) + \frac{1}{2} \ln(1 - x^2)$
$\coth(x)$	$\ln \sinh(x) $	$\operatorname{arcoth}(x)$	$x\operatorname{arcoth}(x) + \frac{1}{2}\ln(x^2 - 1)$
$\sqrt{x^2 + a}$	$\frac{1}{2}x\sqrt{x^2+a} + \frac{a}{2}\ln\left x + \sqrt{x^2+a}\right $	$\frac{1}{\sqrt{x^2+a}}$	$ \ln\left x + \sqrt{x^2 + a}\right $
$\sqrt{r^2 - x^2}$	$\frac{1}{2}x\sqrt{r^2 - x^2} + \frac{r^2}{2}\arcsin\left(\frac{x}{r}\right)$	$\frac{1}{\sqrt{r^2 - x^2}}$	$\arcsin\left(\frac{x}{r}\right)$

Primitive d'une fonction rationnelle

Une fonction rationnelle est une fonction $f: x \mapsto \frac{p(x)}{q(x)}$ où p(x) et q(x) sont des polynômes.

Primitive d'une fonction rationnelle $\frac{p(x)}{q(x)}$ avec $\operatorname{degr\'e}(p) < \operatorname{degr\'e}(q) = 2$ et $q(x) = ax^2 + bx + c$

 $\mathbf{1}^{\mathbf{er}}$ cas : q(x) a deux zéros distincts x_1 et x_2

$$\int \frac{r(x)}{q(x)} dx = \frac{\alpha}{a} \ln|x - x_1| + \frac{\beta}{a} \ln|x - x_2| + C$$

avec α et β tels que $r(x) = \alpha(x - x_2) + \beta(x - x_1)$

 $\mathbf{2^e}$ cas : q(x) a un zéro unique x_0

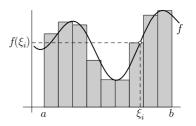
$$\int \frac{r(x)}{q(x)} dx = \frac{\alpha}{a} \ln|x - x_0| - \frac{\beta}{a(x - x_0)} + C$$

avec α et β tels que $r(x) = \alpha(x-x_0) + \beta$

 3^e cas : q(x) n'a aucun zéro réel

$$\int \frac{r(x)}{q(x)} dx = \alpha \ln|ax^2 + bx + c| + \frac{2\beta}{\sqrt{4ac - b^2}} \arctan\left(\frac{2ax + b}{\sqrt{4ac - b^2}}\right) + C$$

avec α et β tels que $r(x) = \alpha(2ax + b) + \beta$


Substitutions particulières

La fonction dont on cherche une primitive est fonction de	Substitution à effectuer		
e^x	$t = e^x$	$x = \ln(t)$	$dx = \frac{1}{t} dt$
$\sin^2(x)$ ou $\cos^2(x)$ ou $\tan(x)$	$t = \tan(x)$	$x = \arctan(t)$	$dx = \frac{1}{1+t^2}dt$
		$\sin^2(x) = \frac{t^2}{1+t^2}$	$\cos^2(x) = \frac{1}{1+t^2}$
$\sin(x)$ ou $\cos(x)$	$t = \tan\left(\frac{x}{2}\right)$	$x = 2 \arctan(t)$	$dx = \frac{2}{1+t^2} dt$
		$\sin(x) = \frac{2t}{1+t^2}$	$\cos(x) = \frac{1 - t^2}{1 + t^2}$
$\sqrt[n]{ax+b}$	$t = \sqrt[n]{ax + b}$	$x = \frac{t^n - b}{a}$	$dx = \frac{n}{a}t^{n-1} dt$
$\sqrt{a^2 - b^2 x^2}$	$x = \frac{a}{b}\sin(t)$	$dx = \frac{a}{b}\cos(t)dt$	
$\sqrt{a^2 + b^2 x^2}$	$x = \frac{a}{b} \tan(t)$	$dx = \frac{a}{b\cos^2(t)} dt$	ou
	$x = \frac{a}{b}\sinh(t)$	$dx = \frac{a}{b}\cosh(t)dt$	
$\sqrt{b^2x^2 - a^2}$	$x = \frac{a}{b\cos(t)}$	$dx = \frac{a\sin(t)}{b\cos^2(t)}dt$	ou
	$x = \frac{a}{b} \cosh(t)$	$dx = \frac{a}{b}\sinh(t)dt$	

Intégrale de Riemann

On note f une fonction continue sur [a;b]. On choisit une subdivision $x_0, x_1, ..., x_n$ de [a; b] $(x_0 = a, x_n = b)$ et ξ_i un nombre de l'intervalle $[x_{i-1}; x_i]$

$$\int_{a}^{b} f(x)dx = \lim_{\substack{n \to +\infty \\ \Delta x_{i} \to 0}} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$
où $\Delta x_{i} = x_{i} - x_{i-1}$

Théorème fondamental du calcul intégral

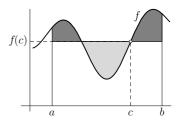
Si F est une primitive de f sur [a;b], alors $\int_a^b f(x) dx = F(b) - F(a)$

La fonction F telle que $F(x) = \int_{-x}^{x} f(t)dt$ est la primitive de f qui s'annule en a.

Propriétés

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$
Si $f(x) \le g(x)$ pour tout $x \in [a; b]$, alors $\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$


Méthodes d'intégration

Par linéarité
$$\int_{a}^{b} \left(f(x) + g(x)\right) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

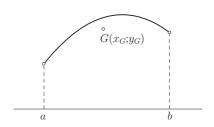
$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$
 Par parties
$$\int_{a}^{b} f'(x)g(x) dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f(x)g'(x) dx$$
 Par substitution
$$\int_{a}^{b} g(f(x))f'(x) dx = \int_{f(a)}^{f(b)} g(t) dt$$
 où $t = f(x)$ Par changement de variable
$$\int_{a}^{b} g(x) dx = \int_{c}^{d} g(f(t))f'(t) dt$$
 où $x = f(t), f(c) = a$ et $f(d) = b$ (f bijective)

Théorème de la moyenne

On définit la valeur moyenne de f sur $[a\,;b]$ par $\mu = \frac{1}{b-a} \int_a^b f(x)\,dx$

Si f est continue sur $[a\,;b]$, alors il existe $c\in]a\,;b[$ tel que $f(c)=\mu$

Applications du calcul intégral à la géométrie


On considère un arc de courbe d'équation cartésienne y = f(x) avec $a \le x \le b$.

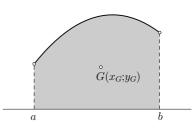
Longueur de l'arc

$$l = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^2} \, dx$$

Centre de gravité de l'arc

$$x_G = \frac{1}{l} \int_a^b x \sqrt{1 + \left(f'(x)\right)^2} dx$$
$$y_G = \frac{1}{l} \int_a^b f(x) \sqrt{1 + \left(f'(x)\right)^2} dx$$

Aire de la surface


$$\mathcal{A} = \int_{a}^{b} f(x) \, dx$$

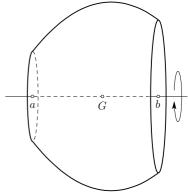
si
$$f \ge 0$$

Centre de gravité de la surface

$$x_G = \frac{1}{\mathcal{A}} \int_a^b x f(x) dx \qquad \text{si } f \ge 0$$

$$y_G = \frac{1}{2\mathcal{A}} \int_a^b (f(x))^2 dx$$

Aire latérale du corps

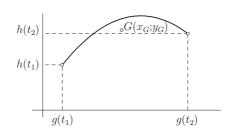

$$\mathcal{A}_{\mathrm{lat}} = 2\pi \int_{a}^{b} f(x) \sqrt{1 + \big(f'(x)\big)^{2}} \, dx \quad \text{ si } f \geq 0$$

Volume du corps

$$\mathcal{V} = \pi \int_{a}^{b} (f(x))^{2} dx$$

Centre de gravité du corps

$$x_G = \frac{\pi}{\mathcal{V}} \int_a^b x (f(x))^2 dx$$


On considère un arc de courbe d'équations paramétriques $\begin{cases} x = g(t) \\ y = h(t) \end{cases}$ avec $t_1 \le t \le t_2$.

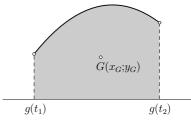
Longueur de l'arc

$$l = \int_{t_1}^{t_2} \sqrt{(g'(t))^2 + (h'(t))^2} dt$$

Centre de gravité de l'arc

$$x_G = \frac{1}{l} \int_{t_1}^{t_2} g(t) \sqrt{(g'(t))^2 + (h'(t))^2} dt$$
$$y_G = \frac{1}{l} \int_{t_1}^{t_2} h(t) \sqrt{(g'(t))^2 + (h'(t))^2} dt$$

Pour les formules suivantes, on suppose g croissante et h positive sur $[t_1; t_2]$.

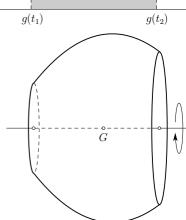

Aire de la surface

$$\mathcal{A} = \int_{t_1}^{t_2} h(t)g'(t) dt$$

Centre de gravité de la surface

$$x_G = \frac{1}{\mathcal{A}} \int_{t_1}^{t_2} g(t)h(t)g'(t) dt$$
$$y_G = \frac{1}{2\mathcal{A}} \int_{t_1}^{t_2} (h(t))^2 g'(t) dt$$

Aire latérale du corps


$$A_{\text{lat}} = 2\pi \int_{t_1}^{t_2} h(t) \sqrt{(g'(t))^2 + (h'(t))^2} dt$$

Volume du corps

$$\mathcal{V} = \pi \int_{t_1}^{t_2} \left(h(t) \right)^2 g'(t) dt$$

Centre de gravité du corps

$$x_G = \frac{\pi}{\mathcal{V}} \int_{t_1}^{t_2} g(t) (h(t))^2 g'(t) dt$$
$$y_G = z_G = 0$$

On considère un arc de courbe d'équation polaire $r = f(\varphi)$ avec $\alpha \le \varphi \le \beta$.

Longueur de l'arc
$$l = \int_{\alpha}^{\beta} \sqrt{(f(\varphi))^2 + (f'(\varphi))^2} d\varphi$$

Aire de la surface
$$\mathcal{A} = \frac{1}{2} \int_{\alpha}^{\beta} (f(\varphi))^2 d\varphi$$

Équation différentielle

Equation différentielle du premier ordre

Une équation différentielle du premier ordre est une relation de la forme R(x;y;y')=0 avec y = y(x) et $y' = y'(x) = \frac{dy}{dx}$

Équation à variables séparées

L'équation est du type q(y)y' = f(x)

La solution générale y est telle que $\int g(y) dy = \int f(x) dx$

Équation homogène

L'équation est du type $y' = f\left(\frac{y}{x}\right)$

On pose $z = \frac{y}{x}$ pour obtenir l'équation à variables séparables z + xz' = f(z) et puis on résout l'équation à variables séparées $\frac{1}{f(z)-z} \cdot z' = \frac{1}{x}$

Équation linéaire

L'équation est du type y' + f(x)y = q(x)

Cas où q(x) = 0

La solution générale est $y = c e^{-F(x)}$ où F est une primitive de f et c une constante.

Cas général

La solution générale est la somme d'une solution particulière p de l'équation et de la solution générale de l'équation sans second membre y' + f(x)y = 0 (cas précédent).

On peut trouver une solution particulière en posant $p(x) = c(x) e^{-F(x)}$ où c(x) est à déterminer en remplaçant y par p dans l'équation différentielle donnée (méthode de variation de la constante).

Equation différentielle du deuxième ordre

Une équation différentielle du deuxième ordre est une relation de la forme R(x; y; y'; y'') = 0On note c_1 et c_2 deux constantes.

Équation linéaire à coefficients constants

L'équation est du type ay'' + by' + cy = g(x) avec $a \neq 0$

Cas où q(x) = 0

La solution générale dépend de l'équation caractéristique $ar^2 + br + c = 0$

Si cette équation possède	la solution de l'équation différentielle est
deux solutions réelles r_1 et r_2	$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
une solution réelle r	$y = (c_1 x + c_2) e^{rx}$
deux solutions complexes $p \pm qi$	$y = e^{px} (c_1 \cos(qx) + c_2 \sin(qx))$

Cas général

La solution générale est la somme d'une solution particulière p de l'équation et de la solution générale de l'équation sans second membre ay'' + by' + cy = 0 (cas précédent).

Pour trouver une solution particulière p on tient compte de la forme de q en suivant les indications du tableau ci-dessous.

On note α , β , λ , κ , μ et ω des nombres réels.

Lorsque g est du type	on pose comme solution particulière p
polynôme de degré \boldsymbol{n}	un polynôme de degré n si $c \neq 0$ un polynôme de degré $n+1$ si $c=0$ et $b \neq 0$ un polynôme de degré $n+2$ si $b=c=0$
$g(x) = \lambda e^{\kappa x}$	$p(x) = \alpha e^{\kappa x}$ ou $p(x) = \alpha x e^{\kappa x}$ ou $p(x) = \alpha x^2 e^{\kappa x}$
$g(x) = \lambda \sin(\omega x)$	$p(x) = \alpha \sin(\omega x) + \beta \cos(\omega x)$ ou $p(x) = \alpha x \cos(\omega x)$
$g(x) = \lambda \cos(\omega x)$	$p(x) = \alpha \sin(\omega x) + \beta \cos(\omega x)$ ou $p(x) = \alpha x \sin(\omega x)$
$g(x) = e^{\kappa x} (\lambda \sin(\omega x) + \mu \cos(\omega x))$	$p(x) = e^{\kappa x} (\alpha \sin(\omega x) + \beta \cos(\omega x)) \text{ ou}$ $p(x) = x e^{\kappa x} (\alpha \sin(\omega x) + \beta \cos(\omega x))$
combinaison linéaire des types précédents	une combinaison linéaire des solutions particulières proposées pour ces différents types

Lorsque plusieurs possibilités sont proposées pour p, on les essaiera dans l'ordre indiqué.

Suite

Une suite est une application de \mathbb{N} (ou d'une partie de \mathbb{N}) vers \mathbb{R} . L'image de $n \in \mathbb{N}$ par cette application, notée u_n , est le terme de rang n.

Une suite de terme u_n converge vers un nombre réel a si $\lim u_n = a$

Une suite croissante et majorée converge.

Une suite décroissante et minorée converge.

Suite arithmétique

La suite u_1, u_2, u_3, \dots est une suite arithmétique de raison r si, pour tout $n \in \mathbb{N}^*$, $u_{n+1} = u_n + r$

$$u_n = u_1 + (n-1)r$$
 $u_1 + u_2 + u_3 + \ldots + u_n = n \cdot \frac{u_1 + u_n}{2}$

Suite géométrique

La suite u_1, u_2, u_3, \ldots est une suite géométrique de raison r si, pour tout $n \in \mathbb{N}^*$, $u_{n+1} = r \cdot u_n$

$$u_n = u_1 \cdot r^{n-1}$$

$$u_1 + u_2$$

$$u_{n} = u_{1} \cdot r^{n-1}$$

$$u_{1} + u_{2} + u_{3} + \dots + u_{n} = u_{1} \cdot \frac{1 - r^{n}}{1 - r} \qquad r \neq 1$$

$$\lim_{n \to +\infty} (u_{1} + u_{2} + \dots + u_{n}) = u_{1} \cdot \frac{1}{1 - r} \qquad \text{si } |r| < 1$$

Série

La série de terme u_k converge si la suite de terme $s_n = \sum_{k=1}^n u_k$ converge. La limite de cette suite,

notée $\sum_{k=0}^{\infty} u_k$, est la somme de la série.

Convergence d'une série à termes positifs

On considère une série de terme $u_k \geq 0$

Critère du quotient (d'Alembert)

Si
$$\lim_{k \to +\infty} \frac{u_{k+1}}{u_k} = c$$
 et $\begin{cases} c < 1, & \text{la série converge} \\ c > 1, & \text{la série diverge} \end{cases}$

Si c=1, le critère ne permet pas de conclure.

Critère de la racine (Cauchy)

Si
$$\lim_{k \to +\infty} \sqrt[k]{u_k} = c$$
 et $\begin{cases} c < 1, & \text{la série converge} \\ c > 1, & \text{la série diverge} \end{cases}$

Si c=1, le critère ne permet pas de conclure

Critères de comparaison

On considère deux séries à termes positifs u_k et v_k et on note p un entier positif non nul.

Si $u_k \leq v_k$ pour tout $k \geq p$ et que la série de terme v_k converge, alors la série de terme u_k converge.

Si $u_k \geq v_k$ pour tout $k \geq p$ et que la série de terme v_k diverge, alors la série de terme u_k diverge.

Si $\lim_{k \to +\infty} \frac{u_k}{v_k} \neq 0$ et $\lim_{k \to +\infty} \frac{u_k}{v_k} \neq +\infty$, alors les séries considérées sont toutes deux convergentes ou toutes deux divergentes.

Les deux séries suivantes sont souvent utilisées comme séries de référence.

La série géométrique $1 + r + r^2 + r^3 + \dots$ converge si |r| < 1, diverge sinon.

La série de Riemann $1 + \frac{1}{2\alpha} + \frac{1}{3\alpha} + \frac{1}{4\alpha} + \dots$ converge si $\alpha > 1$, diverge sinon.

90

Critère de l'intégrale

On note p un entier positif.

Si
$$f$$
 est une fonction positive et décroissante dans l'intervalle $[p; +\infty[$ et $f(k)=u_k,$ alors la série de terme u_k converge $\Leftrightarrow \int_p^{+\infty} f(x) \, dx$ existe

Dans ce cas, on a
$$\int_p^{+\infty} f(x) \, dx \le \sum_{k=p}^{\infty} u_k \le u_p + \int_p^{+\infty} f(x) \, dx$$

Convergence d'une série alternée

On considère une série de terme $(-1)^k u_k$ avec $u_k \ge 0$

La série converge si, pour tout
$$k,\,u_{k+1} \leq u_k \;$$
 et $\lim_{k \to +\infty} u_k = 0$

Dans ce cas, on a
$$\left| \sum_{k=n}^{\infty} (-1)^k u_k \right| \le u_n$$

Convergence d'une série à termes quelconques

On considère une série de terme u_k .

Si la série de terme $|u_k|$ converge, alors la série de terme u_k converge.

 $\lim_{k\to+\infty} u_k \neq 0$, alors la série de terme u_k diverge.

Les réciproques de ces deux théorèmes sont fausses.

Exemples de séries divergentes

$$\begin{aligned} 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} + \ldots &= +\infty \\ 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{k}} + \ldots &= +\infty \\ 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \ldots + \frac{1}{k^{\alpha}} + \ldots &= +\infty \\ 1 + r + r^2 + r^3 + \ldots + r^k + \ldots &= +\infty \end{aligned} \qquad \text{si } \alpha \leq 1$$

Exemples de séries convergentes

$$\begin{array}{|c|c|c|c|}\hline 1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{k!}+\ldots=e \\ \hline 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^k}+\ldots=2 \\ \hline 1+r+r^2+r^3+\ldots+r^k+\ldots=\frac{1}{1-r} & \text{si } |r|<1 \\ \hline 1+\frac{1}{2^\alpha}+\frac{1}{3^\alpha}+\ldots+\frac{1}{k^\alpha}+\ldots=\zeta(\alpha) & \text{si } \alpha>1 & \text{(fonction zêta de Riemann)} \\ 1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots+\frac{1}{k^2}+\ldots=\frac{\pi^2}{6}=\zeta(2) \\ \hline 1+\frac{1}{16}+\frac{1}{81}+\frac{1}{256}+\ldots+\frac{1}{k^4}+\ldots=\frac{\pi^4}{90}=\zeta(4) \\ \hline 1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\ldots+\frac{1}{(2k+1)^2}+\ldots=\frac{\pi^2}{8} \\ \hline 1+\frac{1}{81}+\frac{1}{625}+\frac{1}{2401}+\ldots+\frac{1}{(2k+1)^4}+\ldots=\frac{\pi^4}{96} \\ \hline \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\ldots+\frac{1}{k\cdot(k+1)}+\ldots=1 \\ \hline \frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\ldots+\frac{1}{(2k-1)\cdot(2k+1)}+\ldots=\frac{1}{2} \\ \hline \frac{1}{1\cdot3}+\frac{1}{2\cdot4}+\frac{1}{3\cdot5}+\ldots+\frac{1}{k\cdot(k+2)}+\ldots=\frac{3}{4} \\ \hline \frac{1}{3\cdot5}+\frac{1}{7\cdot9}+\frac{1}{11\cdot13}+\ldots+\frac{1}{(4k-1)\cdot(4k+1)}+\ldots=\frac{1}{2}-\frac{\pi}{8} \\ \hline 1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+(-1)^k\frac{1}{k!}+\ldots=\frac{1}{e} \\ \hline 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots+(-1)^k\frac{1}{k+1}+\ldots=\ln(2) & \text{(série harmonique alternée)} \\ 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots+(-1)^k\frac{1}{2k+1}+\ldots=\frac{\pi^2}{4} \\ 1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\ldots+(-1)^k\frac{1}{(k+1)^2}+\ldots=\frac{\pi^2}{12} \\ \hline \end{array}$$

Série entière

Une série de terme général u_k est appelée série entière si $u_k = a_k x^k$ avec $a_k \in \mathbb{R}$

$$\begin{array}{lll} \textit{Rayon de convergence}: & r = \lim\limits_{k \to +\infty} \left| \frac{a_k}{a_{k+1}} \right| \text{ ou } r = \frac{1}{\lim\limits_{k \to +\infty} \sqrt[k]{|a_k|}} \\ \text{La série entière de terme } a_k x^k \left\{ \begin{array}{ll} \text{converge} & \text{si } |x| < r \\ \text{diverge} & \text{si } |x| > r \end{array} \right. \\ \text{Si } |x| = r, \text{ il y a doute.} \\ \text{Si } r = +\infty, \text{ alors la série entière converge pour tout réel } x. \end{array}$$

Formule de Taylor d'ordre n

On note f une fonction n+1 fois continûment dérivable dans un intervalle ouvert I contenant a.

Pour tout $x \in I$:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

avec
$$R_n(x) = \int_a^x \frac{f^{(n+1)}(t)}{n!} (x-t)^n dt = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$
 où c est compris entre a et x .

Estimation du reste :
$$|R_n(x)| \le \frac{|x-a|^{n+1}}{(n+1)!} \sup_{t \in I} |f^{(n+1)}(t)|$$

Si
$$\lim_{n\to+\infty} R_n(x)=0$$
, alors $f(x)=\sum_{k=0}^\infty \frac{f^{(k)}(a)}{k!}(x-a)^k$ et la série de terme $\frac{f^{(k)}(a)}{k!}(x-a)^k$ est appelée série de Taylor de f centrée en a .

Si a = 0, on obtient la formule de MacLaurin :

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x)$$

Développement en série entière de quelques fonctions

f(x)	Développement de f	Convergence
e^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \dots$	pour tout x
$\sin(x)$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^k \frac{x^{2k+1}}{(2k+1)!} + \dots$	pour tout x
$\cos(x)$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^k \frac{x^{2k}}{(2k)!} + \dots$	pour tout x
tan(x)	$x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + \frac{62}{2835}x^9 + \dots$	$ x < \frac{\pi}{2}$
$\arcsin(x)$	$x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots$	x < 1
$\arccos(x)$	$\frac{\pi}{2} - x - \frac{1}{2} \cdot \frac{x^3}{3} - \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} - \dots$	x < 1
$\arctan(x)$	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^k \frac{x^{2k+1}}{2k+1} + \dots$	$ x \le 1$
$\sinh(x)$	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2k+1}}{(2k+1)!} + \dots$	pour tout x
$\cosh(x)$	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2k}}{(2k)!} + \dots$	pour tout x
tanh(x)	$x - \frac{1}{3}x^3 + \frac{2}{15}x^5 - \frac{17}{315}x^7 + \dots$	$ x < \frac{\pi}{2}$
$\frac{1}{1+x}$	$1 - x + x^{2} - x^{3} + x^{4} - x^{5} + \ldots + (-1)^{k} x^{k} + \ldots$	x < 1
$\frac{1}{(1+x)^2}$	$1 - 2x + 3x^{2} - 4x^{3} + 5x^{4} + \dots + (-1)^{k}(k+1)x^{k} + \dots$	x < 1
$\sqrt{1+x}$	$1 + \frac{1}{2}x - \frac{1}{2 \cdot 4}x^2 + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6}x^3 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8}x^4 + \dots$	$ x \le 1$
$\frac{1}{\sqrt{1+x}}$	$1 - \frac{1}{2}x + \frac{1 \cdot 3}{2 \cdot 4}x^2 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^3 + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8}x^4 - \dots$	$-1 < x \le 1$
$(1+x)^p$	$1 + p x + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \dots$	$\begin{array}{ll} \text{pour tout } x \text{ si } p \in \mathbb{N} \\ x < 1 & \text{sinon} \end{array}$
$\ln(1+x)$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^k \frac{x^{k+1}}{k+1} + \dots$	$-1 < x \le 1$
$\ln\left(\frac{1+x}{1-x}\right)$	$2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots + \frac{x^{2k+1}}{2k+1} + \dots\right)$	x < 1
$\int_0^x e^{-t^2} dt$	$x - \frac{x^3}{3 \cdot 1!} + \frac{x^5}{5 \cdot 2!} - \frac{x^7}{7 \cdot 3!} + \dots + (-1)^k \frac{x^{2k+1}}{(2k+1) \cdot k!} + \dots$	pour tout x

Méthodes numériques

Approximations du premier ordre

On note n un nombre entier positif et h un nombre réel.

Approximation	Erreur maximale si $ h < \frac{1}{2}$
$\sin(h) \approx h$	$\frac{1}{6} h ^3$
$\cos(h) \approx 1$	$\frac{1}{2}h^2$
$\tan(h) \approx h$	$\frac{1}{2} h ^3$
$(1+h)^n \approx 1 + nh$	$2^{n-3}n(n-1)h^2$
$\frac{1}{1+h} \approx 1 - h$	$8h^2$
$\sqrt[n]{1+h} \approx 1 + \frac{1}{n}h$	$\sqrt[n]{2^{n-1}} \cdot \frac{n-1}{n^2} h^2$
$e^h \approx 1 + h$	h^2
$\ln(1+h) \approx h$	h^2

Cas général

On note f une fonction dérivable en $x \in \mathbb{R}$

$$f(x+h) \approx f(x) + hf'(x)$$
 si $|h|$ est petit

Si la fonction f est deux fois continûment dérivable sur un intervalle I contenant x et x+h, alors l'erreur est égale à $\frac{1}{2}h^2f''(c)$ avec c compris entre x et x+h.

Exemples

On note p un nombre réel.

$$\sin(x+h) \approx \sin(x) + h\cos(x) \qquad (x+h)^p \approx x^p + h p x^{p-1}$$

$$\cos(x+h) \approx \cos(x) - h\sin(x) \qquad e^{x+h} \approx (1+h)e^x$$

$$\tan(x+h) \approx \tan(x) + h(1+\tan^2(x)) \qquad \ln(x+h) \approx \ln(x) + h\frac{1}{x}$$

Pour les approximations d'ordre supérieur, voir formule de Taylor page 93.

Calcul d'erreur

Propagation d'une erreur Δx par une fonction y = f(x)

Si x est un nombre réel dont on connaît une estimation x_0 , avec $|x-x_0| < \Delta x$, on peut estimer y = f(x) par $y_0 = f(x_0)$

Dans cette situation, on appelle $\Delta y = |y - y_0|$ l'erreur absolue et $\frac{\Delta y}{|y|}$ l'erreur relative.

Estimation de l'erreur absolue	$\Delta y \approx f'(x_0) \Delta x$
Estimation de l'erreur relative	$\frac{\Delta y}{ y } \approx \left \frac{f'(x_0)}{f(x_0)} \right \Delta x$

Cas particuliers

y =	kx	x^k	e^x	ln(x)	$\sin(x)$	$\cos(x)$
$\Delta y \approx$	$ k \Delta x$	$\left kx_0^{k-1}\right \Delta x$	$e^{x_0}\Delta x$	$\frac{\Delta x}{ x_0 }$	$ \cos(x_0) \Delta x$	$ \sin(x_0) \Delta x$
$\frac{\Delta y}{ y } \approx$	$\frac{\Delta x}{ x_0 }$	$ k \frac{\Delta x}{ x_0 }$	Δx	$\frac{\Delta x}{ x_0 \ln(x_0) }$	$ \cot(x_0) \Delta x$	$ \tan(x_0) \Delta x$

Propagation d'erreurs Δx et Δy par une fonction z = f(x, y)

Si x et y sont des réels dont on connaît des estimations x_0 et y_0 , avec $|x-x_0|<\Delta x$ et $|y-y_0|<\Delta y$, on peut estimer z = f(x, y) par $z_0 = f(x_0, y_0)$

On note f_x' et f_y' les dérivées partielles de f par rapport à x et y. L'erreur absolue est ici $\Delta z = |z - z_0|$

Estimation de l'erreur absolue	$\Delta z \approx f_x'(x_0, y_0) \Delta x + f_y'(x_0, y_0) \Delta y$
Estimation de l'erreur relative	$\frac{\Delta z}{ z } \approx \left \frac{f_x'(x_0, y_0)}{f(x_0, y_0)} \right \Delta x + \left \frac{f_y'(x_0, y_0)}{f(x_0, y_0)} \right \Delta y$

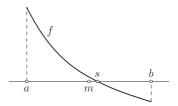
Cas particuliers

z =	x+y $x-y$		xy	$\frac{x}{y}$		
$\Delta z \approx$	$\Delta x + \Delta y$	$\Delta x + \Delta y$	$y_0 \Delta x + x_0 \Delta y$	$\frac{ y_0 \Delta x + x_0 \Delta y}{{y_0}^2}$		
$\frac{\Delta z}{ z } \approx$	$\frac{\Delta x + \Delta y}{ x_0 + y_0 }$	$\frac{\Delta x + \Delta y}{ x_0 - y_0 }$	$\frac{\Delta x}{ x_0 } + \frac{\Delta y}{ y_0 }$	$\frac{\Delta x}{ x_0 } + \frac{\Delta y}{ y_0 }$		

Résolution numérique de l'équation f(x) = 0

On note f une fonction réelle continue sur un intervalle [a; b] telle que $f(a) \cdot f(b) < 0$.

La notation y := x signifie que y prend la valeur x (affectation).

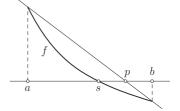

Les méthodes itératives suivantes permettent de calculer une valeur approximative d'un zéro s de f dans [a;b].

Méthode de bissection

On construit une suite d'intervalles emboîtés contenant s.

$$1. \quad m := \frac{a+b}{2}$$

- Si $f(m) \cdot f(b) < 0$ alors a := m, sinon b := m
- 3. On reprend au point 1.



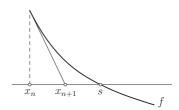
Méthode de la sécante (regula falsi)

On construit une suite d'intervalles emboîtés contenant s.

1.
$$p := \frac{a \cdot f(b) - b \cdot f(a)}{f(b) - f(a)}$$

- 2. Si $f(p) \cdot f(b) < 0$ alors a := p, sinon b := p
- On reprend au point 1.

Méthode de la tangente (Newton)


Hypothèses supplémentaires:

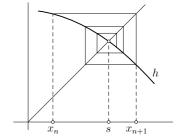
$$\begin{cases} f \text{ est deux fois dérivable sur } [a;b] \\ \operatorname{sgn}(f''(x)) = \operatorname{sgn}(f(a)), \text{ pour tout } x \in [a;b] \end{cases}$$

On construit une suite qui converge vers s.

$$x_0 = a$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Méthode du point fixe


Hypothèse supplémentaire:

h est une fonction dérivable sur [a;b] telle que

$$\begin{cases} f(x) = 0 \Leftrightarrow h(x) = x \\ |h'(x)| < 1, \text{ pour tout } x \in [a;b] \end{cases}$$

On construit une suite qui converge vers s.

$$x_0 \in [a; b]$$
$$x_{n+1} = h(x_n)$$

Interpolation

On note $P_0(x_0; y_0)$, $P_1(x_1; y_1)$, ..., $P_n(x_n; y_n)$ des points du plan dont les abscisses sont supposées différentes deux à deux.

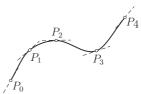
Polynôme de Lagrange

Il existe exactement un polynôme p de degré inférieur ou égal à n dont le graphe passe par les n+1 points donnés.

$$p(x) = y_0 \cdot \frac{l_0(x)}{l_0(x_0)} + y_1 \cdot \frac{l_1(x)}{l_1(x_1)} + \dots + y_n \cdot \frac{l_n(x)}{l_n(x_n)} = \sum_{i=0}^n y_i \cdot \frac{l_i(x)}{l_i(x_i)}$$
avec $l_i(x) = (x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_n) = \prod_{k=0 \atop k \neq i}^n (x - x_k)$

Arcs de cubiques

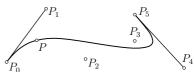
Pour deux points $P_0(x_0; y_0)$ et $P_1(x_1; y_1)$ et deux nombres réels p_0 et p_1 donnés, il existe exactement un polynôme $f: x \mapsto \alpha x^3 + \beta x^2 + \gamma x + \delta$ tel que $f(x_0) = y_0$, $f(x_1) = y_1$, $f'(x_0) = p_0$ et $f'(x_1) = p_1$. Si on pose $h = x_1 - x_0$, $t = \frac{x - x_0}{h}$ et $g(t) = f(x_0 + ht)$, les coefficients du polynôme $q(t) = at^3 + bt^2 + ct + d$ sont :


$$a = 2y_0 - 2y_1 + p_0h + p_1h$$
 $b = -3y_0 + 3y_1 - 2p_0h - p_1h$ $c = p_0h$ $d = y_0$

Pour n+1 points donnés $(n \ge 2)$, on détermine pour chaque segment $[x_i; x_{i+1}]$ cet arc de cubique en choisissant préalablement les pentes, par exemple :

$$p_{i} = \frac{y_{i+1} - y_{i-1}}{x_{i+1} - x_{i-1}} \qquad \text{pour } 0 < i < n$$

$$p_{0} = \frac{y_{1} - y_{0}}{x_{1} - x_{0}}$$

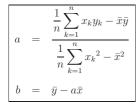

$$p_{n} = \frac{y_{n} - y_{n-1}}{x_{n} - x_{n-1}}$$

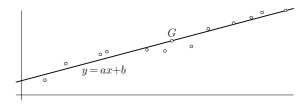
Courbes de Bézier

La courbe de Bézier de degré n associée aux points de contrôle P_0, P_1, \ldots, P_n est l'ensemble des points donné par la représentation paramétrique :

$$\overrightarrow{OP} = \sum_{k=0}^{n} \binom{n}{k} t^k (1-t)^{n-k} \overrightarrow{OP_k} \quad \text{ où } t \in [0;1]$$

où $\binom{n}{k}$ est un coefficient binomial, voir page 7.


Cette courbe passe par P_0 et P_n . Les droites (P_0P_1) et $(P_{n-1}P_n)$ sont des tangentes à la courbe.


Méthode des moindres carrés

On note $P_1(x_1; y_1)$, $P_2(x_2; y_2)$, ..., $P_n(x_n; y_n)$ des points du plan. Les nombres $\bar{x} = \frac{1}{n} \sum_{k=1}^n x_k$ et $\bar{y} = \frac{1}{n} \sum_{k=1}^n y_k$ sont les moyennes arithmétiques des coordonnées de ces points.

Régression linéaire

La droite d'équation y = ax + b telle que la somme $\sum_{k=1}^{n} (ax_k + b - y_k)^2$ soit minimale est appelée droite de régression de y en x. Ses coefficients sont

Cette droite passe par le centre de gravité $G(\bar{x}; \bar{y})$ de l'ensemble des points donnés.

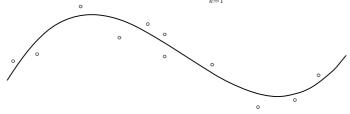
Si on note $\rho(X,Y)$ le coefficient de corrélation (voir page 110), σ_X l'écart type des valeurs x_i et σ_Y l'écart type des valeurs y_i , alors $a = \rho(X,Y) \cdot \frac{\sigma_Y}{\sigma_X}$

De manière analogue, on peut calculer la droite de régression de x en y, d'équation x=cy+d. Le coefficient de corrélation $\rho=\rho(X,Y)$ vérifie la relation $\rho=a\cdot c$ Si $\rho^2=1$, alors les deux droites de régression sont confondues.

Ajustement par une droite d'équation y=ax

La méthode des moindres carrés donne

$$a = \frac{\sum_{k=1}^{n} x_k y_k}{\sum_{k=1}^{n} x_k^2}$$

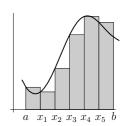

Ajustement par un polynôme

Plus généralement, il existe un polynôme $p(x) = a_m x^m + \ldots + a_0$ de degré $m \ (m < n)$ tel que la somme $\sum (p(x_k) - y_k)^2$ soit minimale. Ses coefficients sont les solutions du système d'équations linéaires MA = B avec

$$M=(m_{ij})$$
 la matrice carrée avec $m_{ij}=\sum_{k=1}^n x_k^{i+j}, \quad 0\leq i,j\leq m$

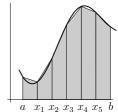
 $A = (a_i)$ la matrice-colonne des coefficients du polynôme p cherché

$$B = (b_i)$$
 la matrice-colonne avec $b_i = \sum_{k=1}^{n} y_k \cdot x_k^i$, $0 \le i \le m$


Pour m = n - 1, on obtient le polynôme de Lagrange (voir page 98). Pour m = 1 on obtient la droite de régression de y en x.

Intégration numérique

On note f une fonction intégrable dans un intervalle [a;b]. Pour déterminer une valeur approximative de l'intégrale $I = \int_a^b f(x) dx$, on subdivise [a;b] en n intervalles de même longueur $\frac{b-a}{n}$. Les abscisses des points de subdivision sont notés $a, x_1, x_2, \ldots, x_{n-1}, b$.


Méthode des rectangles

$$I \approx \frac{b-a}{n} \Big(f(a) + f(x_1) + f(x_2) + \ldots + f(x_{n-1}) \Big)$$
 Erreur maximale
$$\frac{b-a}{n} |f(b) - f(a)| \quad \text{si } f \text{ est monotone}$$

$$\frac{(b-a)^2}{2n} \sup_{t \in [a;b]} |f'(t)| \quad \text{si } f \text{ est dérivable}$$

Méthode des trapèzes

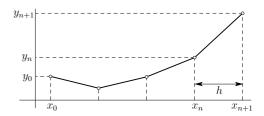
$$I \approx \frac{b-a}{2n} \Big(f(a) + 2 \big[f(x_1) + f(x_2) + \ldots + f(x_{n-1}) \big] + f(b) \Big)$$
 Erreur maximale
$$\frac{(b-a)^3}{12 n^2} \sup_{t \in [a;b]} |f''(t)|$$

Toute reproduction d'un extrait de ce livre par quelque procédé que ce soit est interdite.

Méthode de Simpson pour n pair

$$I \approx \frac{b-a}{3n} \Big(f(a) + 4 \big[f(x_1) + f(x_3) + \ldots + f(x_{n-1}) \big] \\ + 2 \big[f(x_2) + f(x_4) + \ldots + f(x_{n-2}) \big] + f(b) \Big)$$
 Erreur maximale
$$\frac{(b-a)^5}{180 \, n^4} \sup_{t \in [a;b]} |f^{(4)}(t)|$$

Résolution numérique d'une équation différentielle

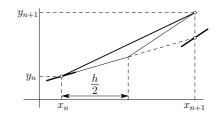

Une solution approximative de l'équation différentielle y'=f(x,y) vérifiant la condition initiale $y(x_0)=y_0$ peut être obtenue de proche en proche (avec un pas de h) à l'aide de l'une des méthodes itératives suivantes.

Algorithme d'Euler

$$x_{n+1} = x_n + h$$

$$y_{n+1} = y_n + p_n h$$

$$avec p_n = f(x_n, y_n)$$


Algorithme de Heun

$$x_{n+1} = x_n + h$$

$$y_{n+1} = y_n + \frac{p_n + q_n}{2} \cdot h$$

$$\text{avec} \quad p_n = f(x_n, y_n)$$

$$q_n = f(x_n + h, y_n + p_n h)$$

Algorithme de Runge-Kutta (RK4)

$$x_{n+1} = x_n + h$$

$$y_{n+1} = y_n + \frac{p_n + 2q_n + 2r_n + s_n}{6} \cdot h$$

$$\text{avec} \quad p_n = f(x_n, y_n) \qquad q_n = f\left(x_n + \frac{h}{2}, y_n + p_n \frac{h}{2}\right)$$

$$r_n = f\left(x_n + \frac{h}{2}, y_n + q_n \frac{h}{2}\right) \qquad s_n = f(x_n + h, y_n + r_n h)$$

Probabilités et statistique

Probabilités

Notations et définitions

On note U (univers) l'ensemble des issues possibles associées à une épreuve aléatoire donnée.

Un événement est un sous-ensemble de U. On note A, B, C, \ldots des événements.

U est l'événement certain et \varnothing l'événement impossible.

 \overline{A} est l'événement contraire de A (on lit non A).

 $A \cup B$ est l'événement A ou B.

 $A \cap B$ est l'événement A et B. Si $A \cap B = \emptyset$, on dit que A et B sont incompatibles.

On note P(A) la probabilité de l'événement A.

Propriétés

$$P(U) = 1$$
 $P(\varnothing) = 0$ $0 \le P(A) \le 1$ $P(\overline{A}) = 1 - P(A)$ $A \subset B \Rightarrow P(A) \le P(B)$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \quad A \text{ et } B \text{ incompatibles} \Rightarrow P(A \cup B) = P(A) + P(B)$$

$$A_1, A_2, A_3, \dots \text{ incompatibles deux à deux}$$

$$\Rightarrow P(A_1 \cup A_2 \cup A_3 \cup \dots) = P(A_1) + P(A_2) + P(A_3) + \dots$$

$$P(\overline{A} \cup \overline{B}) = 1 - P(A \cap B) \qquad P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B) \qquad P(A \cap \overline{B}) = P(A) - P(A \cap B)$$

Issues équiprobables

Si U est formé de n issues équiprobables et que l'événement A en contient k, alors $P(A) = \frac{k}{n}$

Probabilité conditionnelle

On note P(B|A) la probabilité conditionnelle de B sachant que A est réalisé.

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \quad P(A \cap B) = P(A) \ P(B|A) = P(B) \ P(A|B)$$

$$P(A_1 \cap A_2 \cap A_3 \cap \ldots) = P(A_1) \ P(A_2|A_1) \ P(A_3|(A_1 \cap A_2)) \ldots$$

Événements indépendants

Si $P(A \cap B) = P(A) P(B)$, on dit que les événements A et B sont indépendants.

Dans ce cas, on a
$$P(B|A) = P(B)$$
 et $P(A|B) = P(A)$

Théorème de la probabilité totale et théorème de Bayes

Si
$$B_1 \cup B_2 \cup B_3 \cup \ldots \cup B_n = U$$
, $B_i \cap B_j = \emptyset$ et $P(B_i) \neq 0$ pour tout $i, j \ (i \neq j)$, alors

$$P(A) = P(A|B_1) P(B_1) + P(A|B_2) P(B_2) + P(A|B_3) P(B_3) + \dots + P(A|B_n) P(B_n)$$

$$P(B_k|A) = \frac{P(A|B_k) P(B_k)}{P(A)}$$

Variable aléatoire

On note X une variable aléatoire, E(X) sa moyenne ou espérance, V(X) sa variance et S(X) son écart type.

Autres notations : M(X) ou μ pour la moyenne, Var(X) pour la variance, σ pour l'écart type.

Variable aléatoire discrète

Si la variable aléatoire X prend les valeurs x_1, x_2, x_3, \ldots avec les probabilités respectives p_1, p_2, p_3, \ldots telles que $\left[\sum_i p_i = 1\right]$, alors

$$E(X) = \sum_{i} p_i x_i \qquad V(X) = \sum_{i} p_i \left(x_i - E(X)\right)^2 = \sum_{i} p_i x_i^2 - E^2(X) \qquad S(X) = \sqrt{V(X)}$$

Variable aléatoire continue

On note f une fonction telle que $f(x) \ge 0$ pour tout x réel et $\int_{-\infty}^{+\infty} f(x)dx = 1$.

On dit que f est la densité de probabilité associée à la variable aléatoire continue X si $P(a < X \le b) = \int_a^b f(x) dx.$

On dit que F est la fonction de répartition associée à X si $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$.

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx \qquad V(X) = \int_{-\infty}^{+\infty} f(x) \left(x - E(X) \right)^2 dx = \int_{-\infty}^{+\infty} x^2 f(x) dx - E^2(X)$$

$$S(X) = \sqrt{V(X)}$$

Variables aléatoires indépendantes

104

Deux variables aléatoires discrètes X et Y sont indépendantes si, pour tout a,b, on a $P\big((X=a)$ et $(Y=b)\big)=P(X=a)\cdot P(Y=b)$

Deux variables aléatoires continues X et Y sont indépendantes si, pour tout a, b, c, d, on a $P\left((a < X \leq b) \text{ et } (c < Y \leq d)\right) = P(a < X \leq b) \cdot P(c < Y \leq d)$

Propriétés de la moyenne et de la variance

On note X et Y deux variables aléatoires, k un réel et K la variable aléatoire constante correspondante, c'est-à-dire telle que P(K=k)=1

$$E(X+Y)=E(X)+E(Y)$$
 $E(KX)=kE(X)$ $E(K)=k$ $E(X+K)=E(X)+k$ Si X et Y sont indépendantes, alors $E(XY)=E(X)$ $E(Y)$

$$V(X) = E(X^2) - E^2(X)$$
 $V(KX) = k^2V(X)$ $V(K) = 0$ $V(X + K) = V(X)$
Si X et Y sont indépendantes, alors $V(X + Y) = V(X) + V(Y)$

Variable aléatoire centrée réduite

Si X est une variable aléatoire de moyenne μ et d'écart type σ , alors la variable aléatoire centrée réduite $X^* = \frac{X - \mu}{\sigma}$ a les propriétés suivantes $E(X^*) = 0$ et $S(X^*) = 1$

Épreuves répétées indépendantes

On note X_1, X_2, \ldots, X_n des variables aléatoires indépendantes de même moyenne μ et de même écart type σ . La variable aléatoire $T = X_1 + X_2 + \ldots + X_n$ a les propriétés suivantes :

$$E(T) = n\mu \mid S(T) = \sqrt{n} \sigma$$

Si $n \to +\infty$, la variable aléatoire centrée réduite T^* tend vers la loi normale centrée réduite (théorème central limite, voir page 110).

Inégalité de Bienaymé-Tchébychev

On note X une variable aléatoire et k un réel positif. Alors

$$P(|X - E(X)| \ge k) \le \frac{V(X)}{k^2}$$

Dans le cas d'épreuves répétées indépendantes et en appliquant cette inégalité à la variable aléatoire $F = \frac{1}{n}(X_1 + X_2 + \ldots + X_n)$, on obtient la formule de Bernoulli :

$$P(|F - \mu| \ge k) \le \frac{\sigma^2}{nk^2}$$

Quelques lois de probabilité discrètes

Loi binomiale

Cette loi s'applique aux épreuves de type tirages avec remise.

On note A un événement de probabilité p. La variable aléatoire X indique le nombre de fois que A se réalise lors de n tirages avec remise (épreuves successives indépendantes).

On dit que X suit une loi binomiale de paramètres n et p, notée $\mathcal{B}(n;p)$, et on a

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Loi hypergéométrique

Cette loi s'applique aux épreuves de type tirages sans remise.

On note N le nombre d'objets à disposition dont R ont une caractéristique C donnée. On tire nobjets, sans remise, parmi ces N objets. La variable aléatoire X indique le nombre d'objets tirés qui ont la caractéristique C.

On dit que X suit une loi hypergéométrique de paramètres N, R et n, notée $\mathcal{H}(N;R;n)$, et on a

$$P(X = k) = \frac{\binom{R}{k} \binom{N - R}{n - k}}{\binom{N}{n}}$$

Loi géométrique

Cette loi s'applique aux épreuves de type tirages avec remise interrompus à la première réussite.

On note A un événement de probabilité p. La variable aléatoire X indique le nombre de tirages avec remise effectués jusqu'à ce que A se réalise.

On dit que X suit une loi géométrique de paramètre p, notée $\mathcal{G}(p)$, et on a

$$P(X = k) = p (1 - p)^{k-1}$$

Loi de Poisson

Cette loi s'applique aux épreuves dont la réussite est un phénomène rare et sans vieillissement, c'est-à-dire se produisant avec la même probabilité quel que soit le moment où on observe et pour une même durée d'observation.

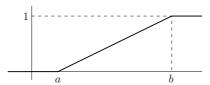
La variable aléatoire X, de moyenne λ , indique le nombre de réussites se produisant dans un intervalle de temps donné.

On dit que X suit une loi de Poisson de paramètre λ , notée $\mathcal{P}(\lambda)$, et on a

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

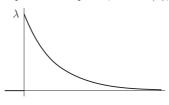
Quelques lois de probabilité continues

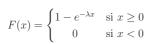
On note f la densité de probabilité d'une variable aléatoire continue X et F sa fonction de répartition.

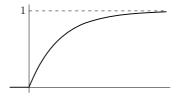

Loi uniforme

On dit que X suit une loi uniforme de paramètres a et b, notée $\mathcal{U}(a;b)$, si sa densité est

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } a \le x \le b \\ 0 & \text{sinon} \end{cases}$$

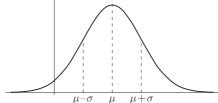

$$F(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } a \le x \le b \\ 1 & \text{si } x > b \end{cases}$$




Loi exponentielle

On dit que X suit une loi exponentielle de paramètre λ positif, notée $\mathcal{E}(\lambda)$, si sa densité est

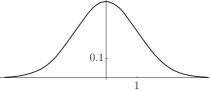
$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$



Loi normale de Laplace-Gauss

On dit que X suit une loi normale de moyenne μ et d'écart type σ , notée $\mathcal{N}(\mu;\sigma)$, si sa densité est

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

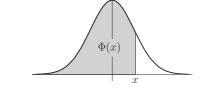


Il n'existe pas de forme analytique pour F.

Loi normale centrée réduite

Toute loi normale peut être ramenée à une loi normale de moyenne 0 et d'écart type 1, notée $\mathcal{N}(0;1)$, moyennant le changement de variable $X^* = \frac{X - \mu}{\sigma}$

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$



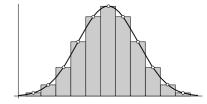
Il n'existe pas de forme analytique pour la fonction de répartition, notée Φ . On trouve les valeurs de $\Phi(x)$ dans les tables numériques (voir page 114).

$$\Phi(x) = P(X^* \le x) = \int_{-\infty}^{x} f(t)dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

Propriétés

$$P(a < X \le b) = P\left(\frac{a - \mu}{\sigma} < X^* \le \frac{b - \mu}{\sigma}\right)$$
$$= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$
$$P(X^* \le -x) = \Phi(-x) = 1 - \Phi(x)$$
$$P(-x < X^* \le x) = 2\Phi(x) - 1$$

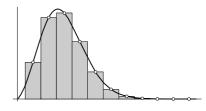
Moyenne et variance de quelques lois


	moyenne	variance
Loi binomiale $\mathcal{B}(n;p)$	np	np(1-p)
Loi hypergéométrique $\mathcal{H}(N;R;n)$	$\frac{nR}{N}$	$\frac{nR}{N} \left(1 - \frac{R}{N}\right) \left(\frac{N-n}{N-1}\right)$
Loi géométrique $\mathcal{G}(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Loi de Poisson $\mathcal{P}(\lambda)$	λ	λ
Loi uniforme $\mathcal{U}(a;b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Loi exponentielle $\mathcal{E}(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Loi normale $\mathcal{N}(\mu; \sigma)$	μ	σ^2
Loi normale centrée réduite $\mathcal{N}(0;1)$	0	1

Approximations de lois

Approximation de la loi binomiale par la loi normale

Si X suit une loi binomiale $\mathcal{B}(n\,;p)$ avec n grand, $np\geq 5$ et $n(1-p)\geq 5$, on peut estimer $P(a\leq X\leq b)$ à l'aide de la loi normale $\mathcal{N}\left(np\,;\sqrt{np(1-p)}\right)$


$$P(a \le X \le b) \approx \Phi\left(\frac{b + \frac{1}{2} - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{a - \frac{1}{2} - np}{\sqrt{np(1-p)}}\right)$$

Approximation de la loi binomiale par la loi de Poisson

Si X suit une loi binomiale $\mathcal{B}(n;p)$ avec n grand, p petit et np < 5, on peut estimer P(X = k) à l'aide de la loi de Poisson $\mathcal{P}(np)$.

$$P(X = k) \approx \frac{(np)^k}{k!} e^{-np}$$

Théorème central limite

On note $T=X_1+X_2+\ldots+X_n$ la somme de n variables aléatoires indépendantes de même moyenne μ et de même écart type σ .

La variable aléatoire centrée réduite $T^* = \frac{T - n\mu}{\sigma\sqrt{n}}$ suit approximativement la loi normale centrée réduite $\mathcal{N}(0;1)$ si $n \to +\infty$: $\lim_{n \to +\infty} P(T^* \leq x) = \Phi(x)$

Loi de probabilité à deux variables

Loi de probabilité conjointe

On note X et Y deux variables aléatoires et $p_{ij} = P(X = x_i; Y = y_j)$ la probabilité conjointe de X et Y.

	y_1	y_2	 y_m	Somme
x_1	p_{11}	p_{12}	 p_{1m}	$P(X=x_1)$
x_2	p_{21}	p_{22}	 p_{2m}	$P(X=x_2)$
:	:	:	:	:
x_n	p_{n1}	p_{n2}	 p_{nm}	$P(X=x_n)$
Somme	$P(Y=y_1)$	$P(Y=y_2)$	 $P(Y=y_m)$	1

$$P(X = x_i) = \sum_{j=1}^{m} p_{ij}$$

$$P(Y = y_j) = \sum_{i=1}^{n} p_{ij}$$

Covariance et corrélation

On note μ_X et μ_Y les moyennes des variables aléatoires X et Y et σ_X et σ_Y leurs écarts types. La covariance de X et Y est

$$Cov(X,Y) = \sum_{i,j} p_{ij} (x_i - \mu_X)(y_j - \mu_Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - \mu_X \mu_Y$$
Le coefficient de corrélation de X et Y est
$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

On a
$$-1 \le \rho(X, Y) \le 1$$

Si X et Y sont indépendantes, alors $\rho(X,Y)=0$. La réciproque est fausse.

$$Y = aX + b$$
 si et seulement si $|\rho(X,Y)| = 1$ (pour le calcul de a et de b , voir page 99).

Les notions de loi de probabilité conjointe, de covariance et de coefficient de corrélation se généralisent à un nombre fini quelconque de variables aléatoires.

Statistique

Statistique descriptive

On dispose de n mesures x_1, x_2, \ldots, x_n .

La mesure qui apparaît le plus souvent est appelée mode (il n'est pas forcément unique).

Moyenne
$$\overline{x}$$
 $\overline{x} = \frac{1}{n}(x_1 + x_2 + \ldots + x_n)$
Variance v $v = \frac{1}{n}\sum_{i=1}^{n}(x_i - \overline{x})^2 = \frac{1}{n}\sum_{i=1}^{n}x_i^2 - \overline{x}^2$
Écart type s $s = \sqrt{v}$
Médiane \tilde{x} Si les x_i sont classés par ordre croissant, alors $\tilde{x} = \begin{cases} x_{\frac{n+1}{2}} & \text{si } n \text{ est impair} \\ \frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n+2}{2}}) & \text{si } n \text{ est pair} \end{cases}$

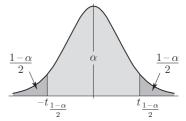
Estimateurs

On prélève un échantillon de taille n dans une population à étudier. On mesure une même caractéristique sur chaque individu de l'échantillon. On note x_1, x_2, \ldots, x_n les valeurs obtenues.

	de l'échantillon	estimé(e) de la population	réel(le) de la population
Moyenne	$\overline{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$	$\hat{\mu} = \frac{1}{n}(x_1 + x_2 + \ldots + x_n)$	μ
Variance	$v = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$	$\hat{v} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$	σ^2
Écart type	$s = \sqrt{v}$	$\hat{\sigma} = \sqrt{\hat{v}}$	σ

On a alors
$$\hat{\mu} = \overline{x}$$
 $\hat{v} = \frac{n}{n-1}v$ $\hat{\sigma} = \sqrt{\frac{n}{n-1}}s$

Intervalle de confiance (bilatéral)

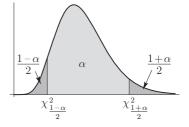

On appelle intervalle de confiance pour l'estimateur \hat{X} l'intervalle dans lequel la valeur réelle de X a une probabilité α de se trouver. Cette probabilité α est appelée niveau de confiance.

Intervalle de confiance pour la moyenne d'une population normale

Sur la base d'un échantillon de taille n, n < 30, la moyenne réelle μ de la population est comprise dans l'intervalle de confiance au niveau α :

$$\overline{x} - t_{\frac{1-\alpha}{2}} \frac{s}{\sqrt{n-1}} \leq \mu \leq \overline{x} + t_{\frac{1-\alpha}{2}} \frac{s}{\sqrt{n-1}}$$

où $t_{\frac{1-\alpha}{2}}$ est le coefficient de la loi de Student à ν degrés de liberté au niveau α ($\nu = n - 1$).


Remarque

Si l'échantillon est de taille n, n > 30, l'estimateur \hat{X} suit une loi normale centrée réduite. La moyenne réelle μ de la population est donc comprise dans l'intervalle de confiance au niveau α : $\overline{x} - rs \le \mu \le \overline{x} + rs$ où r est tel que $\Phi(r) = \frac{1+\alpha}{2}$

Intervalle de confiance pour l'écart type d'une population normale

Sur la base d'un échantillon de taille n, n < 30, l'écart type réel σ de la population est compris dans l'intervalle de confiance au niveau $\alpha: \frac{s\sqrt{n}}{\sqrt{\chi^2_{\frac{1-\alpha}{2}}}} \le \sigma \le \frac{s\sqrt{n}}{\sqrt{\chi^2_{\frac{1+\alpha}{2}}}}$

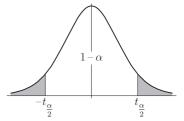
où χ^2_β est le coefficient de la loi du khi-carré à ν degrés de liberté au niveau β ($\nu = n - 1$).

Remarque

Si l'échantillon est de taille $n, n \ge 30$, on utilise le fait que $\sqrt{2\chi_{\beta}^2} - \sqrt{2\nu - 1}$ suit une loi normale centrée réduite pour calculer la valeur de χ^2_{β}

On a alors $\chi^2_{\beta} = \frac{1}{2}(r + \sqrt{2\nu - 1})^2$ où r est tel que $\Phi(r) = \beta$

Test d'hypothèse


Test de Student (bilatéral)

Le test de Student permet de vérifier si une population normale a une moyenne réelle μ , avec une probabilité α de se tromper. Cette probabilité α est appelée seuil.

On note $s=\sqrt{\frac{\sum (x_i-\mu)^2}{n}}$ l'écart type de cet échantillon par rapport à la moyenne μ à tester.

Le nombre $t=\frac{\overline{x}-\mu}{s}\sqrt{n-1}$ suit une distribution de Student à n-1 degrés de liberté.

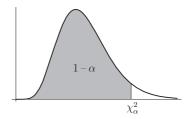
On note H_0 l'hypothèse "l'échantillon de taille n provient d'une population de moyenne μ ".

On acceptera H_0 au seuil α si $-t_{\frac{\alpha}{2}} \le t \le t_{\frac{\alpha}{2}}$ (on lit $t_{\frac{\alpha}{2}}$ dans la table du test de Student à n-1 degrés de liberté, page 116).

Test du khi-carré

Le test du χ^2 permet de vérifier si une distribution théorique peut ajuster une distribution empirique, c'est-à-dire si un échantillon prélevé dans une population suit une loi connue et de donner un seuil de confiance au résultat.

On répartit en k classes les valeurs prélevées dans l'échantillon.


On note H_0 l'hypothèse "l'échantillon réparti en k classes suit une loi connue de paramètres connus" et α un seuil.

On note o_i l'effectif observé et e_i l'effectif espéré de la i-ème classe $(1 \le i \le k, \sum_{i=1}^k e_i = \sum_{i=1}^k o_i = n)$.

Si tous les e_i sont supérieurs à 5, la variable aléatoire

$$\chi^{2} = \frac{(o_{1} - e_{1})^{2}}{e_{1}} + \frac{(o_{2} - e_{2})^{2}}{e_{2}} + \dots + \frac{(o_{k} - e_{k})^{2}}{e_{k}}$$
$$= \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} = \sum_{i=1}^{k} \frac{o_{i}^{2}}{e_{i}} - n$$

suit une loi du χ^2 à k-1 degrés de liberté.

Si $\chi^2=0,$ les fréquences observées sont égales aux fréquences espérées.

Plus χ^2 est grand, plus elles diffèrent.

On acceptera H_0 au seuil α si $\chi^2 < \chi^2_{\alpha}$ (on lit χ^2_{α} dans la table du test du χ^2 à k-1 degrés de liberté, page 115).

Fonction de répartition Φ de la loi normale $N(0\,;1)$

x	0	1	2	3	4	5	6	7	8	9
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997

Loi du χ^2 de Pearson

ν^{α}	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005
1	0.00004	0.00016	0.00098	0.00393	0.01579	2.70554	3.84146	5.02389	6.63490	7.87944
2	0.01003	0.02010	0.05064	0.10259	0.21072	4.60517	5.99146	7.37776	9.21034	10.5966
3	0.07172	0.11483	0.21580	0.35185	0.58437	6.25139	7.81473	9.34840	11.3449	12.8382
4	0.20699	0.29711	0.48442	0.71072	1.06362	7.77944	9.48773	11.1433	13.2767	14.8603
5	0.41174	0.55430	0.83121	1.14548	1.61031	9.23636	11.0705	12.8325	15.0863	16.7496
6	0.67572	0.87209	1.23734	1.63538	2.20413	10.6446	12.5916	14.4494	16.8119	18.5476
7	0.98926	1.23904	1.68987	2.16735	2.83311	12.0170	14.0671	16.0128	18.4753	20.2777
8	1.34441	1.64650	2.17973	2.73264	3.48954	13.3616	15.5073	17.5345	20.0902	21.9550
9	1.73493	2.08790	2.70039	3.32511	4.16816	14.6837	16.9190	19.0228	21.6660	23.5894
10	2.15586	2.55821	3.24697	3.94030	4.86518	15.9872	18.3070	20.4832	23.2093	25.1882
11	2.60322	3.05348	3.81575	4.57481	5.57778	17.2750	19.6751	21.9200	24.7250	26.7568
12	3.07382	3.57057	4.40379	5.22603	6.30380	18.5493	21.0261	23.3367	26.2170	28.2995
13	3.56503	4.10692	5.00875	5.89186	7.04150	19.8119	22.3620	24.7356	27.6882	29.8195
14	4.07467	4.66043	5.62873	6.57063	7.78953	21.0641	23.6848	26.1189	29.1412	31.3193
15	4.60092	5.22935	6.26214	7.26094	8.54676	22.3071	24.9958	27.4884	30.5779	32.8013
16	5.14221	5.81221	6.90766	7.96165	9.31224	23.5418	26.2962	28.8454	31.9999	34.2672
17	5.69722	6.40776	7.56419	8.67176	10.0852	24.7690	27.5871	30.1910	33.4087	35.7185
18	6.26480	7.01491	8.23075	9.39046	10.8649	25.9894	28.8693	31.5264	34.8053	37.1565
19	6.84397	7.63273	8.90652	10.1170	11.6509	27.2036	30.1435	32.8523	36.1909	38.5823
20	7.43384	8.26040	9.59078	10.8508	12.4426	28.4120	31.4104	34.1696	37.5662	39.9968
21	8.03365	8.89720	10.2829	11.5913	13.2396	29.6151	32.6706	35.4789	38.9322	41.4011
22	8.64272	9.54249	10.9823	12.3380	14.0415	30.8133	33.9244	36.7807	40.2894	42.7957
23	9.26042	10.1957	11.6886	13.0905	14.8480	32.0069	35.1725	38.0756	41.6384	44.1813
24	9.88623	10.8564	12.4012	13.8484	15.6587	33.1962	36.4150	39.3641	42.9798	45.5585
25	10.5197	11.5240	13.1197	14.6114	16.4734	34.3816	37.6525	40.6465	44.3141	46.9279
26	11.1602	12.1981	13.8439	15.3792	17.2919	35.5632	38.8851	41.9232	45.6417	48.2899
27	11.8076	12.8785	14.5734	16.1514	18.1139	36.7412	40.1133	43.1945	46.9629	49.6449
28	12.4613	13.5647	15.3079	16.9279	18.9392	37.9159	41.3371	44.4608	48.2782	50.9934
29	13.1211	14.2565	16.0471	17.7084	19.7677	39.0875	42.5570	45.7223	49.5879	52.3356
30	13.7867	14.9535	16.7908	18.4927	20.5992	40.2560	43.7730	46.9792	50.8922	53.6720

Loi du T de Student-Fisher (test bilatéral)

ν^{α}	0.5	0.4	0.2	0.15	0.1	0.05	0.04	0.02	0.01	0.001
1	1.00000	1.37638	3.07768	4.16530	6.31375	12.7062	15.8945	31.8205	63.6567	636.619
2	.816497	1.06066	1.88562	2.28193	2.91999	4.30265	4.84873	6.96456	9.92484	31.5991
3	.764892	.978472	1.63774	1.92432	2.35336	3.18245	3.48191	4.54070	5.84091	12.9240
4	.740697	.940965	1.53321	1.77819	2.13185	2.77645	2.99853	3.74695	4.60409	8.61030
5	.726687	.919544	1.47588	1.69936	2.01505	2.57058	2.75651	3.36493	4.03214	6.86883
6	.717558	.905703	1.43976	1.65017	1.94318	2.44691	2.61224	3.14267	3.70743	5.95882
7	.711142	.896030	1.41492	1.61659	1.89458	2.36462	2.51675	2.99795	3.49948	5.40788
8	.706387	.888890	1.39682	1.59222	1.85955	2.30600	2.44898	2.89646	3.35539	5.04131
9	.702722	.883404	1.38303	1.57374	1.83311	2.26216	2.39844	2.82144	3.24984	4.78091
10	.699812	.879058	1.37218	1.55924	1.81246	2.22814	2.35931	2.76377	3.16927	4.58689
11	.697445	.875530	1.36343	1.54756	1.79588	2.20099	2.32814	2.71808	3.10581	4.43698
12	.695483	.872609	1.35622	1.53796	1.78229	2.17881	2.30272	2.68100	3.05454	4.31779
13	.693829	.870152	1.35017	1.52992	1.77093	2.16037	2.28160	2.65031	3.01228	4.22083
14	.692417	.868055	1.34503	1.52310	1.76131	2.14479	2.26378	2.62449	2.97684	4.14045
15	.691197	.866245	1.34061	1.51723	1.75305	2.13145	2.24854	2.60248	2.94671	4.07277
16	.690132	.864667	1.33676	1.51213	1.74588	2.11991	2.23536	2.58349	2.92078	4.01500
17	.689195	.863279	1.33338	1.50766	1.73961	2.10982	2.22385	2.56693	2.89823	3.96513
18	.688364	.862049	1.33039	1.50371	1.73406	2.10092	2.21370	2.55238	2.87844	3.92165
19	.687621	.860951	1.32773	1.50019	1.72913	2.09302	2.20470	2.53948	2.86093	3.88341
20	.686954	.859964	1.32534	1.49704	1.72472	2.08596	2.19666	2.52798	2.84534	3.84952
21	.686352	.859074	1.32319	1.49419	1.72074	2.07961	2.18943	2.51765	2.83136	3.81928
22	.685805	.858266	1.32124	1.49162	1.71714	2.07387	2.18289	2.50832	2.81876	3.79213
23	.685306	.857530	1.31946	1.48928	1.71387	2.06866	2.17696	2.49987	2.80734	3.76763
24	.684850	.856855	1.31784	1.48714	1.71088	2.06390	2.17154	2.49216	2.79694	3.74540
25	.684430	.856236	1.31635	1.48517	1.70814	2.05954	2.16659	2.48511	2.78744	3.72514
26	.684043	.855665	1.31497	1.48336	1.70562	2.05553	2.16203	2.47863	2.77871	3.70661
27	.683685	.855137	1.31370	1.48169	1.70329	2.05183	2.15782	2.47266	2.77068	3.68959
28	.683353	.854647	1.31253	1.48014	1.70113	2.04841	2.15393	2.46714	2.76326	3.67391
29	.683044	.854192	1.31143	1.47870	1.69913	2.04523	2.15033	2.46202	2.75639	3.65941
30	.682756	.853767	1.31042	1.47736	1.69726	2.04227	2.14697	2.45726	2.75000	3.64596

Tables de mortalité de la population suisse (1998–2003)

Extrait des tables de l'Office Fédéral de la Statistique, reproduites avec son aimable autorisation.

On note xl'âge d'un homme

l'âge d'une femme

le nombre de survivants à l'âge x(y) $l_x(l_y)$

la probabilité de survie à l'âge x(y) $p_x(p_y)$

la probabilité de décès à l'âge x(y) $q_x(q_y)$

l'espérance moyenne de vie à l'âge x(y) $e_x(e_y)$

> Hommes Femmes

x	l_x	p_x	q_x	e_x		y	l_y	p_y	q_y	e_y
0	100000	0.994662	0.005338	77.22		0	100000	0.995828	0.004172	82.82
1	99466	0.999597	0.000403	76.63		1	99583	0.999650	0.000350	82.16
2	99426	0.999688	0.000312	75.66		2	99548	0.999800	0.000200	81.19
3	99395	0.999771	0.000229	74.69		3	99528	0.999837	0.000163	80.21
4	99372	0.999820	0.000180	73.70		4	99512	0.999865	0.000135	79.22
5	99354	0.999850	0.000150	72.72		5	99498	0.999886	0.000114	78.23
6	99340	0.999868	0.000132	71.73		6	99487	0.999901	0.000099	77.24
7	99326	0.999878	0.000122	70.74		7	99477	0.999912	0.000088	76.25
8	99314	0.999881	0.000119	69.75		8	99468	0.999919	0.000081	75.25
9	99302	0.999878	0.000122	68.75		9	99460	0.999921	0.000079	74.26
10	99290	0.999871	0.000129	67.76		10	99453	0.999920	0.000080	73.27
11	99278	0.999857	0.000143	66.77		11	99445	0.999915	0.000085	72.27
12	99263	0.999837	0.000163	65.78		12	99436	0.999904	0.000096	71.28
13	99247	0.999808	0.000192	64.79		13	99427	0.999884	0.000116	70.28
14	99228	0.999766	0.000234	63.80		14	99415	0.999856	0.000144	69.29
15	99205	0.999703	0.000297	62.82		15	99401	0.999822	0.000178	68.30
16	99176	0.999607	0.000393	61.84		16	99383	0.999784	0.000216	67.31
17	99137	0.999474	0.000526	60.86		17	99362	0.999748	0.000252	66.33
18	99084	0.999313	0.000687	59.89		18	99337	0.999717	0.000283	65.35
19	99016	0.999156	0.000844	58.93		19	99309	0.999695	0.000305	64.36
20	98933	0.999049	0.000951	57.98		20	99278	0.999684	0.000316	63.38
21	98839	0.999003	0.000997	57.04		21	99247	0.999681	0.000319	62.40
22	98740	0.999002	0.000998	56.09		22	99215	0.999684	0.000316	61.42
23	98642	0.999024	0.000976	55.15		23	99184	0.999687	0.000313	60.44
24	98545	0.999047	0.000953	54.20		24	99153	0.999687	0.000313	59.46
25	98451	0.999066	0.000934	53.25		25	99122	0.999683	0.000317	58.48
26	98359	0.999081	0.000919	52.30		26	99090	0.999675	0.000325	57.50
27	98269	0.999092	0.000908	51.35		27	99058	0.999664	0.000336	56.52
28	98180	0.999098	0.000902	50.40		28	99025	0.999650	0.000350	55.54
29	98091	0.999099	0.000901	49.44		29	98990	0.999632	0.000368	54.55
30	98003	0.999095	0.000905	48.49		30	98954	0.999611	0.000389	53.57
31	97914	0.999083	0.000917	47.53		31	98915	0.999587	0.000413	52.59
32	97824	0.999065	0.000935	46.57		32	98875	0.999559	0.000441	51.62
33	97733	0.999038	0.000962	45.62		33	98831	0.999528	0.000472	50.64
34	97639	0.999002	0.000998	44.66		34	98784	0.999494	0.000506	49.66
35	97541	0.998955	0.001045	43.70		35	98734	0.999456	0.000544	48.69
36	97439	0.998898	0.001102	42.75		36	98681	0.999414	0.000586	47.71
37	97332	0.998830	0.001170	41.80		37	98623	0.999367	0.000633	46.74
38	97218	0.998751	0.001249	40.84		38	98560	0.999315	0.000685	45.77
39	97097	0.998658	0.001342	39.89		39	98493	0.999257	0.000743	44.80
40	96967	0.998552	0.001448	38.95		40	98420	0.999193	0.000807	43.83
41	96826	0.998432	0.001568	38.00		41	98340	0.999120	0.000880	42.87
42	96674	0.998296	0.001704	37.06	l	42	98254	0.999039	0.000961	41.91
43	96510	0.998143	0.001857	36.12	l	43	98159	0.998948	0.001052	40.95
44	96330	0.997973	0.002027	35.19		44	98056	0.998845	0.001155	39.99
45	96135	0.997783	0.002217	34.26		45	97943	0.998731	0.001269	39.04
46	95922	0.997573	0.002427	33.34		46	97818	0.998602	0.001398	38.08
47	95689	0.997340	0.002660	32.42	l	47	97682	0.998460	0.001540	37.14
48	95435	0.997081	0.002919	31.50		48	97531	0.998303	0.001697	36.19

Hommes Femmes

	Hommes Femmes					S				
x	l_x	p_x	q_x	e_x		y	l_y	p_y	q_y	e_y
49	95156	0.996794	0.003206	30.59	İ	49	97366	0.998130	0.001870	35.25
50	94851	0.996477	0.003523	29.69		50	97184	0.997942	0.002058	34.32
51	94517	0.996127	0.003873	28.79		51	96984	0.997739	0.002261	33.39
52	94151	0.995742	0.004258	27.90		52	96764	0.997521	0.002479	32.46
53	93750	0.995318	0.004682	27.02		53	96525	0.997289	0.002711	31.54
54	93311	0.994853	0.005147	26.14		54	96263	0.997044	0.002956	30.63
55	92831	0.994343	0.005657	25.28		55	95978	0.996787	0.003213	29.72
56	92305	0.993782	0.006218	24.42		56	95670	0.996514	0.003486	28.81
57	91731	0.993167	0.006833	23.57		57	95336	0.996225	0.003775	27.91
58	91105	0.992491	0.007509	22.73		58	94977	0.995916	0.004084	27.01
59	90421 89674	0.991747 0.990929	0.008253 0.009071	21.89 21.07		59 60	94589 94171	0.995584 0.995225	0.004416 0.004775	26.12 25.24
60 61	88861	0.990929	0.009071	20.26		61	93721	0.993223	0.004775	24.35
62	87975	0.989037	0.009971	19.46		62	93237	0.994634	0.005100	23.48
63	87010	0.987944	0.010905	18.67		63	92715	0.993932	0.005354	22.61
64	85961	0.986738	0.012030	17.89		64	92153	0.993404	0.006596	21.74
65	84821	0.985406	0.014594	17.12		65	91545	0.992813	0.007187	20.88
66	83584	0.983930	0.016070	16.37		66	90887	0.992148	0.007852	20.03
67	82240	0.982293	0.017707	15.63		67	90173	0.991395	0.008605	19.19
68	80784	0.980474	0.019526	14.90		68	89397	0.990538	0.009462	18.35
69	79207	0.978446	0.021554	14.19		69	88552	0.989559	0.010441	17.52
70	77500	0.976181	0.023819	13.49		70	87627	0.988434	0.011566	16.70
71	75654	0.973645	0.026355	12.81		71	86614	0.987134	0.012866	15.89
72	73660	0.970799	0.029201	12.14		72	85499	0.985625	0.014375	15.09
73	71509	0.967596	0.032404	11.49		73	84270	0.983862	0.016138	14.30
74	69192	0.963984	0.036016	10.86		74	82910	0.981794	0.018206	13.53
75 75	66700	0.959919	0.040081	10.25		75	81401	0.979369	0.020631	12.77
76	64026	0.955352	0.044648	9.65		76	79721	0.976532	0.023468	12.03
77	61167	0.950235	0.049765	9.08		77	77850	0.973218	0.026782	11.30
78	58124	0.944520	0.055480	8.53		78	75766	0.969355	0.030645	10.60
79 80	54899 51504	0.938157 0.931098	0.061843 0.068902	8.00 7.50		79 80	73444 70863	0.964862 0.959651	0.035138 0.040349	9.92 9.26
81	47955	0.931098	0.008902	7.02		81	68004	0.953627	0.046373	8.63
82	44277	0.923233	0.076701	6.56		82	64850	0.935021	0.040313	8.03
83	40501	0.905332	0.094668	6.12		83	61393	0.938729	0.063312	7.45
84	36667	0.895106	0.104894	5.71		84	57631	0.929648	0.070352	6.91
85	32821	0.883995	0.116005	5.32		85	53577	0.919354	0.080646	6.39
86	29013	0.871946	0.128054	4.95		86	49256	0.907775	0.092225	5.91
87	25298	0.858903	0.141097	4.61		87	44713	0.894864	0.105136	5.46
88	21729	0.844810	0.155190	4.28		88	40012	0.880611	0.119389	5.04
89	18356	0.829609	0.170391	3.97		89	35235	0.865054	0.134946	4.65
90	15229	0.813240	0.186760	3.69		90	30481	0.848288	0.151712	4.30
91	12385	0.795642	0.204358	3.42		91	25856	0.830483	0.169517	3.98
92	9854	0.776754	0.223246	3.17		92	21473	0.811886	0.188114	3.69
93	7654	0.756512	0.243488	2.94	l	93	17434	0.792835	0.207165	3.43
94	5790	0.734884	0.265116	2.72		94	13822	0.773692	0.226308	3.20
95	4255	0.711977 0.687988	0.288023	2.52	l	95	10694	0.754601	0.245399	2.99
96 97	3030 2084	0.687988	0.312012 0.336808	2.34 2.18	l	96 97	8070 5936	$0.735601 \\ 0.716672$	0.264399 0.283328	2.80 2.63
98	1382	0.637941	0.362059	2.18		98	4254	0.710072	0.283328	2.05
99	882	0.612671	0.387329	1.90		99	2968	0.678650	0.321350	2.32
100	540	0.587901	0.412099	1.78	l	100	2014	0.659208	0.340792	2.18
101	318	0.564226	0.435774	1.68	l	101	1328	0.639134	0.360866	2.04
102	179	0.542305	0.457695	1.59	l	102	849	0.618077	0.381923	1.92
103	97	0.522838	0.477162	1.51	l	103	525	0.595607	0.404393	1.79
104	51	0.506548	0.493452	1.43	l	104	312	0.571199	0.428801	1.67
105	26	0.494137	0.505863	1.34	l	105	178	0.544216	0.455784	1.54
106	13	0.486256	0.513744	1.20	l	106	97	0.513885	0.486115	1.41
107	6	0.431982	0.568018	0.93	l	107	50	0.479259	0.520741	1.27
108	3	0.000000	1.000000	0.50	l	108	24	0.439166	0.560834	1.11
					l	109	11	0.392143	0.607857	0.89
					J	110	4	0.000000	1.000000	0.50
118	(CRC) (R	M < [₽] Tou	te reproduction	n d'un extr	ait de	ce livre	par quelqu	e procédé que	ce soit est inter	rdite.
110	_ ~	- 0"		11/11/11/	erm e	liffucion	oh			

Nombres premiers inférieurs à 5000

_	050	011	100	1000	00=1	2000	0515	4050	1000
2 3 5 7	353	811	1297	1823	2371	2909	3517	4073	4663
3	359	821	1301	1831	2377	2917	3527	4079	4673
5	367	823	1303	1847	2381	2927	3529	4091	4679
	373	827	1307	1861	2383	2939	3533	4093	4691
11	379	829	1319	1867	2389	2953	3539	4099	4703
13	383	839 853	1321	1871 1873	2393	2957	3539 3541	4111	4703 4721 4723 4729 4733
17	389	853	1327 1361	1873	2399	2963	3547	4127	4723
19	397	857	1361	1877	2411	2969	3557	4129	4720
23	401	859	1367	1879	2417	2971	3559	4133	4723
29	409	863	1373	1889	2423	2999	9571	4139	4751
31	419		1070	1009	$\frac{2423}{2437}$	2999	3571 3581 3583 3593	4159	4751 4759 4783
91		877	1381 1399 1409	1901 1907		3001	9991	4153	4709
37	421	881	1399	1907	2441	3011	3583	4157	4783
41	431	883	1409	1913	2447	3019	3593	4159	$4787 \\ 4789$
43	433	887	1423	1931	2459	3023	3607	4177	4789
47	439	907	1427	1933	2467	3037	3613	4201	4793
53	443	911	1429	1949	2473	3041	3617	4211	4799
59	449	919	1433	1951	2477	3049	3623	4217	4801
61	457	929	1439	1973 1979	2503	3061	3623 3631 3637	4219	4813
67	461	937	1447	1979	2521	3067	3637	4229	4817
71	463	941	1451	1987	2531	3079	3643	4231	4831
73	467	947	1453	1993	2539	3083	3659	4241	4861
79	479	953	1459	1997	2543	3080	3671	4243	4871
83	487	967	1471	1999	2549	3109	$\frac{3671}{3673}$	4253	4877
89	491	971	1/81	2003	2551	3110	3677	1250	4889
97	499	977	$\frac{1481}{1483}$	$\frac{2003}{2011}$	$\frac{2551}{2557}$	$\frac{3119}{3121}$	$\frac{3677}{3691}$	$\frac{4259}{4261}$	4903
101	503	983	1487	2017	$\frac{2577}{2579}$	3137	3697	4271	4909
101	505 509	903 991	1489	2017	2579	3163	3701	$\frac{4271}{4273}$	4909
103	521		1493	2027	2091	3167	3701	4213	
		997	1493	2029	2593	3107	3709	4283	4931
109	523	1009 1013	1499	2039	2609	3169 3181	3719	4289	4933
113	541	1013	1499 1511 1523 1531	2029 2039 2053 2063	2617	3181	3719 3727 3733 3739	4289 4297 4327	4937
127	547	1019	1523	2063	2621	3187	3733	4327	4943
131	557	1021	1531	2069	2633	3191	3739	4337	4951
137	563	1031 1033 1039	15/12	2081	2647	3203	3761 3767 3769	4339	4957
139	569	1033	1549 1553 1559	2081 2083 2087 2089 2099	2657 2659	3209	3767	4349	4967
149	571	1039	1553	2087	2659	3217	3769	4357	4969
151	577	1049	1559	2089	2663	3221	3779	4363	4973
157	587	1051	1567	2099	2671	3229	3793	4373	4987
163	593	1061	1571	2111	2677	3251	3797	4391	4993
167	599	1063	1579	2113	2683	2252	3803	4397	4999
173	601	1069	1583	2129 2131	2687	3257 3259 3271	3821 3823 3833	4409	
179	607	1087	1597	2131	2689	3259	3823	4421	
181	613	1091	1601	2137	2693	3271	3833	4423	
191	617	1093	1607	2141	2699	3299	3847	4441	
193	619	1097	1609	2143	2707	3301	3851	4447	
197	631	1109	1613	2153	2711	3307	3853	4451	
199	641	1100	1610	2161	$\frac{2711}{2713}$	2212	3863		
211		1103 1109 1117 1123 1129 1151	1619 1621 1627 1637	2101		3313 3319 3323 3329	9009 9077	4457	
211	643	1117	1021	2179 2203 2207	2719	3319	3877 3881 3889	4463	
223	647	1123	1627	2203	2729	3323	3881	4481	
227	653	1129	1637	2207	2731	3329	3889	4483	
229	659	1151	1657	9913	2741	3331	3907	4493	
233	661	1153	1663	2221 2237 2239 2243	2749	$\frac{3343}{3347}$	$\frac{3911}{3917}$	4507	
239	673	1163	1667	2237	2753	3347	3917	4513	
241	677	1171	1669	2239	2767	3359	3919	4517	
251	683	1181	1693	2243	2777	3361	3923	4519	
257	691	1187	1697	2251	2789	3371	3929	4523	
263	701	1102	1699	2267	2791	3373	3931	4547	
269	709	1201	1709	2269	2797	3389	3943	4549	
271	719	1201 1213	1699 1709 1721	2273	2801	3389 3391 3407	3947	4561	
277	727	1217	1723	2281	2803	3407	3967	4567	
281	733	1223	1733	2287	2819	3413	3989	4583	
283	739	1229	1741	2293	2833	3433	4001	4591	
293	743	1231	1747	2297	2837	3449	4003	4597	
307	751	1237	1753	2309	2843	3457	4007	4603	
311	757	1237 1249	1759	2311	2851	3461	4013	4621	
313	761	1259	1777	2333	$\frac{2851}{2857}$	3463	4019	$\frac{4621}{4637}$	
							4019	4007	
317	769	1277	1783	2339	2861	3467	4021	4639	
331	773	1279	1787	2341	2879	3469	4027	4643	
337	787	1283	1789	2347	2887	3491	4049	4649	
347	797	1289	1801	2351	2897	3499	4051	4651	
349	809	1291	1811	2357	2903	3511	4057	4657	

Factorisation des nombres composés inférieurs à 5000 et non divisibles par 2, 3 ou 5

10 = -	011 10 15	1005 11 05	1801 10 50	1000 11 11	2000 - 1-
$49 = 7 \cdot 7$	$611 = 13 \cdot 47$	$1067 = 11 \cdot 97$	$1501 = 19 \cdot 79$	$1903 = 11 \cdot 173$	$2303 = 7 \cdot 47$
$77 = 7 \cdot 11$	$623 = 7 \cdot 89$	$1073 = 29 \cdot 37$	$1507 = 11 \cdot 137$	$1909 = 23 \cdot 83$	$2317 = 7 \cdot 331$
$91 = 7 \cdot 13$	$629 = 17 \cdot 37$	$1079 = 13 \cdot 83$	$1513 = 17 \cdot 89$	$1919 = 19 \cdot 101$	$2321 = 11 \cdot 211$
	$637 = 7 \cdot 13$	$1081 = 23 \cdot 47$	$1517 = 37 \cdot 41$	$1921 = 17 \cdot 113$	$2323 = 23 \cdot 101$
$119 = 7 \cdot 17$	$649 = 11 \cdot 59$	$1099 = 7 \cdot 157$	$1519 = 7 \cdot 31$	$1927 = 41 \cdot 47$	$2327 = 13 \cdot 179$
$121 = 11 \cdot 11$	$667 = 23 \cdot 29$		$1529 = 11 \cdot 139$	$1937 = 13 \cdot 149$	$2329 = 17 \cdot 137$
$133 = 7 \cdot 19$	$671 = 11 \cdot 61$	$1111 = 11 \cdot 101$	$1537 = 29 \cdot 53$	$1939 = 7 \cdot 277$	$2353 = 13 \cdot 181$
$143 = 11 \cdot 13$	$679 = 7 \cdot 97$	$1121 = 19 \cdot 59$	$1541 = 23 \cdot 67$	$1943 = 29 \cdot 67$	$2359 = 7 \cdot 337$
$161 = 7 \cdot 23$	$689 = 13 \cdot 53$	$1127 = 7 \cdot 23$	$1561 = 7 \cdot 223$	$1957 = 19 \cdot 103$	$2363 = 17 \cdot 139$
$169 = 13 \cdot 13$	$697 = 17 \cdot 41$	$1133 = 11 \cdot 103$	$1573 = 11 \cdot 13$	$1961 = 37 \cdot 53$	$2369 = 23 \cdot 103$
$187 = 11 \cdot 17$		$1139 = 17 \cdot 67$	$1577 = 19 \cdot 83$	$1963 = 13 \cdot 151$	
	$703 = 19 \cdot 37$	$1141 = 7 \cdot 163$	$1589 = 7 \cdot 227$	$1967 = 7 \cdot 281$	$2407 = 29 \cdot 83$
$203 = 7 \cdot 29$	$707 = 7 \cdot 101$	$1147 = 31 \cdot 37$	$1591 = 37 \cdot 43$	$1969 = 11 \cdot 179$	$2413 = 19 \cdot 127$
$209 = 11 \cdot 19$	$713 = 23 \cdot 31$	$1157 = 13 \cdot 89$		$1981 = 7 \cdot 283$	$2419 = 41 \cdot 59$
$217 = 7 \cdot 31$	$721 = 7 \cdot 103$	$1159 = 19 \cdot 61$	$1603 = 7 \cdot 229$	$1991 = 11 \cdot 181$	$2429 = 7 \cdot 347$
$221 = 13 \cdot 17$	$731 = 17 \cdot 43$	$1169 = 7 \cdot 167$	$1631 = 7 \cdot 233$		$2443 = 7 \cdot 349$
$247 = 13 \cdot 19$	$737 = 11 \cdot 67$	$1177 = 11 \cdot 107$	$1633 = 23 \cdot 71$	$2009 = 7 \cdot 41$	$2449 = 31 \cdot 79$
$253 = 11 \cdot 23$	$749 = 7 \cdot 107$	$1183 = 7 \cdot 13$	$1639 = 11 \cdot 149$	$2021 = 43 \cdot 47$	$2453 = 11 \cdot 223$
$259 = 7 \cdot 37$	$763 = 7 \cdot 109$	$1189 = 29 \cdot 41$	$1643 = 31 \cdot 53$	$2023 = 7 \cdot 17$	$2461 = 23 \cdot 107$
$287 = 7 \cdot 41$	$767 = 13 \cdot 59$	$1199 = 11 \cdot 109$	$1649 = 17 \cdot 97$	$2033 = 19 \cdot 107$	$2471 = 7 \cdot 353$
$289 = 17 \cdot 17$	$779 = 19 \cdot 41$		$1651 = 13 \cdot 127$	$2041 = 13 \cdot 157$	$2479 = 37 \cdot 67$
$299 = 13 \cdot 23$	$781 = 11 \cdot 71$	$1207 = 17 \cdot 71$	$1661 = 11 \cdot 151$	$2047 = 23 \cdot 89$	$2483 = 13 \cdot 191$
001 - 12	$791 = 7 \cdot 113$	$1211 = 7 \cdot 173$	$1673 = 7 \cdot 239$	$2051 = 7 \cdot 293$	$2489 = 19 \cdot 131$
$301 = 7 \cdot 43$	$793 = 13 \cdot 61$	$1219 = 23 \cdot 53$	$1679 = 23 \cdot 73$	$2057 = 11 \cdot 17$	$2491 = 47 \cdot 53$
$319 = 11 \cdot 29$	$799 = 17 \cdot 47$	$1241 = 17 \cdot 73$	$1681 = 41 \cdot 41$	$2059 = 29 \cdot 71$	$2497 = 11 \cdot 227$
$323 = 17 \cdot 19$	000 11 70	$1243 = 11 \cdot 113$	$1687 = 7 \cdot 241$	$2071 = 19 \cdot 109$	0501 41 61
$329 = 7 \cdot 47$	$803 = 11 \cdot 73$	$1247 = 29 \cdot 43$	$1691 = 19 \cdot 89$	$2077 = 31 \cdot 67$	$2501 = 41 \cdot 61$
$341 = 11 \cdot 31$	$817 = 19 \cdot 43$	$1253 = 7 \cdot 179$	$1703 = 13 \cdot 131$	0101 11 101	$2507 = 23 \cdot 109$
$361 = 19 \cdot 19$	$833 = 7 \cdot 17$	$1261 = 13 \cdot 97$		$2101 = 11 \cdot 191$	$2509 = 13 \cdot 193$
$371 = 7 \cdot 53$ $377 = 13 \cdot 29$	$841 = 29 \cdot 29$ $847 = 7 \cdot 11$	$1267 = 7 \cdot 181$ $1271 = 31 \cdot 41$	$1711 = 29 \cdot 59$ $1717 = 17 \cdot 101$	$ 2107 = 7 \cdot 43 \\ 2117 = 29 \cdot 73 $	$2513 = 7 \cdot 359$ $2519 = 11 \cdot 229$
$377 = 13 \cdot 29$ $391 = 17 \cdot 23$	$851 = 23 \cdot 37$	$1271 = 31 \cdot 41$ $1273 = 19 \cdot 67$	$1717 = 17 \cdot 101$ $1727 = 11 \cdot 157$	$2117 = 29 \cdot 73$ $2119 = 13 \cdot 163$	$2519 = 11 \cdot 229$ $2527 = 7 \cdot 19$
391 - 17 · 23	$869 = 11 \cdot 79$	1273 — 19 · 07	$1727 = 11 \cdot 137$ $1739 = 37 \cdot 47$	$2119 = 13 \cdot 103$ $2123 = 11 \cdot 193$	$2527 = 7 \cdot 19$ $2533 = 17 \cdot 149$
$403 = 13 \cdot 31$	$871 = 13 \cdot 67$	$1313 = 13 \cdot 101$	$1759 = 37 \cdot 47$ $1751 = 17 \cdot 103$	$2123 = 11 \cdot 193$ $2147 = 19 \cdot 113$	$2533 = 17 \cdot 149$ $2537 = 43 \cdot 59$
$403 = 13 \cdot 31$ $407 = 11 \cdot 37$	$889 = 7 \cdot 127$	$1313 = 13 \cdot 101$ $1333 = 31 \cdot 43$	$1757 = 17 \cdot 103$ $1757 = 7 \cdot 251$	$2147 = 19 \cdot 113$ $2149 = 7 \cdot 307$	$2561 = 43 \cdot 39$ $2561 = 13 \cdot 197$
$407 = 11 \cdot 37$ $413 = 7 \cdot 59$	$893 = 19 \cdot 47$	$1337 = 7 \cdot 191$	$1767 = 7 \cdot 251$ $1763 = 41 \cdot 43$	$2149 = 7 \cdot 307$ $2159 = 17 \cdot 127$	$2563 = 11 \cdot 233$
$427 = 7 \cdot 61$	$899 = 29 \cdot 31$	$1339 = 13 \cdot 103$	$1769 = 29 \cdot 61$	$2167 = 11 \cdot 127$ $2167 = 11 \cdot 197$	$2567 = 17 \cdot 255$ $2567 = 17 \cdot 151$
$437 = 19 \cdot 23$	200 = 20 : 01	$1343 = 17 \cdot 79$	$1709 = 29 \cdot 01$ $1781 = 13 \cdot 137$	$2171 = 13 \cdot 167$	$2569 = 7 \cdot 367$
$451 = 13 \cdot 23$ $451 = 11 \cdot 41$	$901 = 17 \cdot 53$	$1349 = 19 \cdot 71$	$1793 = 13 \cdot 137$ $1793 = 11 \cdot 163$	$2171 = 13 \cdot 107$ $2173 = 41 \cdot 53$	$2573 = 31 \cdot 83$
$469 = 7 \cdot 67$	$913 = 11 \cdot 83$	$1351 = 7 \cdot 193$	$1799 = 7 \cdot 257$	$2173 = 41 \cdot 63$ $2177 = 7 \cdot 311$	$2573 = 31 \cdot 33$ $2581 = 29 \cdot 89$
$473 = 11 \cdot 43$	$917 = 7 \cdot 131$	$1357 = 23 \cdot 59$		$2183 = 37 \cdot 59$	$2587 = 23 \cdot 39$ $2587 = 13 \cdot 199$
$481 = 13 \cdot 37$	$923 = 13 \cdot 71$	$1363 = 29 \cdot 47$	$1807 = 13 \cdot 139$	$2189 = 11 \cdot 199$	$2597 = 7 \cdot 53$
$493 = 17 \cdot 29$	$931 = 7 \cdot 19$	$1369 = 37 \cdot 37$	$1813 = 7 \cdot 37$	$2191 = 7 \cdot 313$	$2599 = 23 \cdot 113$
$497 = 7 \cdot 71$	$943 = 23 \cdot 41$	$1379 = 7 \cdot 197$	$1817 = 23 \cdot 79$		
	$949 = 13 \cdot 73$	$1387 = 19 \cdot 73$	$1819 = 17 \cdot 107$	$2201 = 31 \cdot 71$	$2603 = 19 \cdot 137$
$511 = 7 \cdot 73$	$959 = 7 \cdot 137$	$1391 = 13 \cdot 107$	$1829 = 31 \cdot 59$	$2209 = 47 \cdot 47$	$2611 = 7 \cdot 373$
$517 = 11 \cdot 47$	$961 = 31 \cdot 31$	$1393 = 7 \cdot 199$	$1837 = 11 \cdot 167$	$2219 = 7 \cdot 317$	$2623 = 43 \cdot 61$
$527 = 17 \cdot 31$	$973 = 7 \cdot 139$	$1397 = 11 \cdot 127$	$1841 = 7 \cdot 263$	$2227 = 17 \cdot 131$	$2627 = 37 \cdot 71$
$529 = 23 \cdot 23$	$979 = 11 \cdot 89$		$1843 = 19 \cdot 97$	$2231 = 23 \cdot 97$	$2629 = 11 \cdot 239$
$533 = 13 \cdot 41$	$989 = 23 \cdot 43$	$1403 = 23 \cdot 61$	$1849 = 43 \cdot 43$	$2249 = 13 \cdot 173$	$2641 = 19 \cdot 139$
$539 = 7 \cdot 11$		$1411=17\cdot\ 83$	$1853 = 17 \cdot 109$	$2257 = 37 \cdot 61$	$2651 = 11 \cdot 241$
$551 = 19 \cdot 29$	$1003 = 17 \cdot 59$	$1417 = 13 \cdot 109$	$1859 = 11 \cdot 13$	$2263 = 31 \cdot 73$	$2653 = 7 \cdot 379$
$553 = 7 \cdot 79$	$1007=19\cdot53$	$1421 = 7 \cdot 29$	$1883 = 7 \cdot 269$	$2279 = 43 \cdot 53$	$2669 = 17 \cdot 157$
$559=13\cdot\ 43$	$1027=13\cdot\ 79$	$1441=11\cdot\ 131$	$1891 = 31 \cdot 61$	$2291 = 29 \cdot 79$	$2681 = 7 \cdot 383$
$581 = 7 \cdot 83$	$1037=17\cdot\ 61$	$1457=31\cdot\ 47$	$1897 = 7\cdot271$	$2299 = 11 \cdot 19$	
$583 = 11 \cdot 53$	$1043 = 7 \cdot 149$	$1469 = 13 \cdot 113$			
$589=19\cdot\ 31$	$1057 = 7\cdot151$	$1477=7\cdot211$			

2521 25 52	0101 = 110	0000 15 000	1000 10 001	1001 01 151
$2701 = 37 \cdot 73$	$3101 = 7 \cdot 443$	$3893 = 17 \cdot 229$	$4303 = 13 \cdot 331$	$4681 = 31 \cdot 151$
$2723 = 7 \cdot 389$	$3103 = 29 \cdot 107$	$3899 = 7 \cdot 557$	$4307 = 59 \cdot 73$	$4687 = 43 \cdot 109$
$2743 = 13 \cdot 211$	$3107 = 13 \cdot 239$		$4309 = 31 \cdot 139$	$4693 = 13 \cdot 19$
$2747 = 41 \cdot 67$	$3113 = 11 \cdot 283$	$3901 = 47 \cdot 83$	$4313 = 19 \cdot 227$	$4699 = 37 \cdot 127$
$2759 = 31 \cdot 89$	$3127 = 53 \cdot 59$	$3937 = 31 \cdot 127$	$4319 = 7 \cdot 617$	
$2761 = 11 \cdot 251$	$3131 = 31 \cdot 101$	$3941 = 7 \cdot 563$	$4321 = 29 \cdot 149$	$4709 = 17 \cdot 277$
$2771 = 17 \cdot 163$	$3133 = 13 \cdot 241$	$3949 = 11 \cdot 359$	$4331 = 61 \cdot 71$	$4711 = 7 \cdot 673$
$2773 = 47 \cdot 59$	$3139 = 43 \cdot 73$	$3953 = 59 \cdot 67$	$4333 = 7 \cdot 619$	$4717 = 53 \cdot 89$
$2779 = 7 \cdot 397$	$3143 = 7 \cdot 449$	$3959 = 37 \cdot 107$	$4343 = 43 \cdot 101$	$4727 = 29 \cdot 163$
$2783 = 11 \cdot 23$	$3149 = 47 \cdot 67$	$3961 = 17 \cdot 233$	$4351 = 19 \cdot 229$	$4739 = 7 \cdot 677$
	$3151 = 23 \cdot 137$	$3971 = 11 \cdot 19$	$4361 = 7 \cdot 89$	$4741 = 11 \cdot 431$
$2807 = 7 \cdot 401$	$3161 = 29 \cdot 109$	$3973 = 29 \cdot 137$	$4367 = 11 \cdot 397$	$4747 = 47 \cdot 101$
$2809 = 53 \cdot 53$	$3173 = 19 \cdot 167$	$3977 = 41 \cdot 97$	$4369 = 17 \cdot 257$	$4753 = 7 \cdot 97$
$2813 = 29 \cdot 97$	$3179 = 11 \cdot 17$	$3979 = 23 \cdot 173$	$4379 = 29 \cdot 151$	$4757 = 67 \cdot 71$
$2827 = 11 \cdot 257$	$3193 = 31 \cdot 103$	$3983 = 7 \cdot 569$	$4381 = 13 \cdot 337$	$4763 = 11 \cdot 433$
$2831 = 19 \cdot 149$	$3197 = 23 \cdot 139$	$3991 = 13 \cdot 307$	$4387 = 41 \cdot 107$	$4769 = 19 \cdot 251$
$2839 = 17 \cdot 167$	$3199 = 7 \cdot 457$	$3997 = 7 \cdot 571$	$4393 = 23 \cdot 191$	$4771 = 13 \cdot 367$
$2863 = 7 \cdot 409$			$4399 = 53 \cdot 83$	$4777 = 17 \cdot 281$
$2867 = 47 \cdot 61$	$3211 = 13 \cdot 19$	$4009 = 19 \cdot 211$		$4781 = 7 \cdot 683$
$2869 = 19 \cdot 151$	$3223 = 11 \cdot 293$	$4031 = 29 \cdot 139$	$4411 = 11 \cdot 401$	
$2873 = 13 \cdot 17$	$3227 = 7 \cdot 461$	$4033 = 37 \cdot 109$	$4417 = 7 \cdot 631$	$4811 = 17 \cdot 283$
$2881 = 43 \cdot 67$	$3233 = 53 \cdot 61$	$4037 = 11 \cdot 367$	$4427 = 19 \cdot 233$	$4819 = 61 \cdot 79$
$2891 = 7 \cdot 59$	$3239 = 41 \cdot 79$	$4039 = 7 \cdot 577$	$4429 = 43 \cdot 103$	$4829 = 11 \cdot 439$
$2893 = 11 \cdot 263$	$3241 = 7 \cdot 463$	$4043 = 13 \cdot 311$	$4439 = 23 \cdot 193$	$4837 = 7 \cdot 691$
$2899 = 13 \cdot 223$	$3247 = 17 \cdot 191$	$4061 = 31 \cdot 131$	$4453 = 61 \cdot 73$	$4841 = 47 \cdot 103$
	$3263 = 13 \cdot 251$	$4063 = 17 \cdot 239$	$4459 = 7 \cdot 13$	$4843 = 29 \cdot 167$
$2911 = 41 \cdot 71$	$3269 = 7 \cdot 467$	$4067 = 7 \cdot 83$	$4469 = 41 \cdot 109$	$4847 = 37 \cdot 131$
$2921 = 23 \cdot 127$	$3277 = 29 \cdot 113$	$4069 = 13 \cdot 313$	$4471 = 17 \cdot 263$	$4849 = 13 \cdot 373$
$2923 = 37 \cdot 79$	$3281 = 17 \cdot 193$	$4087 = 61 \cdot 67$	$4477 = 11 \cdot 37$	$4853 = 23 \cdot 211$
$2929 = 29 \cdot 101$	$3283 = 7 \cdot 67$	$4097 = 17 \cdot 241$	$4487 = 7 \cdot 641$	$4859 = 43 \cdot 113$
$2933 = 7 \cdot 419$	$3287 = 19 \cdot 173$		$4489 = 67 \cdot 67$	$4867 = 31 \cdot 157$
$2941 = 17 \cdot 173$	$3293 = 37 \cdot 89$	$4103 = 11 \cdot 373$	$4499 = 11 \cdot 409$	$4873 = 11 \cdot 443$
$2947 = 7 \cdot 421$		$4109 = 7 \cdot 587$		$4883 = 19 \cdot 257$
$2951 = 13 \cdot 227$	$3317 = 31 \cdot 107$	$4117 = 23 \cdot 179$	$4501 = 7 \cdot 643$	$4891 = 67 \cdot 73$
$2959 = 11 \cdot 269$	$3337 = 47 \cdot 71$	$4121 = 13 \cdot 317$	$4511 = 13 \cdot 347$	$4897 = 59 \cdot 83$
$2977 = 13 \cdot 229$	$3341 = 13 \cdot 257$	$4141 = 41 \cdot 101$	$4529 = 7 \cdot 647$	
$2981 = 11 \cdot 271$	$3349 = 17 \cdot 197$	$4151 = 7 \cdot 593$	$4531 = 23 \cdot 197$	$4901 = 13 \cdot 29$
$2983 = 19 \cdot 157$	$3353 = 7 \cdot 479$	$4163 = 23 \cdot 181$	$4537 = 13 \cdot 349$	$4907 = 7 \cdot 701$
$2987 = 29 \cdot 103$	$3377 = 11 \cdot 307$	$4169 = 11 \cdot 379$	$4541 = 19 \cdot 239$	$4927 = 13 \cdot 379$
$2989 = 7 \cdot 61$	$3379 = 31 \cdot 109$	$4171 = 43 \cdot 97$	$4553 = 29 \cdot 157$	$4939 = 11 \cdot 449$
$2993 = 41 \cdot 73$	$3383 = 17 \cdot 199$	$4181 = 37 \cdot 113$	$4559 = 47 \cdot 97$	$4949 = 7 \cdot 101$
2007 21 07	$3397 = 43 \cdot 79$	$4183 = 47 \cdot 89$	$4571 = 7 \cdot 653$	$4961 = 11 \cdot 41$
$3007 = 31 \cdot 97$	2401 10 170	$4187 = 53 \cdot 79$	$4573 = 17 \cdot 269$	$4963 = 7 \cdot 709$
$3013 = 23 \cdot 131$	$3401 = 19 \cdot 179$	$4189 = 59 \cdot 71$	$4577 = 23 \cdot 199$	$4979 = 13 \cdot 383$
$3017 = 7 \cdot 431$	$3403 = 41 \cdot 83$	$4193 = 7 \cdot 599$	$4579 = 19 \cdot 241$	$4981 = 17 \cdot 293$
$3029 = 13 \cdot 233$	$3409 = 7 \cdot 487$	4907 7 601	$4589 = 13 \cdot 353$	$4997 = 19 \cdot 263$
$3031 = 7 \cdot 433$	$3419 = 13 \cdot 263$	$4207 = 7 \cdot 601$	4601 49 107	
$3043 = 17 \cdot 179$	$3421 = 11 \cdot 311$	$4213 = 11 \cdot 383$	$4601 = 43 \cdot 107$	
$3047 = 11 \cdot 277$ $3053 = 43 \cdot 71$	$3427 = 23 \cdot 149$ $3431 = 47 \cdot 73$	$4223 = 41 \cdot 103$ $4237 = 19 \cdot 223$	$4607 = 17 \cdot 271 4609 = 11 \cdot 419$	
$3053 = 43 \cdot 71$ $3071 = 37 \cdot 83$	$3431 = 47 \cdot 73$ $3437 = 7 \cdot 491$	$4237 = 19 \cdot 223$ $4247 = 31 \cdot 137$		
$3071 = 37 \cdot 83$ $3073 = 7 \cdot 439$	$3437 = 7 \cdot 491$ $3439 = 19 \cdot 181$	$4247 = 31 \cdot 137$ $4249 = 7 \cdot 607$	$4613 = 7 \cdot 659$	
$3073 = 7 \cdot 439$ $3077 = 17 \cdot 181$		$4249 = 7 \cdot 607$ $4267 = 17 \cdot 251$	$4619 = 31 \cdot 149 4627 = 7 \cdot 661$	
$3077 = 17 \cdot 181$ $3091 = 11 \cdot 281$	$3443 = 11 \cdot 313$ $3473 = 23 \cdot 151$	$4267 = 17 \cdot 251$ $4279 = 11 \cdot 389$	$4627 = 7 \cdot 661$ $4631 = 11 \cdot 421$	
$3091 = 11 \cdot 281$ $3097 = 19 \cdot 163$	$3473 = 23 \cdot 151$ $3479 = 7 \cdot 71$	$4279 = 11 \cdot 389$ $4291 = 7 \cdot 613$	$4631 = 11 \cdot 421$ $4633 = 41 \cdot 113$	
2021 — 13 , 109	$3479 = 7 \cdot 71$ $3481 = 59 \cdot 59$	4791 — 1 , 019	$4661 = 59 \cdot 79$	
	9401 — 99 , 99		$4661 = 39 \cdot 79$ $4667 = 13 \cdot 359$	
	l		4001 — 19 · 999	

Physique

Unités

Les unités de base du Système International d'Unités (SI)

Grandeur	Nom	Symbole	Définition de l'unité
Longueur	mètre	m	Le mètre est la longueur du trajet parcouru dans
			le vide par la lumière pendant une durée de $1/299792458$ de seconde.
Masse	kilogramme	kg	Le kilogramme est égal à la masse du prototype international du kilogramme.
Temps	seconde	S	La seconde est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de césium 133.
Intensité du courant électrique	ampère	A	L'ampère est l'intensité d'un courant constant qui, maintenu dans deux conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable et placés à une distance de 1 mètre l'un de l'autre dans le vide, produirait entre ces conducteurs une force égale à $2 \cdot 10^{-7}$ newton par mètre de longueur.
Température	kelvin	K	Le kelvin est la fraction $1/273,16$ de la température thermodynamique du point triple de l'eau.
Quantité de matière	mole	mol	La mole est la quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans 0,012 kilogramme de carbone 12.
Intensité lumineuse	candela	cd	La candela est l'intensité lumineuse, dans une direction donnée, d'une source qui émet un rayonnement monochromatique de fréquence $540 \cdot 10^{12}$ hertz et dont l'intensité énergétique dans cette direction est $1/683$ watt par stéradian.

Unités SI supplémentaires

Grandeur	Nom	Symbole	Définition de l'unité
Angle plan	radian	rad	Le radian est l'angle plan compris entre deux rayons qui, sur la circonférence d'un cercle, interceptent un arc de longueur égale à celle du rayon.
Angle solide	stéradian	sr	Le stéradian est l'angle solide qui, ayant son sommet au centre d'une sphère, découpe sur la surface de cette sphère une aire égale à celle d'un carré ayant pour côté le rayon de la sphère.

Unités dérivées SI

Grandeur	Symboles	Nom et symbole de l'unité		En unités SI : – dérivées – de base	
Fréquence	f, ν	hertz	Hz		s^{-1}
Force	F	newton	N		$\text{m} \cdot \text{kg} \cdot \text{s}^{-2}$
Pression, contrainte	p	pascal	Pa	$N \cdot m^{-2}$	$\mathrm{m}^{-1}\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}$
Énergie, travail, quantité de chaleur	E, A, Q	joule	J	N⋅m	$\mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}$
Puissance	P	watt	W	$J \cdot s^{-1}$	$\mathrm{m^2 \cdot kg \cdot s^{-3}}$
Quantité d'électricité, charge électrique	q, Q	coulomb	С		s·A
Tension électrique, différence de potentiel électrique	U, V	volt	V	$W \cdot A^{-1}$	m ² ·kg·s ⁻³ ·A ⁻¹
Résistance électrique	R	ohm	Ω	$V \cdot A^{-1}$	$\mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-3}\cdot\mathrm{A}^{-2}$
Conductance électrique	G	siemens	S	$A \cdot V^{-1}$	$\mathrm{m}^{-2}\cdot\mathrm{kg}^{-1}\cdot\mathrm{s}^{3}\cdot\mathrm{A}^{2}$
Capacité électrique	C	farad	F	$C \cdot V^{-1}$	$\mathrm{m}^{-2}\cdot\mathrm{kg}^{-1}\cdot\mathrm{s}^{4}\cdot\mathrm{A}^{2}$
Champ magnétique	В	tesla	Т	Wb·m ^{−2}	$kg \cdot s^{-2} \cdot A^{-1}$
Flux du champ magnétique	Φ	weber	Wb	V·s	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$
Inductance	L	henry	Н	$\mathrm{Wb}{\cdot}\mathrm{A}^{-1}$	$\mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}\cdot\mathrm{A}^{-2}$
Flux lumineux	$\Phi_{\rm v}$	lumen	lm		cd·sr
Éclairement lumineux	$E_{\rm v}$	lux	lx	$\mathrm{lm}\cdot\mathrm{m}^{-2}$	m ⁻² ·cd·sr
Activité (rayonnement ionisant)	A	becquerel	Bq		s^{-1}
Dose absorbée	D_{a}	gray	Gy	$J \cdot kg^{-1}$	$\mathrm{m}^2\cdot\mathrm{s}^{-2}$
Équivalent de dose	D_{e}	sievert	Sv	$J \cdot kg^{-1}$	$\mathrm{m}^2\cdot\mathrm{s}^{-2}$

Unités définies indépendamment des unités SI de base

Unité de masse atomique

L'unité de masse atomique (u) est égale au 1/12 de la masse d'un atome du nucléide ¹²C.

$$1 \text{ u} = 1,6605402 \cdot 10^{-27} \text{ kg}$$

Électronvolt

L'électronvolt (eV) est l'énergie acquise par une charge élémentaire (e^-, p^+, He^+, \dots) qui passe, dans le vide, d'un point à un autre ayant une différence de potentiel de un volt.

$$1 \text{ eV} = 1.60217733 \cdot 10^{-19} \text{ J}$$

Formation de multiples et sous-multiples décimaux des unités

Préfixe	Symbole	Facteur
yotta	Y	10^{24}
zetta	Z	10^{21}
exa	Ε	10^{18}
peta	Р	10^{15}
téra	Т	10^{12}
giga	G	10^{9}
méga	М	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
déca	da	10^{1}

Préfixe	Symbole	Facteur
déci	d	10^{-1}
centi	С	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}
zepto	Z	10^{-21}
yocto	у	10^{-24}

Avertissement

Généralement les constantes citées dans le formulaire sont données avec une précision de trois chiffres significatifs. Le symbole de l'égalité (=) a été choisi pour associer une grandeur à sa valeur, étant attendu qu'il s'agit d'une valeur exacte à la décimale mentionnée. Le symbole ≈ n'est utilisé que si trois chiffres significatifs ne sont pas garantis (ou selon le nombre de chiffres significatifs mentionnés).

Les symboles, abréviations et noms sont ceux qui font partie des normes ISO, publication 1999.

Formulaire : Mécanique

Cinématique : Définitions				
Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures	
Position (vecteur position)	m	$\vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$	z y x y	
Position (cas monodimensionnel)	m	x	$0 \xrightarrow{x}$	
Position angulaire	rad	θ : angle formé par une direction de référence et le rayon vecteur du point considéré	O P réf. sens de θ donné par la règle de la main droite	
Déplacement (vecteur déplacement)	m	$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$	$\vec{r_1}$ $\Delta \vec{r}$ $\vec{r_2}$	
Déplacement (cas monodimensionnel)	m	$\Delta x = x_2 - x_1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Temps	s	t		
Intervalle de temps	S	$\Delta t = t_2 - t_1$	$\Delta t \geqslant 0$ toujours	

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Mouvements périodiques			
Période Fréquence	s Hz	T $f = \frac{1}{T}$	durée d'un cycle nombre de cycles par se-
Trequence	112	$J = \overline{T}$	conde (aussi noté ν)
Pulsation	$\mathrm{rad}\cdot\mathrm{s}^{-1}$	$\omega = 2\pi f$	aussi appelée fréquence cir- culaire
Vitesse instantanée	$\mathrm{m}\cdot\mathrm{s}^{-1}$	$\vec{v} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \dot{\vec{r}}$	$ec{v}$ est tangent à la trajectoire
Vitesse moyenne	$\mathrm{m}\cdot\mathrm{s}^{-1}$	$\vec{v}_{\rm m} = \frac{\Delta \vec{r}}{\Delta t}$	
Vitesse moyenne (cas monodimensionnel)	$\mathrm{m}\cdot\mathrm{s}^{-1}$	$v_{\rm m} = \frac{\Delta x}{\Delta t}$	
Vitesse angulaire instantanée	$\mathrm{rad}\cdot\mathrm{s}^{-1}$	$\vec{\omega}$; $\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t}$	direction et sens de $\vec{\omega}$ tels que le trièdre $\vec{r}, \vec{v}, \vec{\omega}$ soit tri- rectangle et direct (voir fi- gure page 139)
Vitesse angulaire moyenne	$\mathrm{rad}\cdot\mathrm{s}^{-1}$	$\vec{\omega}_{\mathrm{m}}$; $\omega_{\mathrm{m}} = \frac{\Delta \theta}{\Delta t}$	
Vitesse angulaire moyenne (représentation scalaire)	$\mathrm{rad}\cdot\mathrm{s}^{-1}$	$\omega_{\rm m} = \frac{\Delta \theta}{\Delta t}$	
Accélération instantanée	$m\cdot s^{-2}$	$ec{a} = rac{\mathrm{d}ec{v}}{\mathrm{d}t} = \ddot{ec{r}}$	\vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_3 \vec{v}_4 \vec{v}_5
Accélération moyenne	$\mathrm{m}\cdot\mathrm{s}^{-2}$	$\vec{a}_{\rm m} = \frac{\Delta \vec{v}}{\Delta t}$	
Accélération moyenne (cas monodimensionnel)	$\mathrm{m}\cdot\mathrm{s}^{-2}$	$a_{\rm m} = \frac{\Delta v}{\Delta t}$	

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Accélération tangentielle	$m\cdot s^{-2}$	$ec{a}_t$; $a_t = rac{\mathrm{d}v}{\mathrm{d}t}$	\vec{a}_n \vec{a}_t
Accélération normale	$\mathrm{m}\cdot\mathrm{s}^{-2}$	$ec{a}_n$; $a_n=rac{v^2}{ ho}$	$ ho:$ rayon de courbure $\vec{a}=\vec{a}_t+\vec{a}_n$ autre notation : $\vec{a}=\vec{a}_{\parallel}+\vec{a}_{\perp}$
Accélération angulaire instantanée	$\mathrm{rad}\cdot\mathrm{s}^{-2}$	$\vec{\alpha} = \frac{\mathrm{d}\vec{\omega}}{\mathrm{d}t} = \dot{\vec{\omega}}$	
Accélération angulaire moyenne	$\mathrm{rad}\cdot\mathrm{s}^{-2}$	$ec{lpha}_{ m m} = rac{\Delta ec{\omega}}{\Delta t}$	
Accélération angulaire moyenne (représentation scalaire)	$rad \cdot s^{-2}$	$lpha_{ m m} = rac{\Delta \omega}{\Delta t}$	

Cinématique : Mouvements particuliers				
Mouvement uniforme	$m \cdot s^{-1}$ m	$v= ext{constante}$ $\Delta \ell = v \Delta t$	la trajectoire peut être une courbe $\Delta \ell : \text{longueur parcourue},$ mesurée le long de la trajectoire	
Mouvement rectiligne	$\mathrm{m}\cdot\mathrm{s}^{-1}$	v = constante		
uniforme (MRU)	m	$x = vt + x_0$		
Mouvement uniformément accéléré (MUA)	$m \cdot s^{-2}$ $m \cdot s^{-1}$ m		la trajectoire est para- bolique ou rectiligne	

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Mouvement rectiligne uniformément accéléré (MRUA)	$\begin{array}{c} m \cdot s^{-2} \\ m \cdot s^{-1} \\ m \end{array}$	$a = \text{constante}$ $v = at + v_0$ $x = \frac{1}{2}at^2 + v_0t + x_0$	
Mouvement circulaire uniforme (MCU)	$rad \cdot s^{-1}$ rad	$\omega = \text{constante}$ $\theta = \omega t + \theta_0$	\vec{v} \vec{a} θ
Mouvement circulaire uniformément accéléré (MCUA)	$rad \cdot s^{-2}$ $rad \cdot s^{-1}$ rad	$\alpha = \text{constante}$ $\omega = \alpha t + \omega_0$ $\theta = \frac{1}{2}\alpha t^2 + \omega_0 t + \theta_0$	
Mouvement rectiligne sinusoïdal	$\begin{array}{c} m \cdot s^{-2} \\ m \cdot s^{-1} \\ m \end{array}$	$a = -\omega^{2}x$ $v = -\omega r \cos(\omega t + \varphi)$ $x = r \sin(\omega t + \varphi)$	

Dynamique du point matériel : Définitions				
Masse	kg	m	parfois notée M	
Quantité de mouvement	$kg \cdot m \cdot s^{-1}$	$\vec{p} = m\vec{v}$		
Moment cinétique	$\mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-1}$	$\vec{L} = \vec{r} \times \vec{p}$		
Force résultante	N	$ec{F} = \sum_i ec{F_i}$	force unique qui produit le même effet que l'ensemble des forces \vec{F}_i s'exerçant sur le point matériel	
Moment d'une force (défini par rapport à un point O)	$N \cdot m$	$\vec{M} = \vec{r} \times \vec{F}$ $M = Fr \sin \varphi = Fd$	\vec{M} $d = r \sin \varphi$ est appelé bras de levier de la force	

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Impulsion d'une force	$ m N\cdot s$	$\vec{J}_{1,2} = \int\limits_{t_1}^{t_2} \vec{F} \mathrm{d}t$	$\begin{array}{c c} t_1 & \vec{F} \\ \hline 1 & d\vec{r} & t_2 \\ \hline \end{array}$
Travail d'une force	J	$A_{1,2} = \int\limits_{1}^{2} \vec{F} \cdot \mathrm{d}\vec{r}$	aussi noté W
Impulsion d'une force constante	$N \cdot s$	$\vec{J}_{1,2} = \vec{F}(t_2 - t_1)$	
Travail d'une force constante	J	$A_{1,2} = \vec{F} \cdot \vec{d}_{1,2}$ $= F d_{1,2} \cos \varphi$	Trajectoire rectiligne \vec{F} $\vec{d}_{1,2}$ $\vec{d}_{1,2}$ Trajectoire quelconque \vec{F} $\vec{d}_{1,2}$ $\vec{d}_{1,2}$ indépendant du chemin suivi
Énergie	J	E	
Énergie cinétique	J	$E_{\rm c} = \frac{1}{2} m v^2$	
Énergie potentielle	J	$E_{\rm p}({\rm P}) = A_{\rm PO} = \int\limits_{\rm P}^{\rm O} \vec{F} \cdot {\rm d}\vec{r}$	définie seulement pour une force conservative P: point considéré O: point fixe de référence
Énergie mécanique	J	$E_{\rm m} = E_{\rm c} + E_{\rm p}$	
Puissance instantanée	W	$P = \frac{\mathrm{d}E}{\mathrm{d}t} = \dot{E}$	$\mathrm{d}E$: énergie transformée pendant $\mathrm{d}t$
Puissance moyenne	W	$P = \frac{\Delta E}{\Delta t}$	valeur moyenne pendant Δt
Rendement	_	$\eta = rac{E_{ ext{utile}}}{E_{ ext{consomm\'ee}}}$	$E_{ m consomm\'ee}$ $E_{ m non\ utile}$ $E_{ m utile}$ $E_{ m utile}$ $E_{ m utile}$

Dynamique du point matériel : Lois

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures	
Loi fondamentale	N	$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \dot{\vec{p}}$ $\vec{F} = m\vec{a}$	\vec{F} : résultante des forces s'exerçant sur le point si m est constante	
Théorème du moment cinétique	N·m	$\vec{M} = \frac{\mathrm{d}\vec{L}}{\mathrm{d}t} = \dot{\vec{L}}$	\vec{M} : moment de la force résultante	
Variation de la quantité de mouvement	N·s	$\vec{J}_{1,2} = \vec{p}_2 - \vec{p}_1$	$\vec{J}_{1,2}$: impulsion de la force résultante entre l'état 1 et l'état 2	
Variation de l'énergie cinétique	J	$A_{1,2} = E_{\rm c}(2) - E_{\rm c}(1)$	$A_{1,2}$: travail de la force résultante entre l'état 1 et l'état 2	
Variation de l'énergie potentielle	J	$A_{1,2}^{c} = E_{p}(1) - E_{p}(2)$	$A_{1,2}^{c}$: travail des forces conservatives (indépendant du chemin suivi)	
Variation de l'énergie mécanique	J	$A_{1,2}^{\rm nc} = E_{\rm m}(2) - E_{\rm m}(1)$	$A_{1,2}^{\text{nc}}$: travail des forces non conservatives	
Conservation de l'énergie mécanique	J	$E_{\rm m}(2) = E_{\rm m}(1)$	seulement si les forces sont conservatives	

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Gravitation Force de gravitation (loi de la gravitation universelle)	N	$F = G \frac{m_1 m_2}{r^2}$	$G = 6,67259 \cdot 10^{-11} \mathrm{N} \cdot \mathrm{m}^2 \cdot \mathrm{kg}^{-2}$
Force de pesanteur	N	$\vec{F}_{\rm g} = m\vec{g}$ $g = G\frac{M}{R^2}$	s'exerçant sur un corps de masse m à la surface d'un astre de masse M et de rayon R \vec{g} définit la verticale locale $g \approx 9.8 \; \mathrm{m \cdot s^{-2}}$ à la surface de la Terre
Énergie potentielle	J	$E_{\rm p} = -G \frac{Mm}{r}$	point de référence $r=\infty$ M : masse de l'astre r : distance au centre de M
		$E_{\rm p}=mgh$	au voisinage du sol point de référence $h=0$ h : altitude
Ressort Force de rappel	N	$\vec{F} = -k\vec{x}$; $F = kd$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			k : constante élastique du ressort d : déformation
Énergie potentielle	J	$E_{\rm p} = \frac{1}{2}kd^2$	point de référence $d=0$
Pendule de torsion Moment de rappel	$N \cdot m$	$M = C\theta$	
Énergie potentielle	J	$E_{\rm p} = \frac{1}{2}C\theta^2$	C : constante de torsion point de référence $\theta=0$

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Frottements secs Force de frottement entre 2 surfaces en mouvement relatif	N	$F_{ m t}=\mu F_{ m n}$	$\vec{F}_{\rm n}$ $\vec{F}_{\rm t}$ μ : coefficient de frottement dynamique $\vec{F}_{\rm n}$: force normale exercée par la surface
Force d'adhérence entre 2 surfaces	N	$F_{\rm t} \leqslant \mu_0 F_{\rm n}$	μ_0 : coefficient d'adhérence
Frottements fluides Force de frottement en écoulement laminaire	N	$F_{\ell} = kR\eta v$	corps possédant une symétrie de révolution d'axe parallèle à la vitesse relative \vec{v} du fluide $k,C : \text{coefficients dépendant de la forme}$ $R : \text{rayon maximal}$ $\eta : \text{viscosité}$ $S : \text{section apparente}$ (maître couple) $\rho : \text{masse volumique}$ du fluide $k C$
Force de frottement en écoulement turbulent	N	$F_{ m t} = rac{1}{2} C S ho v^2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Dynamique		Systèmes	de	points	matériels
Dynamique	•	Dybucilles	uc	pomb	matericis

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Masse	kg	$m = \sum_{i} m_{i}$	somme des masses des constituants du solide
Position du centre de masse (barycentre)	m	$\vec{r}_{\rm G} = \frac{1}{m} \sum_i m_i \vec{r}_i$	moyenne pondérée des positions de ses consti- tuants
Vitesse du centre de masse	$\mathrm{m}\cdot\mathrm{s}^{-1}$	$\vec{v}_{\rm G} = \frac{1}{m} \sum_{i} m_i \vec{v}_i$	
Accélération du centre de masse	$\mathrm{m}\cdot\mathrm{s}^{-2}$	$\vec{a}_{\rm G} = \frac{1}{m} \sum_{i} m_i \vec{a}_i$	
Quantité de mouvement totale	$kg \cdot m \cdot s^{-1}$	$\vec{p} = \sum_i m_i \vec{v}_i = m \vec{v}_{\mathrm{G}}$	
Moment cinétique total	$kg \cdot m^2 \cdot s^{-1}$	$ec{L} = \sum_i ec{r_i} imes ec{p_i}$	
Énergie cinétique totale	J	$E_{\rm c} = \sum_{i} E_{\rm c}i$	
Énergie potentielle totale	J	$E_{\rm p} = \sum_{i} E_{{\rm p}i}$	
Énergie potentielle totale de pesanteur	J	$E_{\rm p} = mgz_{\rm G}$	$z_{\rm G}$: altitude du centre de masse (par rapport à la référence choisie)
Forces intérieures	N	$ec{F}_{ ext{int}ij} = -ec{F}_{ ext{int}ji} \ \sum_i ec{F}_{ ext{int}i} = ec{0}$	les forces intérieures au solide vont par paires et ont une résultante nulle
Forces extérieures	N	$\sum_i ec{F}_{ ext{ext}i}$	résultante des forces d'origine extérieure au système
Moments intérieurs	$N \cdot m$	$ec{M}_{\mathrm{int}ij} = -ec{M}_{\mathrm{int}ji}$	les moments intérieurs au solide vont par paires et ont une résultante nulle
Moments extérieurs	$N \cdot m$	$\sum_i ec{M}_{\mathrm{ext}i}$	moment des forces exté- rieures

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Principe d'action et de réaction	N	$ec{F}_{ m AB} = -ec{F}_{ m BA}$	si le corps A exerce une force $\vec{F}_{\rm BA}$ sur B, alors B exerce une force $\vec{F}_{\rm AB}$ opposée sur A
Accélération du centre de masse \vec{a}_{G}	$\mathrm{m}\cdot\mathrm{s}^{-2}$	$\sum_i \vec{F}_{\mathrm{ext}i} = m \vec{a}_{\mathrm{G}}$	dans un référentiel d'inertie
Variation du moment cinétique total	$\rm kg \cdot m^2 \cdot s^{-1}$	$\sum_i ec{M}_{\mathrm{ext}i} = \dot{ec{L}}$	valable - dans un référentiel d'inertie - dans un référentiel lié au centre de masse dont les axes restent constam- ment parallèles à ceux d'un référentiel d'inertie
		$ec{M}(t_2-t_1)=ec{L}_2-ec{L}_1$	si $\sum_i \vec{M}_{\mathrm{ext}i} = \overrightarrow{\mathrm{constante}}$
Systèmes isolés			
Conservation de la quantité de mouvement totale	$\mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{s}^{-1}$	$\sum_i \vec{p_i} = \overrightarrow{ ext{constante}}$	valable pour un système isolé (p. ex. collision, dés- intégration)
Conservation du moment cinétique total	$\mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-1}$	$\sum_i ec{L}_i = \overrightarrow{ ext{constante}}$	valable pour un système isolé ou pour des forces centrales
Conservation de l'énergie cinétique totale	J	$\sum_{i} E_{ci} = \text{constante}$	seulement pour les collisions élastiques

Dynamique : Corps solides (cf. « Systèmes de points matériels » p. 137)						
Masse volumique $ kg \cdot m^{-3} \rho = \frac{m}{V} corps homogène $						
Rotation autour d'un axe	Rotation autour d'un axe					
Position angulaire	Position angulaire $\operatorname{rad} \theta$					
Vitesse angulaire $\operatorname{rad} \cdot \operatorname{s}^{-1} = \vec{\omega}$ cf. dessin page suivante						
Accélération angulaire	$\mathrm{rad}\cdot\mathrm{s}^{-2}$	$\dot{\vec{\omega}}$				

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures		
Vitesse de l'élément i	$\mathrm{m}\cdot\mathrm{s}^{-1}$	$ec{v}_i = ec{\omega} imes ec{r}_i ; v_i = \omega d_i$	\vec{v}_i \vec{v}_i \vec{r}_i \vec{v}_i \vec{v}_i		
Fréquence de rotation	$ m s^{-1}$	$\nu = \frac{\omega}{2\pi}$	d_i : distance de l'élément de masse m_i à $\mathcal{O}z$ \vec{k} : vecteur unité sur l'axe de rotation $\mathcal{O}z$		
Moment d'inertie	$\mathrm{kg}\cdot\mathrm{m}^2$	$I = \sum_{i} m_{i} d_{i}^{2}$ $I = \int r^{2} dm$	$\begin{split} \vec{\omega} &= \omega \vec{k} \\ r &: \text{distance de d} m \text{ à l'axe} \end{split}$		
Datation autom de l	' O. J'	corps			
Rotation autour de l Moment cinétique	kg · m ² · s ⁻¹	referentief d'inertie $ec{L}=Iec{\omega}$	rotation autour d'un axe principal d'inertie $(I: moment d'inertie par rapport à Oz)$		
Accélération angulaire	$\mathrm{rad}\cdot\mathrm{s}^{-2}$	$\sum_i M_{\mathrm{ext}zi} = I\dot{\omega}$	$M_{\text{ext}zi}$: composante de $M_{\text{ext}i}$ selon $\mathcal{O}z$		
Énergie cinétique de rotation	J	$E_{\mathrm{c}} = \frac{1}{2}I\omega^2$			
Équilibre		$\sum_i \vec{F}_{\mathrm{ext}i} = \vec{0}$ $\sum_i \vec{M}_{\mathrm{ext}i} = \vec{0}$	conditions nécessaires		
Rotation autour d'un axe passant par le centre de masse					
Accélération du centre de masse $\vec{a}_{\rm G}$	$\mathrm{m}\cdot\mathrm{s}^{-2}$	$\sum_i \vec{F}_{\mathrm{ext}i} = m \vec{a}_{\mathrm{G}}$	dans un référentiel d'inertie $Oxyz$ (G : indice relatif au centre de masse)		
Accélération angulaire $\dot{\omega}$	$\mathrm{rad}\cdot\mathrm{s}^{-2}$	$\sum_i M_{{\rm ext}z'i} = I_{\rm G} \dot{\omega}$	dans un référentiel $Gx'y'z'$ parallèle à $Oxyz$		
Énergie cinétique totale	J	$E_{\rm c} = \frac{1}{2} m v_{\rm G}^2 + \frac{1}{2} I_{\rm G} \omega^2$	rotation autour de l'axe z'		

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Moments d'inertie de quelqu	es corps	homogènes	
Cylindre	$kg\cdot m^2$	$I = \frac{1}{2}mR^2$	rotation selon axe de révolution (Δ_1)
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	$\mathrm{kg}\cdot\mathrm{m}^2$	$I = \frac{1}{4}mR^2 + \frac{1}{12}mL^2$	rotation selon axe diamétral passant par G (Δ_2)
Tige mince	$ ext{kg} \cdot ext{m}^2$	$I = \frac{1}{12}mL^2$	cas particulier du cylindre (selon Δ_2 avec $R \ll L$) ou du paral- lélipipède ($a = L$ et $b \ll a$)
Parallélépipède	$ m kg \cdot m^2$	$I = \frac{1}{12}m(a^2 + b^2)$	
Cône	$ ext{kg} \cdot ext{m}^2$	$I = \frac{3}{10}mR^2$	
Anneau			
	$ ext{kg} \cdot ext{m}^2$	$I = mR^2$	paroi mince
Boule (pleine)	$\mathrm{kg}\cdot\mathrm{m}^2$	$I = \frac{2}{5}mR^2$	axe passant par le centre
Sphère (creuse)	$\mathrm{kg}\cdot\mathrm{m}^2$	$I = \frac{2}{3}mR^2$	paroi mince

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Règle de Steiner	$ ext{kg}\cdot ext{m}^2$	$I = I_{\mathrm{G}} + m\ell^2$	I : moment d'inertie par rapport à un axe Δ $I_{\rm G}$: moment d'inertie par rapport à un axe $\Delta_{\rm G}$ parallèle à Δ et passant par le centre de masse ℓ : distance entre Δ et $\Delta_{\rm G}$

Dynamique : Mouvements particuliers			
Mouvement central		$\vec{L} = \overrightarrow{\mathrm{constante}}$	\vec{F} toujours dirigée vers le même point O
Loi des aires		Le segment qui relie le mobile au point O balaie des aires égales en des in- tervalles de temps égaux	exemple : force de gravitation (dessin cf. p. 192)
Corps célestes			M: masse de l'astre
Vitesse de libération	$\mathrm{m}\cdot\mathrm{s}^{-1}$	$v = \sqrt{\frac{2GM}{r}}$	r : distance du corps au centre de l'astre
Vitesse d'un satellite sur une orbite circulaire	$\mathrm{m}\cdot\mathrm{s}^{-1}$	$v = \sqrt{\frac{GM}{r}}$	M: masse de l'astre r : rayon de l'orbite
Période de révolution des satellites d'un même astre (3 ^e loi de Kepler, cf. p. 192)	s	$T = 2\pi \sqrt{\frac{a^3}{GM}}$	M: masse de l'astre a : demi-grand axe de l'ellipse
Mouvement harmonic	que		
Oscillateur harmonique			
Équation horaire	m	$x = x_{\text{max}} \sin(\omega t + \varphi_0)$	
Pulsation	$\mathrm{rad}\cdot\mathrm{s}^{-1}$	$\omega = \sqrt{\frac{k}{m}}$	$\vec{F} = -k\vec{x}$ 0 x
Période	S	$T = 2\pi \sqrt{\frac{m}{k}}$	

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Pendules			
Équation horaire	rad	$\theta = \theta_{\text{max}} \sin(\omega t + \varphi_0)$	
Pendule physique			<u>Q</u> \
Pulsation	$\rm rad\cdot s^{-1}$	$\omega = \sqrt{\frac{mgr_{\rm G}}{I_O}}$	r_{G}
Période	S	$T = 2\pi \sqrt{\frac{I_O}{mgr_{\rm G}}}$	pour des petites oscillations $\sin \theta \approx \theta$
Pendule simple			h
Pulsation	$\rm rad\cdot s^{-1}$	$\omega = \sqrt{\frac{g}{\ell}}$	l ^θ e
Période	S	$T = 2\pi \sqrt{\frac{\ell}{g}}$	pour des petites oscillations $\sin \theta \approx \theta$
Pendule de torsion			z ↑
Pulsation	$\rm rad\cdot s^{-1}$	$\omega = \sqrt{\frac{C}{I}}$	ξ5 - Jθ
Période	s	$T = 2\pi \sqrt{\frac{I}{C}}$	θ dans le domaine élastique

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Masse volumique	${ m kg\cdot m^{-3}}$	$\rho = \frac{m}{V}$	V : volume occupé par le fluide de masse m
Pression	Pa	$p = \frac{F_n}{S}$	F_n : valeur de la force normale s'exerçant sur l'élément de surface d'aire S
Débit-volume	$\mathrm{m^3\cdot s^{-1}}$	$q = \frac{\mathrm{d}V}{\mathrm{d}t}$	V est le volume du fluide traversant la surface S au cours du temps t
Variation de la pression	Pa	$p_2 - p_1 = -\rho g(z_2 - z_1)$ $\Delta p = -\rho g \Delta z$	ρ : masse volumique du fluide $ z \bigwedge_{z_1 - \cdots - 1} $ $ z_2 - \cdots - \cdots - 2 $
Poussée d'Archimède	N	$F_{ m A} = ho g V_{ m im}$	$ec{F}_{ m A}$: force verticale ascendante avec point d'application au centre de gravité du fluide déplacé $V_{ m im}$: volume immergé
Équation de continuité	$\mathrm{m}^3\cdot\mathrm{s}^{-1}$	$S_1 v_1 = S_2 v_2$	S_1, S_2 : sections droites du tube de courant régime stationnaire
Équation de Bernoulli	Pa	$\frac{1}{2}\rho v^2 + \rho gz + p = \text{constante}$	$\begin{array}{c} \vec{v}_1 \\ \vec{v}_2 \\ \vec{v}_3 \\ \vec{v}_4 \\ \vec{v}_5 \\ \vec{v}_6 \\ \vec{v}_8 \\ \vec{v}_$

Formulaire : Électricité

Électrostatique				
Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures	
Charge	С	q, e, Q	charge élémentaire $e = 1,60 \cdot 10^{-19} \text{ C}$	
Densité superficielle de charge	$\mathrm{C}\cdot\mathrm{m}^{-2}$	$\sigma = \frac{\mathrm{d}Q}{\mathrm{d}S}$	$\sigma = \frac{Q}{S} \text{ dans le cas d'une densité uniforme}$	
Force électrique Loi de Coulomb	N	$F_{1,2} = \frac{1}{4\pi\varepsilon_0} \frac{ Q_1 Q_2 }{r^2} = F_{2,1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Champ électrique \vec{E}	$\begin{array}{c} {\rm N\cdot C^{-1}} \\ {\rm V\cdot m^{-1}} \end{array}$	$\vec{F} = q\vec{E}$	q: charge test	
Flux du champ électrique	V·m	$\Psi = \int\limits_{S} \vec{E} \cdot \mathrm{d}\vec{S}$	$d\vec{S} / \vec{E}$	
Loi du flux Loi de Gauss		$\Psi_S = \frac{1}{\varepsilon_0} \sum_i Q_i$	$ \begin{array}{c} \varepsilon_0 : \text{ constante \'electrique ou} \\ \text{ permittivit\'e du vide} \\ \varepsilon_0 = 8,85\cdot 10^{-12}\text{A}\cdot\text{s}\cdot\text{V}^{-1}\cdot\text{m}^{-1} \\ Q_i : \text{ charge contenue dans la} \\ \text{ surface ferm\'ee } S \\ \end{array} $	
Champs électriques p	particuliei	rs		
Charge ponctuelle	$V \cdot m^{-1}$	$E = \frac{1}{4\pi\varepsilon_0} \frac{ Q }{r^2}$	$\begin{array}{cccc} Q^+ & & P & \vec{E} \\ \bullet & & \bullet & & \\ Q^- & \vec{E} & P \\ \bullet & & & \bullet & \\ & & & r & \longrightarrow \end{array}$	

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Entre deux conducteurs plans parallèles	$V \cdot m^{-1}$	$E = \frac{1}{\varepsilon_0} \frac{Q}{S}$	effets de bords négligés $Q = Q^+ = Q^- $
Conducteur sphérique	$V \cdot m^{-1}$	$E = \frac{1}{4\pi\varepsilon_0} \frac{ Q }{r^2}$	r: distance mesurée entre le centre de la sphère et le
Conducteur cylindrique	$ m V\cdot m^{-1}$	$E = \frac{1}{2\pi\varepsilon_0} \frac{ Q }{rh}$	point P $ \begin{matrix} h \\ + + + + + + \\ \hline \end{matrix} $ $r:$ distance mesurée entre l'axe du cylindre et le point P $ h:$ longueur du cylindre $ h \gg r $
Tension	V	$U_{ m MN} = rac{A_{ m MN}}{q} = \int\limits_{ m M}^{ m N} ec{E} \cdot { m d}ec{r}$	$d\vec{r}$ N
Tension dans un champ uniforme	V	$U_{ ext{MN}} = ec{E} \cdot ec{d} = E d \cos arphi$	$\vec{d} = \overrightarrow{MN}$

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Potentiel en un point	V	$V_{\rm P} = U_{ m PO}$	O : point de référence $U_{\rm PO} = -\int\limits_{\rm O} \vec{E} \cdot {\rm d}\vec{r}$
Différence de potentiel	V	$V_{\rm A} - V_{\rm B} = U_{\rm AB}$	
Potentiel dans le champ d'une charge ponctuelle (ou à symétrie sphérique)	V	$V_{\rm P} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$	r : distance mesurée entre la charge (ou le centre de la sphère) et le point P
Capacité d'un conducteur	F	$C = \frac{Q}{V}$	Q: charge portée par le conducteur V : potentiel du conducteur
Capacité d'un condensateur	F	$C = \frac{Q}{U}$	Q: charge portée par l'armature positive U : tension entre les armatures
Permittivité	$A \cdot s \cdot V^{-1} \cdot m^{-1}$	$\varepsilon = \varepsilon_0 \varepsilon_{\mathrm{r}}$	dans le vide la permittivité relative $\varepsilon_{\rm r}=1$
Capacité d'un conde	ısateur		
Condensateur plan	F	$C = \varepsilon \frac{S}{d}$	S : aire d'une plaque d : distance entre les plaques effets de bords négligés R_i : rayons des sphères
sphérique	F	$C = 4\pi\varepsilon \frac{1}{\frac{1}{R_1} - \frac{1}{R_2}}$	R_i : rayons des spheres $R_1 < R_2$
Condensateur cylindrique	F	$C = 2\piarepsilonrac{h}{\lnrac{R_2}{R_1}}$	R_i : rayons des cylindres $R_1 < R_2$ h : hauteur des cylindres $h \gg R_2$
Énergie électrique emmagasinée dans un condensateur	J	$W = \frac{1}{2}CU^2$	
Densité d'énergie du champ électrique	$\mathrm{J}\cdot\mathrm{m}^{-3}$	$w = \frac{1}{2}\varepsilon E^2$	

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Combinaison de con	densateurs		
En série		$\frac{1}{C_{\text{éq}}} = \sum_{i} \frac{1}{C_i}$ $= \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$	
En parallèle		$C_{\text{\'eq}} = \sum_{i} C_{i}$ $= C_{1} + C_{2} + \ldots + C_{n}$	$C_{\text{\'eq}}$: capacité équivalente $\begin{array}{c c} C_1 & & \\ \hline C_2 & & \\ \hline C_n & & \\ \hline \end{array}$

Électrocinétique				
Intensité du courant	A	$I = \frac{\mathrm{d}Q}{\mathrm{d}t}$		
		$I = \frac{Q}{t}$	courant constant	
Densité du courant j	${ m A\cdot m^{-2}}$	$I = \int\limits_{S} \vec{j} \cdot \mathrm{d}\vec{S}$	S : section du conducteur	
		$j = \frac{I}{S}$	courant uniforme	
Conductivité γ	$A \cdot m^{-1} \cdot V^{-1}$	$\vec{j} = \gamma \vec{E}$	loi d'Ohm locale	
Résistivité	$\Omega \cdot m$	$\rho = \frac{1}{\gamma}$		
Coefficient de température de la résistivité α	K^{-1}	$\Delta \rho = \rho_2 - \rho_1 = \alpha \rho_1 \Delta T$		
Résistance d'un conducteur	Ω	$R = \rho \frac{\ell}{S}$	S : section du conducteur ℓ : longueur du conducteur	
Loi d'Ohm		U = RI	U: tension aux bornes du conducteur I : intensité du courant dans le conducteur	
Puissance électrique	W	$P_{\mathrm{AB}} = U_{\mathrm{AB}}I$	puissance associée à un courant (entre A et B : générateur, récepteur,)	
Loi de Joule	Ј	$W_{ m \'el}=RI^2t$	transformation d'énergie électrique en énergie thermique	

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Combinaison de résistances			
En série		$R_{\text{éq}} = \sum_{i} R_{i}$ $= R_{1} + R_{2} + \ldots + R_{n}$	R_1 R_2 R_n $R_{\rm \acute{e}q}$: résistance équivalente
En parallèle		$\frac{1}{R_{\text{éq}}} = \sum_{i} \frac{1}{R_{i}}$ $= \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots + \frac{1}{R_{n}}$	R_1 R_2 R_2 R_n
Générateur			
Puissance électrique totale	W	$P = U_0 I$	U_0 : tension électromotrice ou tension à vide
Tension aux bornes	V	$U = U_0 - rI$	r: résistance interne
Récepteur Puissance utile (non thermique)	W	P = U'I	U': tension contre-électromotrice
Tension aux bornes	V	U = U' + r'I	r': résistance interne
Première loi de Kirchhoff Loi des nœuds	A	$I = \sum_{i} I_i = 0$ $I_1 + I_2 + \ldots + I_n = 0$	I_1 I_5 I_2 I_4 I_3
Seconde loi de Kirchhoff Loi des mailles	V	$U = \sum_{i} U_{i} = 0$ $U_{1} + U_{2} + \ldots + U_{n} = 0$	

Magnétisme			
Champ magnétique \vec{B}	Т		
Force de Lorentz	N	$\vec{F} = q\vec{v} \times \vec{B}$	\vec{B} \vec{V}

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Force de Laplace	N	$\vec{F} = I \vec{\ell} \times \vec{B}$	\vec{F} \vec{B} \vec{B} uniforme
Circulation du champ magnétique	$T \cdot m$	$C = \int_{\Gamma} \vec{B} \cdot d\vec{r}$	si $\Gamma = \Gamma_0$, ligne fermée, la circulation se note C_0
Loi d'Ampère	$T \cdot m$	$C_0 = \oint_{\Gamma_0} \vec{B} \cdot d\vec{r} = \mu_0 \sum_k I_k$	μ_0 : constante magnétique ou perméabilité du vide $\mu_0 = 4\pi \cdot 10^{-7} \; \mathrm{V} \cdot \mathrm{s} \cdot \mathrm{A}^{-1} \cdot \mathrm{m}^{-1}$ I_k : courant enlacé par Γ_0
Champ magnétique d'un élément de courant (Loi de Biot-Savart)	Т	$\mathrm{d}\vec{B} = \frac{\mu_0}{4\pi} \frac{I \mathrm{d}\vec{\ell} \times \vec{r}}{r^3}$	$d\vec{\ell}$ \vec{r} $d\vec{B}$
Champs magnétiques particuliers			
Courant rectiligne infini	Т	$B = \mu_0 \frac{I}{2\pi r}$	\overrightarrow{B} r I
Centre d'une bobine quelconque	Т	$B = \mu_0 \frac{nI}{\sqrt{4R^2 + \ell^2}}$	R : rayon des spires ℓ : longueur de la bobine n : nombre de spires
Centre d'une bobine plate	Т	$B = \mu_0 \frac{nI}{2R}$	$\ell \uparrow \bigcap_{I \to R} R \gg \ell$
Centre d'une bobine longue (solénoïde)	Т	$B = \mu_0 \frac{nI}{\ell}$	$R \downarrow \\ I \qquad \qquad I \qquad \qquad R \ll \ell$

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Flux du champ magnétique	Wb	$\Phi = \int\limits_{S} \vec{B} \cdot \mathrm{d}\vec{S}$	$d\vec{s}/\vec{B}$
Loi du flux relative au champ magnétique		$\Phi_S = 0$	S : surface fermée
Loi d'induction de Faraday	V	$U_{\rm ind} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$	$U_{\rm ind}$: tension induite le long d'une ligne fermée
	Н	$\Phi = LI$ $U_{\text{ind}} = -L \frac{\mathrm{d}I}{\mathrm{d}t}$	
Coefficient d'auto-induction d'une bobine longue	Н	$L = \mu_0 n^2 \frac{S}{\ell}$	ℓ : longueur de la bobine n : nombre de spires S : aire limitée par une spire
Énergie magnétique d'une bobine	J	$W = \frac{1}{2}LI^2$	
Densité d'énergie du champ magnétique	$\mathrm{J}\cdot\mathrm{m}^{-3}$	$w = \frac{1}{2\mu_0}B^2$	dans le vide
Loi d'Ampère-Maxwell		$\oint_{\Gamma_0} \vec{B} \cdot d\vec{r} = \mu_0 \sum_k I_k + \varepsilon_0 \mu_0 \frac{d\Psi}{dt}$	c : vitesse de la lumière $\frac{1}{c^2} = \varepsilon_0 \mu_0$

Courants alternatifs				
Tension	V	$U = U_{\text{max}}\sin(\omega t + \varphi_1)$	$U_{\rm max},I_{\rm max}$: valeurs de crête	
		$U_{\rm eff} = \frac{U_{\rm max}}{\sqrt{2}}$	$U_{ m max},I_{ m max}$: valeurs de crête $U_{ m eff},I_{ m eff}$: valeurs efficaces	
Intensité de courant	A	$I = I_{\text{max}} \sin(\omega t + \varphi_2)$	$\varphi_1 - \varphi_2$: déphasage	
		$I_{\text{eff}} = \frac{I_{\text{max}}}{\sqrt{2}}$	$U_{\mathrm{eff}},I_{\mathrm{eff}}$: valeurs efficaces $ \varphi_1 - \varphi_2 : \mathrm{d\'ephasage} $	
Impédance	Ω	$U_{ m max}$ $U_{ m eff}$	ω : pulsation de la tension alternative (et du courant alternatif)	
Résistance ohmique		Z = R	$\omega = 2\pi\nu$; ν : fréquence	

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Self pure		$Z = \omega L$	
Condensateur		$Z = \frac{1}{\omega C}$	
Circuit RLC en série	е		
	V	$U = U_{\text{max}} \sin(\omega t + \varphi_1)$	
	A	$I = I_{\max} \sin(\omega t + \varphi_2)$	$\begin{array}{c cccc} & & & & & & & & \\ \hline & R & L & C & & & & \\ \end{array}$
		$U_{\rm max} = I_{\rm max} Z$	
Impédance	Ω	$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$	$ \begin{array}{c c} -\frac{1}{\omega C}I_{\text{max}} \\ I_{\text{max}} \end{array} $ $ \begin{array}{c c} U_{\text{max}} \\ \varphi_{1} - \varphi_{2} \\ RI_{\text{max}} \end{array} $
Déphasage		$\varphi_1 - \varphi_2 = \arctan \frac{\omega L - \frac{1}{\omega C}}{R}$	Représentation de Fresnel
Résonance		$\omega = \omega_0 = \frac{1}{\sqrt{LC}}$ $\varphi_1 - \varphi_2 = 0$	
Circuit RLC en para	ıllèle	· · · ·	
The same state of the party of	V	$U = U_{\text{max}} \sin(\omega t + \varphi_1)$	
	A	$I = I_{\text{max}} \sin(\omega t + \varphi_2)$	
		$I_{\rm max} = U_{\rm max} Y$	"
Admittance	S	$Y = \frac{1}{Z} = \sqrt{\frac{1}{R^2} + \left(\frac{1}{\omega L} - \omega C\right)^2}$	$\frac{1}{\omega L} U_{\text{max}}$ $\frac{1}{\log^2 \varphi_1 - \varphi_2}$ $\frac{U_{\text{max}}}{R}$
Déphasage		$\varphi_1 - \varphi_2 = \arctan R \left(\frac{1}{\omega L} - \omega C \right)$	Représentation de Fresnel
Antirésonance		$\omega = \omega_0 \frac{1}{\sqrt{LC}}$ $\varphi_1 - \varphi_2 = 0$	
Puissance	$V \cdot A$	$P = U_{\text{eff}} I_{\text{eff}} \cos(\varphi_2 - \varphi_1)$	$\cos(\varphi_2 - \varphi_1)$: facteur de puissance
Période d'un circuit oscillant		$T = 2\pi\sqrt{LC}$	

Formulaire : Chaleur

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Température absolue T	K		$\Delta T = T_2 - T_1$
Température Celsius θ	$^{\circ}\mathrm{C}$	$\theta = T - 273$	$\Delta\theta = \theta_2 - \theta_1 = \Delta T$
Coefficient de dilatation			
– linéique α	K^{-1}	$\Delta \ell = \ell_2 - \ell_1 = \alpha \ell_1 \Delta T$	
– volumique γ	K^{-1}	$\Delta V = V_2 - V_1 = \gamma V_1 \Delta T$	$\gamma \approx 3\alpha$
Quantité de chaleur ${\cal Q}$	J		
Énergie thermique E, W	J		
Chaleur massique c	$J \cdot kg^{-1} \cdot K^{-1}$	$Q = mc\Delta T$	
Capacité thermique ${\cal C}$	$J \cdot K^{-1}$	$C = \sum_{i} m_{i} c_{i}$ $Q = C\Delta T$	
Chaleur latente de fusion $L_{\rm f}$	$J \cdot kg^{-1}$	$Q = mL_{\rm f}$	
Chaleur latente de vaporisation $L_{\rm v}$	$\mathrm{J}\cdot\mathrm{kg}^{-1}$	$Q = mL_{\rm v}$	
Loi des gaz parfaits	pV = nRT		n : nombre de moles R : constante des gaz $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
	:	$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$	entre 2 états pour une même quantité de gaz
Équation de Van der Waals	$\left(p + \frac{n^2}{V^2}a\right)(V - nb) = nRT$		a, b: constantes propres aux gaz; air: $a = 0, 14 \text{ N} \cdot \text{m}^4 \cdot \text{mol}^{-2}$ $b = 3, 6 \cdot 10^{-5} \text{ m}^3 \cdot \text{mol}^{-1}$ gaz parfait: a = 0; $b = 0$
Énergie cinétique moyenne par molécule d'un gaz parfait	J	$\overline{E_c} = rac{i}{2}kT$	$\begin{split} i: \text{nombre de degrés de} \\ \text{liberté}; & \text{gaz}: \\ -& \text{monoatomique}: i=3 \\ -& \text{diatomique}: i=6 \\ k: & \text{constante de} \\ \text{Boltzmann} \\ k=R/N_{\text{A}} \\ k=1, 38\cdot 10^{-23} \; \text{J}\cdot \text{K}^{-1} \end{split}$

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Énergie interne d'un gaz parfait	J	$U = \frac{i}{2}nRT$	U: somme des énergies cinétiques des particules
Premier principe de la thermodynamique	J	$Q^{\checkmark} = \Delta U + A^{\nearrow}$	Q^{\checkmark} : quantité de chaleur reçue par le système ΔU : variation de l'énergie interne (toutes les formes d'énergies possibles sont prises en considération) A^{\nearrow} : travail mécanique fourni par le système
Rendement maximal d'une machine thermique (cycle de Carnot)		$\eta_{\rm max} = \frac{T_{\rm c} - T_{\rm f}}{T_{\rm c}}$	$T_{\rm f}$: température de la source froide $T_{\rm c}$: température de la source chaude
Chaleur massique			
– à volume constant	$J \cdot kg^{-1} \cdot K^{-1}$	$c_v = \frac{iR}{2M}$	M: masse molaire
– à pression constante	$J \cdot kg^{-1} \cdot K^{-1}$	$c_p = \frac{(i+2)}{2M}R$	
Chaleur molaire			
– à volume constant	$J \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}$	$C_v = \frac{i}{2}R$	
– à pression constante	$J \cdot mol^{-1} \cdot K^{-1}$	$C_p = C_v + R$	
		$pV^{\gamma} = \text{constante}$	Processus adiabatique $\gamma = c_p/c_v > 1$ $\gamma = 5/3$ monoatomique $\gamma = 7/5$ diatomique $\gamma = 4/3$ triatomique
Transfert de chaleur			
	$\mathbf{W}\cdot\mathbf{m}^{-1}\cdot\mathbf{K}^{-1}$	$\frac{\Delta Q}{\Delta t} = \lambda S \frac{\Delta T}{\Delta x}$	
	$\mathbf{W}\cdot\mathbf{m}^{-2}\cdot\mathbf{K}^{-1}$	$\frac{\Delta Q}{\Delta t} = \alpha S \Delta T$	α dépend de la forme et de l'orientation de la surface
$\begin{array}{c} \textbf{Rayonnement} \\ \textbf{Constante de Stefan-} \\ \textbf{Boltzmann} \ \sigma \end{array}$	$W \cdot m^{-2} \cdot K^{-4}$	$\frac{\Delta Q}{\Delta t} = e\sigma S T^4$	$ \begin{aligned} \sigma &= \\ 5,67\cdot 10^{-8} \; \mathrm{W\cdot m^{-2}\cdot K^{-4}} \\ e: \mathrm{facteur} \; \mathrm{d'\acute{e}mission} \\ 0 \leqslant e \leqslant 1 \end{aligned} $

Formulaire : Ondes et Optique

Généralités				
Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures	
Vitesse de propagation d'une perturbation ou célérité	$\mathrm{m}\cdot\mathrm{s}^{-1}$	$c,\ v$: vitesse constante de propagation de l'onde dans un milieu donné		
Période	S	T : intervalles de temps égaux séparant la reproduction de 2 perturbations identiques	$y \uparrow T \uparrow t$	
Fréquence	Hz	$\nu = \frac{1}{T}$		
Longueur d'onde	m	$\lambda = \frac{c}{\nu}$	$\begin{array}{c} y \\ \\ \\ \end{array}$	
Pulsation	s^{-1}	$\omega = 2\pi\nu$		
Nombre d'onde	m^{-1}	$k = \frac{2\pi}{\lambda}$		
Onde sinusoïdale		$y = A\sin(kx - \omega t)$	A: amplitude y : écart par rapport à la position d'équilibre	
Interférences			c	
Différence de marche au point M	m	$\delta = d_2 - d_1 = \frac{2ax}{D}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Position des maxima d'intensité		$\delta = N \lambda$	-	
Position des minima d'intensité		$\delta = \frac{(2N+1)\lambda}{2}$	$N = 0, 1, 2, \dots$	
Interfrange	m	$\Delta = \frac{\lambda D}{2a}$	$\begin{array}{l} \Delta : {\rm distance\ entre\ 2\ maxima} \\ {\rm d'intensit\'e\ dans\ un\ plan} \\ {\rm parall\`ele\ \grave{a}\ S_1S_2} \end{array}$	

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Diffraction			
Pour une fente		$\sin \theta = \pm \frac{N\lambda}{d}$	$N=1,2,\ldots$ θ : angle de diffraction correspondant à un minimum d'intensité pour la fente, à un maximum pour le réseau d
Pour un réseau		$\sin\theta = \pm \frac{N\lambda}{d}$	$N = 0, 1, 2, \dots$ d : largeur de la fente ou constante du réseau

${\bf Acoustique}$

Vitesse de propagation	on d'une	perturbation ou célérité	
Le long d'une corde tendue	$\mathrm{m}\cdot\mathrm{s}^{-1}$	$v = \sqrt{\frac{F}{\mu}}$	F : force de tension de la corde μ : masse par unité de longueur
Dans un solide		$v = \sqrt{\frac{E}{\rho}}$	E : module d'élasticité ou de Young ρ : masse volumique
Dans un gaz parfait		$v = \sqrt{\frac{\gamma RT}{M}} = \sqrt{\frac{\gamma p}{\rho}}$	γ , R , M : cf. pages 153 et 154
Fréquences propres			
Corde	Hz	$\nu = \frac{Nv}{2\ell}$	ℓ : longueur de la corde ou du tuyau
Tuyau ouvert		$\nu = \frac{Nv}{2\ell}$	$N=1,2,3,\dots$
Tuyau fermé		$\nu = \frac{(2N-1)v}{4\ell}$	N=1: mode fondamental
Effet Doppler		$ u_{ m app} = u_{ m r\'eelle} rac{v_{ m onde} + v_{ m obs}}{v_{ m onde} - v_{ m source}} $	$v_{ m onde},v_{ m obs},v_{ m source}$ par rapport au milieu $v_{ m obs}>0$ quand l'observateur se déplace vers la source $v_{ m source}>0$ quand la source se déplace vers l'observateur toutes les vitesses ont même direction

Optique		- 1	•
Untidile	geom	etr	אווטוי

Grandeur physique	Unité	Relation de définition	Remarques, figures
Intitulé de la loi Vitesse de la lumière :		Loi ou formule	
- dans le vide	$\mathrm{m}\cdot\mathrm{s}^{-1}$	c	$c = 2,99792458 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$
- dans un milieu	$m \cdot s^{-1}$	v	v < c
Réflexion et réfraction	l	U	0 < 0
Indice de réfraction absolu Angles:	— —	$n = \frac{c}{v}$	$n \geqslant 1$
- d'incidence	$^{\circ}$ ou rad	α_1	
– de réflexion		$lpha_1'$	angles formés par le rayon lumineux et la normale au point d'incidence
– de réfraction		α_2	
Loi de la réflexion		$\alpha_1=\alpha_1'$	
Loi de la réfraction		$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$ les rayons incident, réfléchi, réfracté et la normale sont coplanaires	α_1 α_1' α_2
Dipotre plan Profondeur apparente	m	$h' \approx h \frac{n_1}{n_2}$	$\begin{array}{c c} & n_1 \\ \hline & h \\ \hline & h' \\ \hline & n_2 \\ \hline \\ rayons \ peu \ inclinés \ par \ rapport à la normale \\ \end{array}$
Lame à faces parallèles Déplacement	m	$\mathrm{AA'} \approx e \frac{n_2 - n_1}{n_2} \alpha_1$	$n_1 \qquad \qquad \begin{matrix} \alpha_1 \\ \hline n_2 \\ \hline n_1 \\ \end{matrix} \qquad \qquad \begin{matrix} e \\ e \end{matrix}$ é épaisseur de la lame rayons peu inclinés par rapport à la normale

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Miroirs et lentilles			
Distance focale	m	f	
Vergence	m^{-1}	$C = \frac{1}{f}$	$m^{-1} = dioptrie$
Miroir sphérique de faible ouverture		$f = \frac{R}{2}$	R: rayon de courbure $R > 0$: miroir concave $R < 0$: miroir convexe
Lentille sphérique mince		$\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	sens de la lumière de gauche à droite R_1 R_2 $R_i: \text{rayons de courbure}$ $f>0: \text{lentille convergente}$ $f<0: \text{lentille divergente}$
Miroir sphérique de faible ouverture et lentille sphérique mince		$\frac{1}{p} + \frac{1}{p'} = \frac{1}{f}$	p > 0: objet réel p < 0: objet virtuel p' > 0: image réelle p' < 0: image virtuelle g p' p' p' p'
		$\frac{g}{g'} = -\frac{p}{p'}$	g > 0: objet 'droit $g < 0$: objet renversé $g' > 0$: image droite $g' < 0$: image renversée
Système de lentilles		$p_n = e - p'_{n-1}$	e : distance entre la $(n-1)^{\rm e}$ et la $n^{\rm e}$ lentille
Lentilles minces accolées		$C = C_1 + C_2 + \dots$	

Formulaire : Relativité

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Les deux postulats d'Einstein		 1er principe: Toutes les lois de la physique ont la même forme dans tous les référentiels d'inertie 2e principe: La vitesse de la lumière dans le vide est la même dans tous les référentiels d'inertie. Elle ne dépend pas du mouvement de la source ou de l'observateur 	$c = 2,99792458 \cdot 10^8 \; \mathrm{m \cdot s^{-1}}$
Temps propre	s	T_0	le temps propre est l'intervalle de temps entre deux événe- ments mesurés dans le référen- tiel propre d'une horloge
Longueur propre	m	L_0	la longueur propre d'un objet est l'intervalle séparant ses ex- trémités dans l'espace, mesuré dans un référentiel au repos par rapport à l'objet
Masse au repos	kg	m_0	la masse au repos d'un objet est sa masse mesurée dans un réfé- rentiel au repos par rapport à l'objet
Transformations de Galilée		x' = x - Vt $y' = y$ $z' = z$ $t' = t$	le référentiel S' est animé d'une vitesse $+V$ parallèle à l'axe des x du référentiel S
Transformations de Lorentz		$x' = \frac{x - Vt}{\sqrt{1 - \frac{V^2}{c^2}}}$ $y' = y$ $z' = z$ $t' = \frac{t - \frac{Vx}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}}$	$\begin{array}{c} Vt \\ S \downarrow^{y} S' \downarrow^{y'} \\ O x \downarrow O' \downarrow' x' \\ z & z' \end{array}$

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures		
Dilatation du temps	S	$T = T_0 \frac{1}{\sqrt{1 - \frac{V^2}{c^2}}}$	V est la vitesse relative de deux référentiels		
Contraction des longueurs	m	$L = L_0 \sqrt{1 - \frac{V^2}{c^2}}$	L est la longueur de l'objet mesuré parallèlement à la direction du mouvement		
Intervalle de l'espace temps	m^2		$(y)^2 + (\Delta z)^2 - c^2(\Delta t)^2$ sformation de Lorentz		
Composition des vitesses (cas mono- dimensionnel)	$\mathrm{m}\cdot\mathrm{s}^{-1}$	$V_{AB} = \frac{V_{AC} + V_{CB}}{1 + \frac{V_{AC}V_{CB}}{c^2}}$	V_{AB} : vitesse de A par rapport à B V_{AC} : vitesse de A par rapport à C V_{CB} : vitesse de C par rapport à B		
Effet Doppler relativiste		$\nu = \nu_0 \sqrt{\frac{c - V}{c + V}}$	$ u_0$: fréquence d'une onde électromagnétique dans un référentiel lié à sa source $ u$: fréquence de la même onde mesurée dans un référentiel se déplaçant à la vitesse \vec{V} par rapport à la source \vec{V} est parallèle à la direction de propagation de l'onde $ V > 0$: le second référentiel s'éloigne de la source $ V < 0$: dans le cas contraire		
Masse relativiste	kg	$m = \frac{m_0}{\sqrt{1 - \frac{V^2}{c^2}}}$			
Quantité de mouvement	$ ext{kg} \cdot ext{m} \cdot ext{s}^{-1}$	$\vec{p} = m\vec{v}$	m : masse relativiste \vec{v} : vitesse de la particule		
Énergie totale	J	$E = mc^2$	m: masse relativiste		
Énergie cinétique		$E_{\rm c} = E - m_0 c^2$			
Relation quantité de mouvement - énergie		$E^2 = p^2 c^2 + m_0^2 c^4$	la quantité $E^2 - p^2c^2$ est invariante		

Formulaire : Atomes et particules

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Corps noir. Corps ch	aud. Gaz ch	aud sous pression	
Émission énergétique d'un corps quelconque	$\mathrm{W}\cdot\mathrm{m}^{-2}$	$M = e\sigma T^4$	$\begin{split} M: & \text{exitance \'energ\'etique} \\ e: & \text{facteur d\'emission} \\ 0 \leqslant e \leqslant 1 \\ T: & \text{temp\'erature en K} \\ \sigma: & \text{constante de Stefan-Boltzmann} \\ \sigma & = 5,67\cdot10^{-8}\text{W}\cdot\text{m}^{-2}\cdot\text{K}^{-4} \end{split}$
Émission du corps noir dans un environnement	$ m W\cdot m^{-2}$	$M' = \sigma(T^4 - T_0^4)$	T_0 : température de l'environnement en K T : température du corps noir en K
Loi du déplacement de Wien	m	$\lambda_{\max} = \frac{b}{T}$	$b = 2,90 \cdot 10^{-3} \text{ m} \cdot \text{K}$
Gaz raréfié chaud			
Spectre des raies de l'hydrogène	m^{-1}	$\frac{1}{\lambda} = R_{\infty} \left(\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2} \right)$	$\begin{aligned} n_{\rm f} &= 1, 2, \dots \text{ \'etat final} \\ n_{\rm i} &= 2, 3, \dots \text{ \'etat initial} \\ R_{\infty} &: \text{ constante de Rydberg} \\ R_{\infty} &= 1, 097373 \cdot 10^7 \text{ m}^{-1} \end{aligned}$
Particules			
Énergie du photon	J	$E = h\nu$	h : constante de Planck $h = 6,63 \cdot 10^{-34} \; \mathrm{J \cdot s}$ ν : fréquence
Relation de de Broglie	$\mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{s}^{-1}$	$p = \frac{h}{\lambda}$	
Relations d'incertitude de Heisenberg	${ m J}\cdot{ m s}$	$\Delta x \cdot \Delta p \gtrsim \hbar$ $\Delta E \cdot \Delta t \gtrsim \hbar$	$\hbar = \frac{h}{2\pi}$
Atomes. Noyaux			
Énergie de l'électron de l'atome d'hydrogène	eV	$E_n = -13, 6 \cdot \frac{1}{n^2}$	n : niveau de l'électron $1 \; \text{eV} = 1,60 \cdot 10^{-19} \; \text{J}$
Rayon des noyaux	m	$R\approx 1, 2\cdot 10^{-15}\cdot A^{\frac{1}{3}}$	A: nombre de masse

Grandeur physique Intitulé de la loi	Unité	Relation de définition Loi ou formule	Remarques, figures
Décroissance radioactive		$N = N_0 \exp\left(-\lambda t\right)$	N : nombre de noyaux non désintégrés à l'instant t N_0 : nombre de noyaux initiaux λ : constante de désintégration
Demi-vie		$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$	$T_{\frac{1}{2}}$: demi-vie = intervalle de temps pour que la moitié des atomes présents initialement se désintègrent
Activité	Bq	$A = -\frac{\mathrm{d}N}{\mathrm{d}t} = \lambda N$	
Radioprotection			
Dose absorbée	Gy	$D_{\rm a} = \frac{\Delta E}{m}$	ΔE : énergie perdue par la radiation m : masse de tissu irradié
Dose équivalente	Sv	$D_{\rm e} = \sum W_{\rm R} D_{\rm TR}$	facteur de pondération de la radiation : $1 \leqslant W_{\rm R} \leqslant 20$ $D_{\rm TR}: {\rm dose~absorb\acute{e}~par~un}$ tissu
Dose effective	Sv	$E = \sum W_{\rm T} W_{\rm R} D_{\rm TR}$	facteur de pondération du tissu : $0,01\leqslant W_{\rm T}\leqslant 0,20$

Constantes physiques

c	=	2,99792458		10^{8}	$\mathrm{m}\cdot\mathrm{s}^{-1}$
G	=	6,6738		10^{-11}	${\rm N}\cdot{\rm m}^2\cdot{\rm kg}^{-2}$
h	=	6,62606957		10^{-34}	$J \cdot s$
k	=	1,3806488		10^{-23}	${\rm J\cdot K^{-1}}$
e	=	1,60217657		10^{-19}	С
$m_{\rm e}$	=	9, 10938291		10^{-31}	kg
$m_{\rm p}$	=	1,67262178		10^{-27}	kg
$m_{\rm n}$	=	1,67492735		10^{-27}	kg
$N_{\rm A}$	=	6,02214129		10^{23}	mol^{-1}
V_0	=	22,413968		10^{-3}	$\mathrm{m}^3\cdot\mathrm{mol}^{-1}$
R	=	8, 3144621			$J \cdot mol^{-1} \cdot K^{-1}$
T_0	=	273, 15			K
T_0 p_0	=	273, 15 1, 01325		10^{5}	K Pa
Ü			•	10^{5}	
Ü					
p_0	=	1,01325		10^{4}	Pa
p_0 F	=	1,01325 9,64853365		$10^4 \\ 10^{-12}$	Pa $\begin{aligned} &C\cdot mol^{-1}\\ &A\cdot s\cdot V^{-1}\cdot m^{-1} \end{aligned}$
p_0 F ε_0	= =	1,01325 9,64853365 8,85418782		10^4 10^{-12} 10^{-6}	Pa $\begin{aligned} &C\cdot mol^{-1}\\ &A\cdot s\cdot V^{-1}\cdot m^{-1} \end{aligned}$
p_0 F ε_0 μ_0	= = = =	1,01325 9,64853365 8,85418782 1,25663706		10^4 10^{-12} 10^{-6}	$\begin{aligned} & Pa \\ & C \cdot mol^{-1} \\ & A \cdot s \cdot V^{-1} \cdot m^{-1} \\ & V \cdot s \cdot A^{-1} \cdot m^{-1} \end{aligned}$
p_0 F ε_0 μ_0	= = = =	1,01325 9,64853365 8,85418782 1,25663706		10^{4} 10^{-12} 10^{-6} 10^{-8}	$\begin{aligned} & Pa \\ & C \cdot mol^{-1} \\ & A \cdot s \cdot V^{-1} \cdot m^{-1} \\ & V \cdot s \cdot A^{-1} \cdot m^{-1} \end{aligned}$
p_0 F ε_0 μ_0 σ	= = = =	1,01325 9,64853365 8,85418782 1,25663706 5,670373		10^{4} 10^{-12} 10^{-6} 10^{-8} 10^{7}	$\begin{aligned} & Pa \\ & C \cdot mol^{-1} \\ & A \cdot s \cdot V^{-1} \cdot m^{-1} \\ & V \cdot s \cdot A^{-1} \cdot m^{-1} \\ & W \cdot m^{-2} \cdot K^{-4} \end{aligned}$
	G h k e $m_{ m e}$ $m_{ m p}$ $m_{ m n}$ $V_{ m A}$	$egin{array}{lll} G & = & & & & & & & & & & & & & & & & &$	$G = 6,6738$ $h = 6,62606957$ $k = 1,3806488$ $e = 1,60217657$ $m_e = 9,10938291$ $m_p = 1,67262178$ $m_n = 1,67492735$ $N_A = 6,02214129$ $V_0 = 22,413968$	$G = 6,6738 \cdot h = 6,62606957 \cdot k = 1,3806488 \cdot k = 1,60217657 \cdot m_e = 9,10938291 \cdot m_p = 1,67262178 \cdot m_n = 1,67492735 \cdot k = 6,02214129 \cdot k = 22,413968 \cdot k = 22,4$	$G = 6,6738 \cdot 10^{-11}$ $h = 6,62606957 \cdot 10^{-34}$ $k = 1,3806488 \cdot 10^{-23}$ $e = 1,60217657 \cdot 10^{-19}$ $m_{e} = 9,10938291 \cdot 10^{-31}$ $m_{p} = 1,67262178 \cdot 10^{-27}$ $m_{n} = 1,67492735 \cdot 10^{-27}$ $N_{A} = 6,02214129 \cdot 10^{23}$ $V_{0} = 22,413968 \cdot 10^{-3}$

Unités diverses

Longueur

1 Å (ångström)	=	1	10^{-10}	m
$1 \mu \text{ (micron)}$	=	1	10^{-6}	m
1 in (inch)	\approx	2,540	10^{-2}	m
$1 ext{ ft (foot)} = 12 ext{ in}$	\approx	0,3048		$_{ m m}$
1 yd (yard) = 3 ft	\approx	0,9144		$_{ m m}$
1 mile (mille anglais) = 1760 yd	\approx	1,609	10^{3}	m
1 n. mile (mille marin)	\approx	1,852	10^{3}	$_{ m m}$
1 AL (année lumière)	=	9,4607	10^{15}	m
1 pc (parsec)	\approx	3,0857	10^{16}	m

Aire

1 ha	(hectare) =	1		10^{4}	m^2
------	-------------	---	--	----------	----------------

Volume

$$1 \; L \; ou \; 1 \; l \; (litre) = 1 \; dm^3 \qquad \qquad = \qquad \qquad 1 \; \cdot \; \; 10^{-3} \quad m^3$$

Vitesse

$1 \text{ nœud} \approx 1,852 \text{ km} \cdot \text{h}^{-1}$	\approx	0,5144	$\mathrm{m}\cdot\mathrm{s}^{-1}$
1 M (mach)	\approx	340	$\mathrm{m}\cdot\mathrm{s}^{-1}$

Masse

Viscosité

1 daP (décapoise) = 1 $Pa \cdot s$

Énergie

1 eV (électronvolt)	=	1,60218	10^{-19}	J
1 cal (calorie)	\approx	4,186		J
1 kWh (kilowatt·heure)	=	3,6	10^{6}	J
1 tec (tonne équivalent charbon)	\approx	2,9	10^{10}	J
1 tep (tonne équivalent pétrole)	\approx	4,19	10^{10}	J

Puissance

1 Ch (CV cheval-vapeur) = $75 \cdot 9,81 \text{ W}$ 736 W

Pression

1 bar	=	1	10^{5}	Pa
1 atm = 760 mmHg	=	1,01325	10^{5}	Pa
1 Torr = 1 mmHg	\approx	1,333	10^{2}	Pa

Température

Conversions d'unités :

$$\theta(^{\circ}C) = \frac{5}{9} \cdot [\theta_F(^{\circ}F) - 32]$$

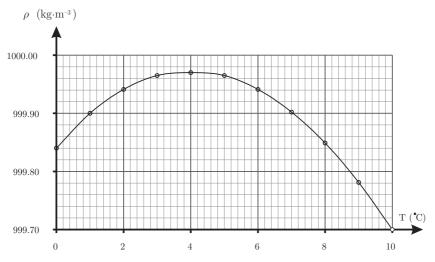
$$\theta(^{\circ}C) = T(K) - 273, 15$$

Magnétisme

1 G (gauss) = 1 · 10⁻⁴ T

Radioactivité

1 Ci (curie)	=	3,7	10^{10}	Bq
1 rd (rad)	=	1	10^{-2}	Gy
1 R (röntgen)	=	2,58	10^{-4}	$\mathrm{C}\cdot\mathrm{kg}^{-1}$
1 rem	=	1	10^{-2}	Sv


Tables particulières

Masse volumique de l'eau, de l'alcool et du mercure en fonction de la température, à pression normale

Température	Masse volumique	Masse volumique	Masse volumique
1	de l'eau	de l'alcool (éthanol)	du mercure
θ	ρ	ρ	ho
(°C)	$(\text{kg} \cdot \text{m}^{-3})$	$(\mathrm{kg}\cdot\mathrm{m}^{-3})$	$(\mathrm{kg}\cdot\mathrm{m}^{-3})$
-10	(0)	814,57	13 620,3
-5		810,41	13 607,9
0	999,840	806,25	13 595,6
5	999,965	802,07	13 583,3
10	999,700	797,88	13 570,9
15	999,101	793,67	13 558,6
20	998,203	789,45	13 546,3
25	997,039	785,22	13 534,1
30	995,639	780,97	13 521,8
35	994,026	776,71	13 509,6
40	992,211	772,44	13 497,4
50	988,045		13 473,1
60	983,207		13 448,8
70	977,775		13 424,6
80	971,798		13 400,5
90	965,316		13 376,4
100	958,350		13 352,4

Masse volumique de l'eau en fonction de la température entre 0 et 10 °C, à pression normale

La température correspondant à la valeur maximale de ρ est de 3,98 °C

Viscosités de quelques fluides

Liquides		η
		$(\mathrm{Pa}\cdot \mathrm{s})$
Eau	0 °C	$1,8 \cdot 10^{-3}$
Eau	20 °C	$1,0\cdot 10^{-3}$
Eau	40 °C	$0.7 \cdot 10^{-3}$
Alcool (éthanol)	20 °C	$1,2\cdot 10^{-3}$
Glycérine	$20~^{\circ}\mathrm{C}$	1,5
Huile machine (légère)	$40~^{\circ}\mathrm{C}$	$3,4\cdot 10^{-2}$
Huile machine (lourde)	40 °C	$13,0\cdot10^{-2}$
Huile moteur	40 °C	$2,4\cdot 10^{-1}$
Huile moteur	100 °C	$0,2 \cdot 10^{-1}$
Mercure	20 °C	$1,6\cdot 10^{-3}$

Gaz		η
		$(\mathrm{Pa}\cdot \mathrm{s})$
Air	0 °C	$1,7 \cdot 10^{-5}$
Air	20 °C	$1,8 \cdot 10^{-5}$
Air	40 °C	$1,9 \cdot 10^{-5}$
Vapeur d'eau	100 °C	$1,25 \cdot 10^{-5}$
Vapeur d'eau	200 °C	$1,65 \cdot 10^{-5}$
Ammoniac	20 °C	$1 \cdot 10^{-5}$
Azote	20 °C	$1{,}75{\cdot}10^{-5}$
Gaz carbonique	20 °C	$1,5 \cdot 10^{-5}$
Hydrogène	20 °C	$0,9 \cdot 10^{-5}$
Oxygène	20 °C	$2 \cdot 10^{-5}$

Pouvoirs énergétiques moyens de quelques combustibles

Combustibles	$(J \cdot kg^{-1})$
Acétylène (C ₂ H ₂)	$46 \cdot 10^{6}$
Alcool (Éthanol)	$27 \cdot 10^{6}$
Anthracite	$32 \cdot 10^6$
Bois	$16 \cdot 10^6$
Briquette (lignite)	$19 \cdot 10^6$
Butane	$45,6\cdot 10^6$
Coke	$29 \cdot 10^{6}$
Essence super	$45 \cdot 10^{6}$
Gaz naturel (90 % CH ₄)	$44 \cdot 10^{6}$
Houille	$33 \cdot 10^{6}$
Huile de chauffage (Diesel)	$42 \cdot 10^{6}$
Huile de table	$39 \cdot 10^{6}$
Hydrogène	$120\cdot 10^6$
Méthane (CH ₄)	$50 \cdot 10^{6}$
Pétrole lampant	$40 \cdot 10^6$
Propane (C ₃ H ₈)	$50 \cdot 10^6$
Stéarine (bougie)	$34 \cdot 10^6$
Tourbe	$14 \cdot 10^6$

La combustion libère du gaz carbonique et de la vapeur d'eau, à la différence du tableau des enthalpies de combustion (cf. Chimie) où l'on admet que l'eau est produite à l'état liquide.

Rendements de quelques machines

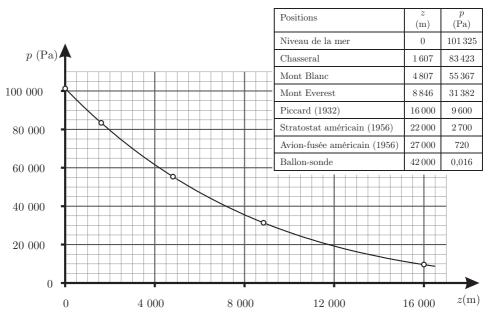
Machines	%
Générateur électrique	70-99
Pile sèche	90
Moteur électrique industriel	60-90
Pile à combustible hydrogène-oxygène	60
Moteur Diesel	34-50
Fusée à carburant liquide	47
Turbine à vapeur	35-46
Centrale électrique à combustible fossile	40
Centrale électrique à combustible nucléaire	32
Moteur à essence	27
Corps humain	25
Machine à vapeur à pistons	10-25

Rendements de quelques lampes

Lampes	%	$(\mathrm{lm}\cdot\mathrm{W}^{-1})$
Lampe à incandes- cence	5-10	7–15
Lampe à basse tension au krypton	10–14	15-20
Tube fluorescent compact	18-46	25-65
Tube fluorescent TL	40-57	55-80
Tube fluorescent TL-HF	64-78	90–110

Rendement lumineux visible, ordre de grandeur.

Énergies diverses (ordre de grandeur)


Phénomènes	E (J)
Photon dans le domaine visible	10^{-19}
Électron dans un tube TV	10^{-15}
Clin d'œil	10^{-7}
Proton dans un grand accélérateur	10^{-7}
Pomme en chute libre	1
Balle de tennis	10^{2}
Balle de fusil	10^{4}
Chauffage de l'eau d'un bain	10^{7}
Travail journalier d'un homme	10^{7}
Bombe (1 tonne de TNT)	10^{10}
Éclair (foudre)	10^{10}
Consommation énergétique totale en Suisse, par jour	10^{14}
Bombe H (100 mégatonnes)	10^{18}
Éruption solaire	10^{24}
Explosion d'une supernova	10^{40}

Puissances diverses

Systèmes	P (W)
Corps humain au repos	70–100
Récepteur TV	100
Vélomoteur 50 cm ³	900
Brûleur butane	900
Sèche-cheveux	$(1,0-1,3)\cdot 10^3$
Plaque électrique	$1,5 \cdot 10^3$
Corps humain en activité	$(0,3-2)\cdot 10^3$
Séchoir à linge	$(5-8)\cdot 10^3$
Voiture de tourisme 1400 cm^3	40.10^3
Locomotive électrique Re 4/4 IV	5.10^{6}
Centrale nucléaire (Goesgen)	$600 \cdot 10^6$
Centrale hydroélectrique (Dixence)	$750 \cdot 10^6$

Variation de la pression atmosphérique avec l'altitude

Relation donnée page 197.

Pression de saturation de la vapeur d'eau, en fonction de la température.

(°C)	0	1	2	3	4	5	6	7	8	9
0	611	657	706	758	813	872	935	1 002	1 073	1 148
10	1 228	1 312	1 402	1 497	1 598	1 705	1818	1937	2 063	2197
20	2 338	2487	2643	2809	2 983	3 167	3 360	3564	3 780	4005
30	4 243	4 492	4755	5 030	5 319	5623	5 941	6275	6625	6 992
40	7 375	7 778	8 199	8 639	9 101	9 583	10 086	10612	11 160	11735
50	12 334	12959	13 611	14292	15 000	15 737	16 505	17308	18 143	19 012
60	19916	20 856	21 834	22849	23 906	25003	26 143	27326	28554	29828
70	31 157	32517	33 944	35424	36 957	38 543	40 183	41877	43 636	45463
80	47 343	49 289	51 316	53 409	55 569	57 809	60 115	62488	64 941	67474
90	70 096	72801	75592	78 474	81 447	84 513	87 675	90935	94295	97 757
100	* 101 325	105 000	108 772	112673	116 665	120 799	125 046	129403	133 912	138511
110	143 263	148 148	153153	158 310	163 620	169050	174 644	180378	186275	192335

^{*} $101\,325$ Pa = 760 mmHg. Les pressions sont exprimées en pascals.

Points triples de diverses substances

Substances	Formule	Température (K)	Pression (Pa)
Eau	${\rm H_2O}$	273,16	610
Gaz carbonique	CO_2	216,55	517 000
Ammoniac	NH_3	195,4	6 070
Méthane	CH_4	90,7	11 700
Azote	N_2	63,18	12 500
Oxygène	O_2	54,36	152
Néon	Ne	24,57	43 200
Deutérium		18,63	17 100
Hydrogène	H_2	13,84	7 040

Chaleurs molaires des gaz, valeurs à 20 $^{\circ}\mathrm{C}$

Gaz	Formule	C_p $(J \cdot \text{mol}^{-1} \cdot K^{-1})$
Air		29,1
Ammoniac	NH_3	36,8
Argon	Ar	20,9
Azote	N_2	29,1
Chlore	Cl_2	33,8
Dioxyde de carbone	CO_2	36,8
Dioxyde de soufre	SO_2	41,0
Éthine (Acétylène)	C_2H_2	43,8
Gaz sulfhydrique	H_2S	35,7
Hélium	Не	20,9
Hydrogène	H_2	28,9
Méthane	CH_4	35,6
Néon	Ne	20,8
Oxygène	O_2	29,3

Coefficients d'adhérence et coefficients de frottement dynamique de quelques matériaux

Matériaux	μ_0	μ
Acier sur acier, sec	0,6	0,4
Corde sur bois	0,5	0,3
Téflon® sur acier	0,04	0,04
Chaussure de montagne sur rocher	1,0	0,8
Semelle de cuir sur bois	0,3	0,2
Pneus de voiture sur béton sec	1,0	0,7-0,8
Téflon® sur Téflon®	0,04	0,04
Bois sur bois	0,5	0,3

Intensités de quelques champs magnétiques

Systèmes	B
	(T)
Plus petite valeur mesurée sous blindage	$1,6\cdot 10^{-14}$
Espace interstellaire	10^{-10}
Galaxie	$3 \cdot 10^{-10}$
Composante horizontale du champ magnétique terrestre en Suisse	$0,5\cdot 10^{-4}$
Ligne de transport à 765 kV, 4 kA, à 16 m (au sol)	$0,5\cdot 10^{-4}$
TV couleur	10^{-4}
Terre	$3 \cdot 10^{-4}$
Soleil	$5\cdot 10^{-3}$
Aimant permanent classique	10^{-2}
Tache solaire	10^{-1}
Aimant permanent au néodyme	0,5
Étoile magnétique	1
Électro-aimant : accélérateur de particules	0,014-1,4
Électro-aimant (au maximum, lors d'une impulsion)	20
Électro-aimant : supraconducteur	40
Étoile à neutrons (à la surface)	10^{8}

Indices de réfraction

Indices absolus pour une longueur d'onde $\lambda = 589, 3$ nm (raie D du Na) et une température de $20^{\circ}\mathrm{C}$

n
2,417
1,31
3,5
1,49
1,492
1,458
2,907
1,544
1,5
1,52
1,58
1,66
1,80

Solution aqueuse de sucre de canne		
% massique de sucrose	n	
0	1,3330	
10	1,3479	
20	1,3639	
30	1,3811	
40	1,3997	
50	1,4200	
60	1,4118	
70	1,4651	
80	1,4901	

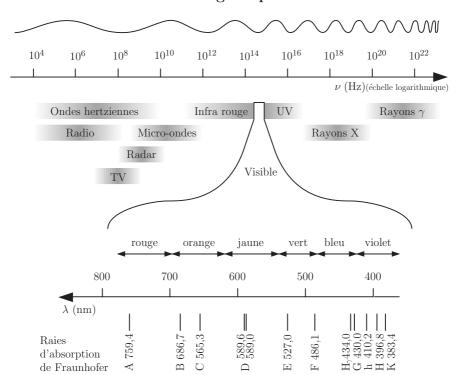
Liquides	n
Acétone	1,3588
Benzène	1,5011
Eau	1,3330
Éthanol	1,3611
Éther	1,3526
Glycérine	1,4729
Méthanol	1,3288
Pétrole ordinaire	1,4480
Propanol	1,3850
Sulfure de carbone	1,6277

Gaz $(p = 1 \cdot 10^5 \text{ Pa})$	n
Air	1,000293
Azote	1,000297
Hélium	1,000036
Hydrogène	1,000132
Oxygène	1,000271
Vapeur d'alcool éthylique	1,000881
Vapeur d'eau	1,000257
Vapeur d'éther éthylique	1,001535

Oeil humain	n
Cristallin entier	1,38
Humeur aqueuse	1,34

Verres de lunettes minéraux	n	ρ (kg·m ⁻³)
Stigmal 18®	1,807	$3,65\cdot 10^3$
Fit $40^{\text{@}}$	1,706	$3,21\cdot 10^3$
Stigmal 15®	1,604	$2,63 \cdot 10^3$

Verres de lunettes organiques	n	$\begin{array}{c} \rho \\ (\mathrm{kg}\cdot\mathrm{m}^{-3}) \end{array}$
Nikon [®]	1,670	$1,35\cdot 10^3$
As Ormil Crizal®	1,600	$1,36\cdot 10^3$
As Airmear Crizal®	1,591	$1, 2 \cdot 10^3$


Références : Essilor® et Nikon®

Indices absolus à $20^{\circ}\mathrm{C}$ pour diverses longueurs d'onde

λ (nm)	768,20	656,28	589,30	486,13	434,05	632,8
Couleur	rouge	rouge	jaune	vert-bleu	bleu-violet	rouge-orange
Raie de Fraunhofer	A'	С	D	F	G'	laser
Élément	K	Н	Na	Н	Н	He-Ne
Eau	1,3289	1,3312	1,3330	1,3371	1,3403	1,3317
Glace	1,3062		1,3104	1,3147		
Quartz vitreux	1,4539	1,4563	1,4584	1,4631	1,4669	1,4571
Quartz cristallin						
\perp axe ordinaire	1,5390	1,5419	1,5442	1,5497	1,5539	1,5426
\perp axe extraordinaire	1,5479	1,5509	1,5533	1,5590	1,5634	1,5517
Sulfure de carbone	1,6088	1,6182	1,6277	1,6523	1,6750	1,6211

Tableau des ondes électromagnétiques

Éclairements courants

Lieux	(lx)
En plein soleil	100 000
À l'ombre d'un arbre	20 000
Salle d'opération	10 000
Salle de dessin	1 000
Salle de lecture	300
Atelier ordinaire	200
Éclairage urbain	50
Minimum pour la lecture	10
Limite de la perception de l'œil	10^{-9}

Vitesses des ondes sonores dans différents milieux

Milieux	$(m \cdot s^{-1})$
Granit	6000
Fer à 20 °C	5850
Cuivre à 20 °C	3560
Eau à 20 °C	1485
Vapeur d'eau à 0 °C	401
Air sec à 20 °C	343
Air sec à 0 °C	332

Pressions sonores et niveaux sonores

Au voisinage de	p (Pa)	β (dB)
Décollage d'une fusée Saturne à 100 m	$2 \cdot 10^5$	200
Réacteur d'avion à 25 m Seuil de la douleur pour 1 kHz	$2 \cdot 10^2$	140
Avion à 100 m. Orchestre « pop »	$2 \cdot 10^1$	120
Marteau pneumatique	$2 \cdot 10^0$	100
Klaxon d'automobile. Circulation urbaine	$2\cdot 10^{-1}$	80
Bureau. Conversation	$2\cdot 10^{-2}$	60
Restaurant calme. Bibliothèque	$2\cdot 10^{-3}$	40
Forêt calme	$2\cdot 10^{-4}$	20
Seuil de l'audition pour 1 kHz pression p_0	$2\cdot 10^{-5}$	0

Niveau sonore : $\beta = 20 \log \frac{p}{p_0}$

Fréquences audibles : 20–20000 Hz

Fréquences de la gamme

Gamme de Zarlino (Hz)	Notes	Gamme tempérée de Bach (Hz)
264	Do_3	262
297	Re_3	294
330	Mi_3	330
352	Fa ₃	349
396	Sol_3	392
440	La ₃ *	440
495	Si_3	494
528	Do_4	523

^{*} Fréquence de référence. Dans la gamme tempérée, un demi-ton correspond à un rapport de fréquence égale à $\sqrt[12]{2}$

Températures et pressions critiques de quelques substances

Substances	T_c	p_c
	(K)	(Pa)
Hélium	5,19	$0,299 \cdot 10^6$
Hydrogène	33	$1,3 \cdot 10^6$
Azote	126,2	$3,4\cdot 10^6$
Oxygène	154,6	$5,08 \cdot 10^6$
Air	132,3	$3,77 \cdot 10^6$
Méthane (CH ₄)	190,5	$4,67 \cdot 10^6$
Dioxyde de carbone (CO ₂)	304	$7,4 \cdot 10^6$
Eau	647,14	$22,1\cdot 10^6$
Iode	819	_
Mercure	1750	_

Permittivités relatives et résistivités de quelques isolants

Isolants	$arepsilon_{ m r}$	ρ
		$(\Omega \cdot m)$
Air	≈ 1	
Ambre jaune	2,5	$1 \cdot 10^{14}$
Caoutchouc vulcanisé	2,7	$1 \cdot 10^{16}$
Chlorure de polyvinyle (PVC)	4,5	$1 \cdot 10^{14}$
Eau pure	80	$2 \cdot 10^{5}$
Mica	7	$5 \cdot 10^{14}$
Paraffine	2,2	$1 \cdot 10^{16}$

Isolants	$arepsilon_{ m r}$	ρ
		$(\Omega \cdot m)$
Plexiglas	3,2	$1 \cdot 10^{17}$
Porcelaine	4-8	$10^{12} - 10^{14}$
Quartz (⊥ axe)	4,3	$3 \cdot 10^{14}$
Quartz (axe)	4	$1 \cdot 10^{12}$
Soufre	4	$2\cdot 10^{15}$
Téflon [®]	2	$> 10^{14}$
Verre	3-7	$1 \cdot 10^{12}$

Les particules fondamentales (Modèle standard)

Constituants de la matière

	Nom (saveur)	Symbole	Constitution (en quarks)	Masse (MeV/c^2)	Spin	Charge électrique (e)	Temps de vie (s)
Quarks	haut (up)	u		330		2/3	(-)
	bas (down)	d		333		$-\frac{1}{3}$	
	charme	c		$1,65\cdot 10^3$	$\frac{1}{2}$	2/3	
	étrange (strange)	s		$0,5\cdot 10^3$		$-\frac{1}{3}$	
	vérité (top)	t		$> 175 \cdot 10^3$		<u>2</u> 3	
	beauté (bottom)	b		$4, 3 \cdot 10^3$		$-\frac{1}{3}$	
Leptons	neutrino électron	$ u_e$		$< 10^{-5}$		0	stable
	électron	e		0,51		-1	stable
	neutrino muon	$ u_{\mu}$		< 0, 2	$\frac{1}{2}$	0	stable
	muon	μ		106		-1	$2 \cdot 10^{-6}$
	neutrino tau	$ u_{ au}$		20		0	?
	tau	τ		1777		-1	$<5\cdot 10^{-13}$
Hadrons	proton	p	uud	938		1	stable
Baryons qqq	anti- proton	$ar{p}$	$\bar{u}\bar{u}ar{d}$	938		-1	
Antibaryons $\bar{q}\bar{q}\bar{q}$	neutron	n	udd	940		0	10^{3}
	lambda	Λ	uds	1116		0	$2 \cdot 10^{-10}$
		Σ^+	uus	1189	$\frac{1}{2}$	+1	$0,8 \cdot 10^{-10}$
	sigma	Σ^0	uds	1192		0	$5,8 \cdot 10^{-20}$
		Σ^{-}	dds	1197		-1	$1,5 \cdot 10^{-10}$
	xi	Ξ0	uss	1315		0	$2,9 \cdot 10^{-10}$
		Ξ-	dss	1321	3	-1	$ \begin{array}{c} 1,64 \cdot 10^{-10} \\ 0,8 \cdot 10^{-10} \end{array} $
Mésons $qar{q}$	omega pion	$\frac{\Omega^{-}}{\pi^{+}}$	$u\bar{d}$	1672 140	$\frac{3}{2}$	-1 +1	$3 \cdot 10^{-8}$
Wicsons qq	kaon	K ⁻	$s\bar{u}$	494	0	-1	10 ⁻⁸
	rho	ρ^+	$u\bar{d}$	770	1	+1	
	B-zéro	B^0	$d\bar{b}$	5279	0	0	
	eta-c	η_c	$c\bar{c}$	2980	0	0	

Particules intermédiaires d'échange

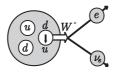
Type d'interaction	Particule	Spin	Masse	Charge électrique	
			$({\rm MeV/c^2})$	(e)	
Electrofaible unifiée	photon γ	1	0	0	
	W^-	1	$8,06 \cdot 10^4$	-1	
	W^+	1	$8,06 \cdot 10^4$	+1	
	Z^0	1	$9,11\cdot 10^4$	0	
Forte	gluon g	1	0	0	
Gravitationnelle	graviton	pas encore observé			

Remarques

Matière et antimatière : À chaque type de particule, il correspond une antiparticule de même masse, de même spin mais de charge opposée (proton et antiproton, électron et positron).

Unité (correspondance avec système SI) :

$$\begin{array}{lll} - \mbox{ charge \'electrique} & e = 1,6 \cdot 10^{-19} \mbox{ C} \\ - \mbox{ masse au repos} & \frac{\mbox{MeV}}{\mbox{c}^2} = 1,78 \cdot 10^{-30} \mbox{ kg} \\ - \mbox{ spin (moment angulaire intrins\'eque)} & \hbar = \frac{h}{2\pi} = 1,05 \cdot 10^{-34} \mbox{ J} \cdot \mbox{s} \end{array}$$

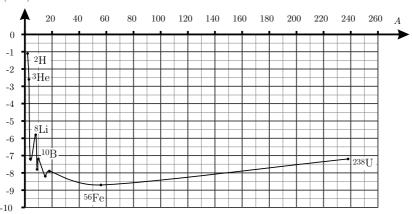

Les interactions fondamentales

Type d'interaction	Particules	Intervient sur	Intensité relative des forces		es forces
	intermédiaires		entre	2 quarks	entre 2 protons
	d'échange		à 10^{-18} m	à $3 \cdot 10^{-17}$ m	dans le noyau
Forte fondamentale	Gluons	Quarks	25	60	_
Forte résiduelle	Mésons	Hadrons	_	-	20
		(dans noyau atomique)			
Electrofaible unifiée	γ	charges électriques des particules	1	1	1
	W^+, W^-, Z^0	Quarks, leptons (dans désintégration β)	0,8	10^{-4}	10-7
Gravitationnelle	graviton (?)	masse-énergie	10^{-41}	10^{-41}	10^{-36}

Exemple

Désintégration β^-

$$n \to p + e^- + \bar{\nu}_e$$



Énergie de liaison nucléaire

A : Nombre de masse atomique (nombre de nucléons)

 ${\cal E}$: Énergie de liaison par nucléon en MeV

E (MeV)

Réactions nucléaires

Désintégration radioactive

$$\beta^-: n \longrightarrow p + e^- + \bar{\nu}$$
 ou $\beta^+: p \longrightarrow n + e^+ + \nu$

Capture électronique (CE) : $p + e^- \longrightarrow n + \gamma + \nu$

Série U-Ra

Série U-Ac

$$^{235}_{92}$$
U $\xrightarrow{\alpha}_{T=7.13\cdot10^8 \text{ a}}$ \cdots \longrightarrow $^{207}_{82}$ Pb stable

Série Iode 139

$$^{139}_{53}\text{I} \xrightarrow{\quad \text{n} \quad} ^{138}_{53}\text{I} \xrightarrow{\quad \beta^- \quad} ^{138}_{54}\text{Xe} \xrightarrow{\quad \beta^- \quad} ^{138}_{55}\text{Cs} \xrightarrow{\quad \beta^- \quad} ^{138}_{56}\text{Ba stable}$$

Carbone 14

 $^{14}_{6}$ C $\xrightarrow{\beta^{-}}$ $^{14}_{7}$ N Désintégration :

Formation par capture : ${}^{14}_{7}N + {}^{1}_{0}n \longrightarrow {}^{14}_{6}C + {}^{1}_{1}H$

Exemples de capture-fission

$${}^{238}_{92}\mathrm{U} + {}^{1}_{0}\mathrm{n} \ \xrightarrow[T=4\cdot 10^{9} \ \mathrm{a}]{}^{239}_{92}\mathrm{U} \ \xrightarrow[T=23 \ \mathrm{min}]{}^{\beta^{-}} \xrightarrow{239}_{93}\mathrm{Np} \ \xrightarrow[T=2,3 \ \mathrm{j}]{}^{\beta^{-}} \xrightarrow[94]{}^{239}_{94}\mathrm{Pu} \ \xrightarrow[T=2,4\cdot 10^{4} \ \mathrm{a}]{}^{\alpha} \cdots$$

$$^{235}_{92}\mathrm{U} + ^{1}_{0}\mathrm{n} \ \xrightarrow[T=7\cdot10^{8}\ \mathrm{a}]{}^{236}\mathrm{U} \ \xrightarrow[T=2,4\cdot10^{7}\ \mathrm{a}]{}^{\alpha} \cdots$$

$$^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{95}_{38}Sr + ^{139}_{54}Xe + 2 ^{1}_{0}n + \gamma$$

Fusion

Tokamak Etoiles (voir p. 214)

Bombe H ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{1}^{3}H + {}_{1}^{1}H$ ${}_{1}^{1}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + 5, 5 \text{ MeV}$ ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$

 ${}_{1}^{1}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + 19,8 \text{ MeV}$ ${}_{1}^{3}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + 2 {}_{0}^{1}n + 11, 3 \text{ MeV}$

Radioprotection

Facteurs de pondération de la radiation $W_{\mathbb{R}}$ et des tissus $W_{\mathbb{T}}$

Type de radiation	Domaine d'énergie	$W_{\rm R}$
Photons	toute énergie	1
Électron et muons	toute énergie	1
	E < 10 keV	5
	$10~{\rm keV} < E < 100~{\rm keV}$	10
Neutrons	$100 \; \mathrm{keV} < E < 2 \; \mathrm{MeV}$	20
	$2~{\rm MeV} < E < 20~{\rm MeV}$	10
	E > 20 MeV	5
Protons		5
Particules α , fragments de fission, noyaux lourds		20

Tissu ou organe	W_{T}
Gonades	0,20
Moëlle osseuse	0,12
Colon	0,12
Poumons	0,12
Estomac	0,12
Vessie	0,05
Poitrine	0,05
Foie	0,05
Oesophage	0,05
Thyroïde	0,05
Peau	0,01
Surface des os	0,01
Autre	0,05
<u> </u>	

Limite de la dose individuelle selon l'ORaP

	Valeurs limites par année $(mSv\cdot a^{-1})$
Professionnels	
Dose effective	
- situation normale	20
- situation exceptionnelle	50
Dose équivalente	
– au cristallin	150
– à la peau	500
– aux extrémités	500
Professionnels : cas particuliers	
– entre 16 et 18 ans	5
– femme enceinte, à l'abdomen	2
– femme enceinte, par ingestion	1
Public	
Dose effective	1
Lors d'irradiation aigüe	
Dose de seuil	$500~\mathrm{mSv}$
Dose semi-létale	$5000~\mathrm{mSv}$

Abondance de quelques isotopes naturels

Z = numéro atomique A = nombre de massem =masse atomique u

% = abondance relative en % masse

: isotope radioactif, var : quantité variable

Z		A	m	%
1	Н	1	1,00783	99,985
1	11	2	2,01410	0,015
2	Не	3	3,01603	10^{-4}
		4	4,00260	100
3	Li	6	6,01512	7,5
		7	7,01600	92,5
4	Ве	9	9,01218	100
5	В	10	10,01129	20
		11	11,00931	80
6	С	12	12,00000	98,89
		13	13,00335	1,11
		*14	14,00324	var
7	N	14	14,00307	99,64
		15	15,00011	0,36
8	О	16	15,99491	99,759
		17	16,99913	0,037
		18	17,99916	0,204
9	F	19	18,99840	100
10	Ne	20	19,99244	90,51
		21	20,99385	0,27
		22	21,99138	9,22
11	Na	23	22,98977	100
12	Mg	24	23,98504	78,99
		25	24,98584	10,00
		26	25,98259	11,01
13	Al	27	26,98154	100
14	Si	28	27,97693	92,23
		29	28,97649	4,67
		30	29,97377	3,10
15	Р	31	30,97376	100
16	S	32	31,97207	95,00
		33	32,97146	0,76
		34	33,96786	4,22
		36	35,96708	0,02
17	Cl	35	34,96885	75,53
		37	36,96590	24,47
18	Ar	36	35,96755	0,337
		38	37,96273	0,063
		40	39,96238	99,600

Z		A	m	%
19	K	39	38,96371	93,10
		*40	39,96400	0,02
		41	40,96183	6,88
20	Ca	40	39,96259	96,941
		42	41,95862	0,647
		43	42,95877	0,135
		44	43,95548	2,086
		46	45,95369	0,004
		*48	47,95253	0,187
21	Sc	45	44,95592	100
24	Cr	50	49,94605	4,36
		52	51,94051	83,79
		53	52,94065	9,49
		54	53,93888	2,36
25	Mn	55	54,93805	100
26	Fe	54	53,93961	5,8
		56	55,93494	91,8
		57	56,93540	2,1
		58	57,93327	0,3
27	Со	59	58,93320	100
28	Ni	58	57,93535	68,27
		60	59,93079	26,10
		61	60,93106	1,13
		62	61,92835	3,59
2.0	~	64	63,92797	0,91
29	Cu	63	62,92960	69,2
2.0	-	65	64,92779	30,8
30	Zn	64	63,92914	48,6
		66	65,92603	27,9
		67	66,92713	4,1
		68	67,92485	18,8
33	Λ	70	69,92533	0,6
34	As Se	75	74,92169	
34	Se	74 76	73,92247	0,9
		76 77	75,91921 76,91991	9,0
		78	76,91991	7,6 $23,5$
		80	79,91652	49,8
		82	81,91670	9,2
35	Br	79	78,91834	50,69
33	DI	81	80,91629	49,31
		0.1	30,31029	49,01

Z		A	m	%
36	Kr	78	$\frac{m}{77,92040}$	0,35
30	171	80	· /	2,27
		82	79,91638 81,91348	$\frac{2,27}{11,56}$
		83	82,91414	11,50 $11,55$
		84	83,91151	56,90
		86	85,91062	
37	Rb	85	84,91179	17,37 72,15
31	TUD	*87	86,90919	$\frac{72,15}{27,85}$
38	Sr	84	83,91343	0,5
30	51	86	85,90927	9,9
		87	86,90884	7,0
		88	87,90562	82,6
39	Y	89	88,90585	100
41	Nb	93	92,90638	100
45	Rh	103	102,90550	100
46	Pd	102	101,90563	0,96
10	- 0	104	103,90403	10,97
		105	104,90508	22,23
		106	105,90348	27,33
		108	107,90390	26,71
		110	109,90517	11,80
47	Ag	107	106,90509	51,83
		109	108,90476	48,17
48	Cd	106	105,90646	1,2
		108	107,90418	0,9
		110	109,90301	12,4
		111	110,90418	12,8
		112	111,90276	24,0
		113	112,90440	12,3
		114	113,90336	28,8
		116	115,90476	7,6
49	In	113	112,90406	4,3
		*115	114,90388	95,7
50	Sn	112	111,90482	0,96
		114	113,90278	0,66
		115	114,90335	0,35
		116	115,90175	14,30
		117	116,90296	7,61
		118	117,90171	24,03
		119	118,90331	8,58
		120	119,90220	32,85
		122	121,90344	4,72
		124	123,90527	5,94
51	Sb	121	120,90382	57,3
		123	122,90422	42,7
52	Te	120	119,90405	0,1
		122	121,90305	2,5
		*123	122,90427	0,9
		124	123,90282	4,6
		125	124,90443	7,0

Z		A	m	%
52	Te	126	125,90331	18,7
		128	127,90446	31,7
		130	129,90623	34,5
53	I	127	126,90447	100
54	Xe	124	123,90589	0,1
		126	125,90428	0,1
		128	127,90353	1,9
		129	128,90478	26,4
		130	129,90351	4,1
		131	130,90507	21,2
		132	131,90414	26,9
		134	133,90540	10,4
		136	135,90721	8,9
55	Cs	133	132,90543	100
56	Ва	130	129,90628	0,1
		132	131,90504	0,1
		134	133,90449	2,42
		135	134,90566	6,59
		136	135,90455	7,81
		137	136,90581	11,32
		138	137,90523	71,66
59	Pr	141	140,90765	100
65	Tb	159	158,92534	100
67	Но	165	164,93032	100
69	Tm	169	168,93421	100
78	Pt	*190	189,95991	0,01
		*192	191,96102	0,79
		194	193,96266	32,9
		195	194,96477	33,8
		196	195,96493	25,3
70	A	198	197,96737	7,2
79	Au	197	196,96654	100
80	Hg	196	195,96581	0,2
		198	197,96674	10,1
		199	198,96825	16,9
		200	199,96830	23,1
		201	200,97028	13,2
		202	201,97062	29,7
82	Pb	*204 *204	203,97347	6,8
04	ΓD	204	203,97302 205,97440	1,4 $24,1$
		207	205,97440	24,1 $22,1$
		207	200,97587	52,1 52,4
83	Bi	208	208,98037	100
92	U	*234	234,04095	0,005
92	U	*235	235,04392	0,003
		*238	238,05078	99,275
		200	200,00010	00,210

Modes de désintégration de quelques isotopes radioactifs

 $egin{array}{ll} Z & & {
m num\'ero \ atomique} \\ A & & {
m nombre \ de \ masse} \end{array}$

Mode (EC : capture électronique, FS : fission spontanée)

 $T_{1/2}$ période radioactive (s: seconde, min: minute, h: heure, j: jour, a: an)

	- 1/	² 1	orrode radioa	00110 (0 1 0000
Z		A	Mode	$T_{1/2}$
1	Н	3	β^-	12,3 a
6	С	14	β^-	5730 a
11	Na	22	β^+ , EC	2,6 a
		24	β^-	15 h
15	Р	32	β^-	14,3 ј
16	S	35	β^-	88 j
17	Cl	36	β^-, β^+, EC	$3, 1 \cdot 10^5 \text{ a}$
19	К	40	β^-, β^+, EC	$1.3 \cdot 10^9 \text{ a}$
		42	β^{-}	12,4 h
20	Ca	41	EC	$8 \cdot 10^4 \text{ a}$
		45	β^-	165 ј
		47	β^-	4,53 j
		48	β^-	$10^{16} a$
24	Cr	51	EC	28 ј
26	Fe	55	EC	2,6 a
		59	β^-	45 j
27	Со	58	β^+ , EC	71 j
		60	β^{-}	5,27 a
28	Ni	59	EC	$8 \cdot 10^4$ a
		63	β^-	92 a
29	Cu	64	β^-, β^+, EC	12,9 h
30	Zn	65	β^+ , EC	244 ј
34	Se	75	β^-	120,4 ј
		79	β^-	$6, 5 \cdot 10^4 \text{ a}$
35	Br	82	β^-	35,5 h
36	Kr	85	β^-	10,8 a
37	Rb	86	β^-	18,7 ј
38	Sr	85	EC	64 j
		89	β^-	52 ј
	7.7	90	β^-	28,1 a
39	Y	90	β^-	64 h
40	Zr	95	β^-	65 j
42	Mo	99	β-	66,7 h
43	Tc	97	EC	$2, 6 \cdot 10^6 \text{ a}$
47	Α	99	β^-	~
47	Ag	111	β^-	7,5 j
48	Cd	115	β^-	$\frac{22 \text{ j}}{6 \cdot 10^{14} \text{ a}}$
49	In	115	β ⁻	
50	Sn Sb	113 122	EC β^-, β^+, EC	115 j
51	SD	122	β , β , EC β^-	2,8 j 60 j
		124	β^-	2,7 a
52	Те	127	β^-	9,4 h
53	I	125	EC	60 j
33	1	128	β^-, β^+, EC	25 min
		10	r , r , 20	20

53 I 131 $β^-$ 8,07 j 55 Cs 134 $β^-$ 2,5 a 135 $β^-$ 3 · 10 ⁶ a 137 $β^-$ 3 · 10 ⁶ a 56 Ba 131 EC 11,6 j 133 EC 7,5 a 66 69 Tm 170 $β^-$ 129 j 71 Lu 176 $β^-$ 3 · 10 ¹⁰ a 69 Tm 170 $β^-$ 129 j 71 Lu 176 $β^-$ 3 · 10 ¹⁰ a 77 Ir 192 $β^-$ 64,8 h 80 Hg 197 EC 65 h 203 $β^-$ 64,8 h 80 Hg 197 EC 3.8 a 82 Pb 202 EC 3 · 10 ⁵ a 81 Tl 204 $β^-$ 5 j 84 Po 209 $β^-$ 5 j 84 </th <th>Z</th> <th></th> <th>A</th> <th>Mode</th> <th>$T_{1/2}$</th>	Z		A	Mode	$T_{1/2}$
55 Cs 134 $β^-$ 2,5 a 135 $β^-$ 3 · 106 a 137 $β^-$ 30 a 56 Ba 131 EC 11,6 j 133 EC 7,5 a 66 Dy 154 α 106 a 69 Tm 170 $β^-$ 129 j 71 Lu 176 $β^-$ 3 · 10 ¹⁰ a 77 Ir 192 $β^-$ 6 · 10 ¹¹ a 192 $α$ 10 ¹⁵ a 79 Au 198 $β^-$ 64,8 h 80 Hg 197 EC 65 h 203 $β^-$ 64,8 h a 80 Hg 197 EC 3,8 a 82 Pb 202 EC 3 · 10 ⁵ a 81 Tl 204 $β^-$ 5 j 84 Po 209 $β^-$ 5 j 84 Po 209		Ī			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	1	, ,
56 Ba 131 EC 11,6 j 56 Ba 131 EC 11,6 j 66 Dy 154 α 106 a 69 Tm 170 β - 129 j 71 Lu 176 β - 3 · 10 ¹⁰ a 77 Ir 192 β - 6 · 10 ¹¹ a 78 Pt 190 α 6 · 10 ¹¹ a 192 α 10 ¹⁵ a 79 Au 198 β - 64,8 h 80 Hg 197 EC 65 h 203 β - 46,6 j 3 81 Tl 204 β - 1,4 · 10 ¹⁹ a 204 α 1,4 · 10 ¹⁹ a 1,4 · 10 ¹⁹ a 210 α, β - 21 a 3 83 Bi 210 α, β - 5 j 84 Po 209 α, EC 3,82 j 85 At 210 α, EC 8,3	00	CB		1-	
56 Ba 131 EC 11,6 j 66 Dy 154 α 106 a 69 Tm 170 β 129 j 71 Lu 176 β 3 · 10 ¹⁰ a 77 Ir 192 β FC 74 j 78 Pt 190 α 6 · 10 ¹¹ a 10 ¹⁵ a 79 Au 198 β 64,8 h 65 h 80 Hg 197 EC 65 h 203 β 46,6 j 65 h 81 Tl 204 β , EC 3,8 a 8 8 2 Pb 202 EC 3 · 10 ⁵ a 46,6 j 8 1 1,4 · 10 ¹⁹ a 1,4 · 10 ¹⁰ a 1,4 · 10 ¹⁰ a <				1	
66 Dy 154 α 10^6 a 69 Tm 170 β ⁻ 129 j 71 Lu 176 β ⁻ $3 \cdot 10^{10}$ a 77 Ir 192 β ⁻ EC 74 j 78 Pt 190 α $6 \cdot 10^{11}$ a 10^{15} a 79 Au 198 β ⁻ 64,8 h 80 Hg 197 EC 65 h 203 β ⁻ EC 3,8 a 82 Pb 202 EC 3 \ 10^5 a 83 Bi 210 α, β ⁻ 5 j 84 Po 209 α, EC 3,3 h 85 At 210 α, EC 8,3 h 211 α, EC 7,2 h 86 Rn 222 α	56	Ba			
66 Dy 154 α 10^6 a 69 Tm 170 β ⁻ 129 j 71 Lu 176 β ⁻ $3 \cdot 10^{10}$ a 77 Ir 192 β ⁻ EC 74 j 78 Pt 190 α $6 \cdot 10^{11}$ a 192 α 10^{15} a 79 Au 198 β ⁻ 64.8 h 80 Hg 197 EC 65 h 203 β ⁻ EC 65 h 80 Hg 197 EC 65 h 203 β ⁻ EC 3.8 a 81 Tl 204 β ⁻ EC 3.8 a 82 Pb 202 EC 3.10^5 a 83 Bi 210 α , β ⁻ 21 a 83 Bi 210 α , β - 5 j 84 Po 209 α , EC 8.3 h 211	00	Da			, 0
69 Tm 170 β^- 129 j 71 Lu 176 $\beta^ 3 \cdot 10^{10}$ a 77 Ir 192 β^- , EC 74 j 78 Pt 190 α $6 \cdot 10^{11}$ a 192 α 10^{15} a 79 Au 198 β^- 64,8 h 80 Hg 197 EC 65 h 203 β^- 46,6 j 3 81 Tl 204 β^- 21 a 82 Pb 202 EC 3 · 10^5 a 204 α 1, 4 · 10^{19} a 14 · 10^{19} a 210 α , β^- 21 a 83 Bi 210 α , β^- 5 j 84 Po 209 α , EC 3.3 h 210 α 138 j 85 At 210 α , EC 8,3 h 21 α 23 a 3,82 j 87 <td>66</td> <td>Dy</td> <td></td> <td></td> <td></td>	66	Dy			
71 Lu 176 $\beta^ 3 \cdot 10^{10}$ a 77 Ir 192 β^- , EC 74 j 78 Pt 190 α $6 \cdot 10^{11}$ a 192 α 10^{15} a 79 Au 198 β^- 64,8 h 80 Hg 197 EC 65 h 203 β^- 46,6 j 3 81 Tl 204 β^- , EC 3,8 a 82 Pb 202 EC 3 \cdot 10^5 a 82 Pb 202 EC 3 \cdot 10^5 a 82 Pb 202 EC 3 \cdot 10^5 a 83 Bi 210 α , β^- 21 a 83 Bi 210 α , β^- 5 j 84 Po 209 α , EC 103 a 210 α 138 j 85 At 210 α , EC 8,3 h 211 α , EC 8,3 h<		·			
77 Ir 192 $β^-$, EC 74 j 78 Pt 190 α $6 \cdot 10^{11}$ a 192 α 10^{15} a 79 Au 198 $β^-$ 64,8 h 80 Hg 197 EC 65 h 203 $β^-$ 46,6 j 81 Tl 204 $β^-$ EC 204 α 1, 4 · 10^{19} a 210 α, $β^-$ 21 a 83 Bi 210 α, $β^-$ 5 j 84 Po 209 α, EC 103 a 210 α , EC 8,3 h 211 α, EC 8,3 h 211 α, EC 8,3 h 211 α, EC 8,3 h 86 Rn 222 α 88 <td></td> <td></td> <td></td> <td>1</td> <td>3.10¹⁰ a</td>				1	3.10 ¹⁰ a
78 Pt 190 α $6 \cdot 10^{11}$ a 10^{15} a 79 Au 198 β ⁻ 64,8 h 80 Hg 197 EC 65 h 203 β ⁻ 46,6 j 81 Tl 204 β ⁻ EC 3,8 a 82 Pb 202 EC 3 ⋅ 10 ⁵ a 21 a 83 Bi 210 α, β ⁻ 21 a 83 Bi 210 α, β ⁻ 5 j 84 Po 209 α, EC 103 a 210 α , EC 103 a 210 α , EC 8,3 h 211 α, EC 7,2 h 86 Rn 222 α 3,82 j 87 Fr 223 α, β ⁻ 22 min 88 Ra 226 <td></td> <td></td> <td></td> <td></td> <td></td>					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					6 10 ¹¹ a
79 Au 198 $β^-$ 64,8 h 80 Hg 197 EC 65 h 203 $β^-$ 46,6 j 81 Tl 204 $β^-$ EC 3,8 a 82 Pb 202 EC 3 ⋅ 10 ⁵ a 204 $α$ 1,4 ⋅ 10 ¹⁹ a 1 210 $α$, $β^-$ 21 a 83 Bi 210 $α$, $β^-$ 5 j 84 Po 209 $α$, EC 103 a 210 $α$ 138 j 3 85 At 210 $α$, EC 8,3 h 211 $α$, EC 8,3 h 211 $α$, EC 7,2 h 86 Rn 222 $α$ 3,82 j 3 87 Fr 223 $α$, $β^-$ 22 min 88 Ra 226 $α$ 1622 a 228 $β^-$ 5,8 a 89 Ac 227 $α$, $β^-$	10	1 6			
80 Hg 197 EC 65 h 203 $β^-$ 46,6 j 81 Tl 204 $β^-$, EC 3,8 a 82 Pb 202 EC $3 \cdot 10^5$ a 204 $α$ $1, 4 \cdot 10^{19}$ a 21 a 83 Bi 210 $α, β^-$ 5 j 84 Po 209 $α$, EC 103 a 210 $α$ EC 8,3 h 211 $α$, EC 8,3 h 211 $α$, EC 8,3 h 211 $α$, EC 7,2 h 86 Rn 222 $α$ 3,82 j 87 Fr 223 $α$, $β^-$ 22 min 88 Ra 226 $α$ 1622 a 228 $β^-$ 21,6 a 90 Th 228 $α$ 1,91 a 230 $α$ 8 \cdot 10^4 a 231 $α$ 3,25 \cdot 10^4 a 232 $α$ <td>70</td> <td>Λ.,</td> <td></td> <td></td> <td></td>	70	Λ.,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	
81 TI 204 β^- , EC 3,8 a 82 Pb 202 EC $3 \cdot 10^5$ a 204 α $1, 4 \cdot 10^{19}$ a 210 α , β^- 21 a 83 Bi 210 α , β^- 5 j 84 Po 209 α , EC 103 a 210 α EC 8,3 h 211 α , EC 8,3 h 211 α , EC 8,3 h 211 α , EC 7,2 h 86 Rn 222 α 3,82 j 87 Fr 223 α , β^- 22 min 88 Ra 226 α 1622 a 228 β^- 22 min 89 Ac 227 α , β^- 21,6 a 90 Th 228 α 1,91 a 230 α 8 \cdot 10^4 a 231 α 3,25 \cdot 10^4 a 92 U	00	пд			
82 Pb 202 EC $3 \cdot 10^5$ a 204 α $1, 4 \cdot 10^{19}$ a 21 a 83 Bi 210 α, β ⁻ 5 j 84 Po 209 α, EC 103 a 210 α 138 j 85 At 210 α, EC 8,3 h 211 α, EC 7,2 h 86 Rn 222 α 3,82 j 87 Fr 223 α, β ⁻ 22 min 88 Ra 226 α 1622 a 228 β ⁻ 22 min 89 Ac 227 α, β ⁻ 21,6 a 90 Th 228 α 1,91 a 230 α 1,41 · 10 ¹⁰ a 8 91 Pa 231 α 3,25 · 10 ⁴ a 92 U 233 α 1,62 · 10 ⁵ a 234 α 2,47 · 10 ⁵ a 2,47 · 10 ⁵ a 238 <	01	TI		I*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	82	PD			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					· ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.9	D.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	84	Po			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	05	Α.,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85	At			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0	D			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				/ /	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	88	Ra			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0			1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				- / /	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	Th			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1	D			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	92	U			,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.7		T'	23,5 min
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	93	Nр			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		I*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	94	Pu		α , FS	
$241 \alpha, \beta^-$ 13,2 a				α , FS	
$242 \alpha 3,79 \cdot 10^5 a$					
			242	α	$3,79 \cdot 10^{5} \text{ a}$

Formulaire: Astronomie

Données et définitions générales

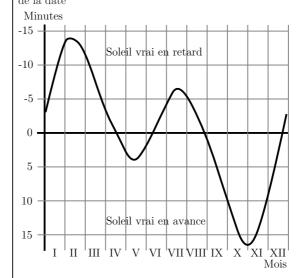
Mesures de distance	
Année lumière (AL) :	distance parcourue par la lumière en 1 an $(9,461\cdot 10^{15}\ \mathrm{m})$
Unité Astronomique (UA) :	demi-grand axe de l'orbite terrestre $(1,496\cdot 10^{11}~\text{m})$
Parsec (pc):	distance à laquelle 1 UA est vue sous un angle de 1" d'arc $(3,086\cdot 10^{16}~\text{m})$

Parallaxe annuelle					
Grandeur physique Intitulé de la loi	Relation de définition Loi ou formule	Remarques, figures			
Définition de la parallaxe annuelle (angle π)	d: distance (pc) π : angle de parallaxe annuelle (")	Ellipse apparente Étoile proche			

Mesures du temps

Jour sidéral: période de révolution apparente de la sphère des étoiles autour de la

1 jour sidéral = 23 heures 56 minutes 4,091 secondes


Jour solaire vrai: période de révolution apparente du Soleil autour de la Terre

(variable)

Jour solaire moyen: période de révolution d'un Soleil moyen fictif

1 jour solaire moyen = 24 heures

Équation du temps: différence entre temps solaire vrai et temps solaire moyen en fonction de la date

Temps civil ou légal:

temps conventionnel des fuseaux horaires

Temps universel:

temps solaire moyen du méridien de Greenwich

Définitions	de	photométrie
--------------------	----	-------------

Grandeur physique Intitulé de la loi	Symbole	Relation de définition Loi ou formule	Remarques, figures
Luminosité d'un astre :	L	puissance totale émise sous (W)	forme de rayonnement
Éclat d'un astre :	E	puissance totale reçue par pendiculaire au rayonneme	_
Loi de Lambert :		$E = \frac{L}{4\pi d^2}$	d: distance (m)
Magnitude apparente :	m	échelle conventionnelle d'éction :	clat définie par la rela-
		$m = -\log_{10} E + C$	C: constante de calibration
Pour deux astres A et B :		$m_A - m_B = 2,5 \log_{10} \frac{E_B}{E_A}$	
Magnitude absolue :	M	magnitude apparente qu'au placé à 10 pc	urait un astre s'il était
Module de distance :	m-M	différence entre magnitude tude absolue (sans extincti	
		$m - M = 2,5\log_{10} d - 5$	d: distance (pc)
Magnitude bolométrique :	$m_{ m bol}$	donnée par l'éclat dû à tout	t l'ensemble du spectre
Magnitude visuelle :	$m_{ m v}$	limitée à l'éclat dû à la par	rtie visible du spectre
Température effective :	$T_{ m eff}$	celle du corps noir qui rayo	nne la même puissance
Loi de Stefan-Boltzman :		$L = 4\pi R^2 \sigma {T_{\rm eff}}^4$ $(\sigma = 5,67051 \cdot 10^{-8}$	R: rayon stellaire (m) σ : constante de Stefan-Boltzmann T_{eff} : température effective (K) W·m ⁻² ·K ⁻⁴)
		(0 - 0,01001 10	· · · · · · · · · · · · · · · · · · ·

Lois de Kepler				
	randeur physique titulé de la loi	Remarques, figures		
	rme empirique (observationnelle	e):		
1.	Les orbites des planètes sont des ellipses dont le Soleil oc- cupe l'un des foyers			
2.	La vitesse orbitale d'une planète varie de façon que le rayon-vecteur Soleil-planète balaye des aires égales en des temps égaux		A : aphélie (point le plus éloigné du Soleil) P : périhélie (point le plus proche du Soleil) a : demi-grand axe b : demi-petit axe	
3.	Les périodes des planètes et leurs demi-grands axes sont dans un rapport sesquilatère Pour deux planètes A et B : $3^{\rm e}$ loi tirée de la loi de la gravitation universelle (forme déduite) :	$\frac{a_A^3}{T_A^2} = \frac{a_B^3}{T_B^2}$ $\frac{a^3}{T^2} = \frac{G}{4\pi^2}(M+m)$	$a: \text{demi-grand axe de l'orbite (m)} \\ T: \text{période orbitale (s)} \\ G: \text{constante universelle de gravitation} \\ (G=6,67259\cdot 10^{-11}\text{N}\cdot \text{m}^2\cdot \text{kg}^{-2}) \\ M: \text{masse du Soleil (kg)} \\ m: \text{masse planétaire (kg)}$	

Le	Les 6 éléments orbitaux			
	candeur physique titulé de la loi	Formule, remarques, figures		
Élé	éments nécessaires pour définir	une orbite:		
1.	L'inclinaison i du plan de l'orbite par rapport à un plan de référence. Pour les planètes le plan de l'orbite terrestre (écliptique) et pour un satellite de la Terre, le plan équatorial			
2.	La longitude Ω du noeud ascendant Ω relativement à la direction du point vernal Υ			
3.	L'argument ω de latitude du périhélie P (ou périgée ou périastre)			
4.	Le demi-grand axe a de l'orbite	$a = \frac{1}{2}AP$		
5.	L'excentricité de l'orbite e	$e = \frac{1}{a}\sqrt{a^2 - b^2}$		
6.	L'instant t de passage au périhélie P O : plan de l'orbite E : plan de l'écliptique	A O A O A O A O A O A O A O		

Le système solaire

Le Soleil					
Caractéristiques générales					
	Au périhélie	À l'a	phélie	Demi-grand axe de	e l'orbite
Distance Terre-Soleil	$1,471 \cdot 10^{11} \text{ m}$	1,521	· 10 ¹¹ m	$1,496 \cdot 10^{11}$	m
Diamètre angulaire apparent	$32'\ 35,6''$	31'	31, 3''	31′ 59, 3″	
Rayon	$R_{\odot} = 6,95 \cdot 10$	8 m = 10	$09, 3 R_{\rm T}$	erre	
Masse	$M_{\odot} = 1,9891.$	$10^{30}~\rm kg$	= 3329	$46~M_{\rm Terre}$	
Masse volumique moyenne	$\rho_{\odot} = 1,41 \cdot 10^3$	${ m kg\cdot m^{-}}$	$^{3} = 0, 2$	$56 \rho_{\mathrm{Terre}}$	
Accélération de la pesanteur	$g_{\odot} = 273, 4 \text{ m} \cdot$	$s^{-2} = 2$	$7,9 g_{\mathrm{Ter}}$	re (en surface)	
Luminosité	$L_{\odot} = 3,85 \cdot 10^{\circ}$	²⁶ W			
Constante solaire	$E_{\odot} = 1,39 \cdot 10$	³ W · m	-2		
Magnitude visuelle apparente	$m_{\rm v\odot} = -26, 9$				
Magnitude visuelle absolue	$M_{\rm v\odot} = +4,79$				
Type spectral	G2 V				
Température effective	$T_{ m eff}=5785~{ m K}$				
Âge	$ au_{\odot}=4,55\cdot 10^9~\mathrm{a}$				
Durée de vie totale	$\approx 10^{10}~\rm a$				
Rotation différentielle					
	À l'équateur À 60° de latitude Aux pôles		ès		
Période sidérale	25,03 j ≈		з0 ј	≈ 34 j	
Période synodique en jours (j) pour une latitude λ (relation empirique) :	$T = 26,75 + 5,7\sin^2\lambda$				
Composition chimique (en	masse)				
En moyenne	Hydrogène		75 %		
	Hélium		23 %		
	Éléments plus lourds 2 % (principalement : O, C, N Mg, Ne, Fe, S)		C, N, S		
Dans le noyau	Hydrogène		36 %		
	Hélium		62 %		
Principales bandes moléculaires identifiées dans l'atmosphère :	OH, NH, CH, SiH, MgH, CaH, C ₂ , CN, O ₂ , TiO, MgO, AlO, FeH, CO, H ₂ O				

Structure interne du soleil				
	Rayon	Température		
Au centre : $(T_{\odot c})$	0	$15,5\cdot 10^6~\mathrm{K}$	$p_{\odot c} = 2, 2 \cdot 10^{16} \text{ Pa}, \rho_{\odot c} = 1,64 \cdot 10^5 \text{ kg} \cdot \text{m}^{-3}$	
Noyau	$0,25~R_{\odot}$	$7, 5 \cdot 10^6 \mathrm{K}$	Lieu des réactions thermonucléaires (cycle P-P et cycle du CNO). 50 % de la masse solaire concentrée dans ce noyau riche en hélium. Transfert d'énergie radiatif	
Zone radiative	0,20 11⊙	,	Composition chimique homogène. Transfert d'énergie radiatif	
Enveloppe convective	0,8 R _☉	1,5⋅10 ⁶ K	Brassage convectif assurant le transfert d'énergie. Mouvements verticaux de l'ordre du $\rm km\cdot s^{-1}$	
	$1 R_{\odot}$	5800 K		

Atmosphère s	Atmosphère solaire				
	Altitude	Température			
Photosphère	0	5800 K	Mince couche d'où provient le rayonnement so- laire. On y voit les facules, sommets des cellules de convection		
Chromosphère	400 km	4200 K	Zone hétérogène formée de fines colonnes de matière, les $spicules$, montant à plusieurs milliers de km à des vitesses jusqu'à $30~{\rm km\cdot s^{-1}}$		
Couronne	1800 km	8000 K	Auréole blanche peu brillante et très étendue, visible lors des éclipses totales. Matière de très faible densité chauffée par des ondes de choc provenant de la couche convective		
	quelques R_{\odot}	$10^{6} { m K}$			

La Terre

Caractéristique	Caractéristiques générales				
	À l'équateur	Aux pôles	En moyenne		
Rayon	$R_{\rm e} = 6,378140\cdot10^6~{\rm m}$	$R_{\rm p} = 6,356777 \cdot 10^6 \text{ m}$	$6,371030\cdot 10^6\;{\rm m}$		
Aplatissement :		$\frac{R_{\rm e} - R_{\rm p}}{R_{\rm e}} = 3,35 \cdot 10^{-3}$			
Masse		$M_{\rm T} = 5,9742 \cdot 10^{24} \text{ kg}$ $\rho_{\rm T} = 5,517 \cdot 10^3 \text{ kg} \cdot \text{m}^{-3}$			
Masse volumique moyenne		$\rho_{\rm T} = 5,517 \cdot 10^3 \rm kg \cdot m^{-3}$			
Albédo moyen		0,43			
Flux géothermique moyen		$0,06~\mathrm{W\cdot m^{-2}}$ (en surface)			
Champ magnétique moyen		$\approx 5 \cdot 10^{-5} \text{ T (en surface)}$			
Âge		$\tau_{\rm T} = 4,55 \cdot 10^9 { m a}$			

Accélération de la pesanteur (m \cdot s⁻²) pour une latitude λ et une altitude h (m) :

$$g_{\rm T} = 9,780318 \cdot (1+5,3024 \cdot 10^{-3} \sin^2 \lambda + 5, 9 \cdot 10^{-6} \sin^2 2\lambda - 3,15 \cdot 10^{-7}h)$$

Si $\lambda = 45^{\circ}$ et h = 0 m, alors $g_{\rm T} = 9,80619$ m · s⁻².

Structure interne					
	Profondeur	Température	Pression	Masse vol.	Composition
	(km)	(K)	(Pa)	$(\mathrm{kg}\cdot\mathrm{m}^{-3})$	
Croûte terrestre					Aluminosilicates de Ca, K et Na. Les plaques de la litho- sphère glissent sur l'athéno- sphère sous-jacente (dérive des continents)
	≈ 30	730	$0,009 \cdot 10^{11}$	$3,32 \cdot 10^{3}$	
Manteau (solide)					Silicates (olivines et pyroxènes)
Noyau (liquide)	2800	280	$1, 3 \cdot 10^{11}$	$5,62 \cdot 10^3$	Mélange de Fe-Ni en fusion (avec Cu, Si, S ou O). Par ef- fet dynamo les mouvements
	5150	3650	$3, 3 \cdot 10^{11}$	$16,82 \cdot 10^3$	de matière créent le champ magnétique terrestre
Graine (solide)					Même composition que le noyau, mais à l'état solide. (Peut-être plus de Ni)
	6370	≈ 5000	$3, 6 \cdot 10^{11}$	$17, 2 \cdot 10^3$	

Mouvements de la Terre		
Mouvement diurne	Période sidérale (1 jour sidéral) : $T_{\rm s}=23~{\rm h}~56~{\rm min}~4,091~{\rm s}$ Inclinaison de l'équateur sur l'écliptique : $23^{\circ}~27,44'$	
Mouvement orbital	Année sidérale : 365,256 360 42 j (période orbitale relativement aux étoiles)	
	Année tropique : 365,242 198 79 j (période orbitale relativement au passage à l'équinoxe de printemps)	
	Période de précession : 25 760 a	
	Période de nutation : 18,6 a (amplitude 9")	

Atmosphère t	errestre		
	Altitude	Température	
	(km)	(°C)	
Troposphère	0	15	Couche météorologique contenant les 3/4 de la masse atmosphérique. Température décroissante (de 6 à 7 °C par km)
Stratosphère	6 à 18 50	-85 à -40 $-20 à +20$	Couche de température croissante. Ozonosphère entre 20 et 30 km
Mésosphère	70 à 85	-20 à +20 -120 à -50	Couche de température décroissante
Thermosphère	500	600	Couche de température croissante. Diverses couches ionisées entre 80 et 400 km (ionosphère)

Modèle d'atmosphère standard OACI				
Pression:	$p = p_0(1 - 2, 26 \cdot 10^{-5}h)^{5,255}$	p_0 : pression au niveau de la mer $(p_0=1013,25~\mathrm{hPa})$ h : altitude (m)		
Température :	$T = T_0 - 6, 5 \cdot 10^{-3} h$	T_0 : température au niveau de la mer $(T_0=15^{\circ}\mathrm{C})$ h : altitude (m)		

Comp	Composition chimique de l'air sec (constante jusque vers 80 km d'altitude)									
Pourcentage (en masse) de chaque constituant										
N_2	O_2	Ar	CO_2	Ne	Не	Kr	Xe	H_2	CH_4	N_2O
75,520	23,140	1,288	0,050	0,001267	0,000072	0,000330	0,000039	0,000003	0,00011	0,00008

La Lune								
Caractéristiques générales								
	Au périgée	À l'apogée	Demi-grand axe de l'orbite					
Distance Terre-Lune	$3,564\cdot 10^8~\mathrm{m}$	$4,067\cdot 10^8~\mathrm{m}$	$3,84404 \cdot 10^8 \text{ m}$					
Diamètre angulaire apparent	33′ 31,7″	29' 22, 9"	31' 05, 2"					
Rayon	$R_{\rm L} = 1,738 \cdot 10^6 \; {\rm m} = 0,2725 \; R_{\rm Terre}$							
Masse	$M_{\mathrm{L}} = 7,350 \cdot 1$	$7,350\cdot 10^{22}\;\mathrm{kg} = 0,01230\;M_{\mathrm{Terre}}$						
Masse volumique moyenne	$\rho_{\rm L} = 3,344 \cdot 10^3 \text{ kg} \cdot \text{m}^{-3} = 0,6061 \ \rho_{\rm Terre}$							
Accélération de la pesanteur	$g_{\rm L} = 1,627 \; {\rm m \cdot s^{-2}} = 0,165 \; g_{\rm Terre} \; ({\rm en \; surface})$							
Albédo moyen	0,073							
Champ magnétique	(de 5 à 300) 10^{-9} T							
Magnitude visuelle apparente	$m_{\rm v} = -12,7$ (pleine lune)							

Mouvements					
Période sidérale	27 j 7 h 43 min 11,5 s				
Révolution sur elle-même	27 j 7 h 43 min 11,5 s				
Période synodique (entre mêmes aspects)	29 j 12 h 44 min 2,9 s				
Inclinaison de l'équateur sur le plan de l'orbite	6,7°				
Inclinaison du plan de l'orbite sur l'écliptique	$5,9^{\circ}$				
Excentricité de l'orbite	0,0549				

398 K de jour et 98 K de nuit

Petits objets du système solaire

Astéroïdes ou petites planètes

Température du sol

Constitution:objets rocheux plus ou moins métalliques

de 1 km à quelques centaines de km Tailles:

plus de $10\,000$ identifiés sur 10^6 estimés Quantité:

Situation: dans la ceinture des astéroïdes (entre les orbites de Mars et de Jupiter)

et dans la ceinture de Kuiper (entre 50 et 500 UA du Soleil)

Quelques grands astéroïdes							
Nom	Nº	Rayon (km)	Demi-grand axe (UA)	Excentricité	Inclinaison sur l'écliptique (°)		
Cérès	1	457	2,767	0,097	10,61		
Pallas	2	261	2,771	0,18	34,81		
Vesta	4	250	3,362	0,097	7,14		
Hygeia	10	215	3,144	0,136	3,84		
Davida	511	168	3,178	0,171	15,94		
Interamnia	704	167	3,062	0,081	17,3		
Europa	52	156	3,097	0,119	7,44		
Eunomia	15	136	2,644	0,143	11,76		
Sylvia	87	136	3,486	0,051	10,87		
Psyché	16	132	2,922	0,1	3,09		
Euphrosyne	31	124	3,156	0,099	26,34		
Cybèle	65	123	3,429	0,129	3,55		
Junon	3	122	2,67	0,128	13,00		
Bamberga	324	121	2,683	0,285	11,14		
Camilla	107	118	3,488	0,084	9,93		

Noyau:	quelque	quelques dizaines de km, constitués de glaces incrustées de matières rocheuses					
Tête:	envelop	enveloppe gazeuse du noyau formée par la sublimation de celui-ci					
Queues:	matéria	matériaux (poussières et gaz) de la tête poussés par le vent solaire					
Situation:	dans le $nuage\ de\ Oort$ (réservoir sphérique de 50 000 UA de rayon) et dans la ceinture de Kuiper						
Comète de Halley		Dimensions du noyau Diamètre de la tête Longueur de la queue Masse Masse volumique moyenne Accélération de la pesanteur Albédo moyen Distance moyenne au Soleil Période de révolution orbitale Inclinaison de l'orbite Excentricité	$\begin{array}{l} 16\times8\times7~{\rm km} \\ {\rm de}\ 50000\ {\rm à}\ 250000\ {\rm km} \\ {\rm jusqu'\grave{a}}\ 10^8~{\rm km} \\ M=10^{14}~{\rm kg}=10^{-11}~M_{\rm Terre} \\ \rho=200~{\rm kg\cdot m^{-3}} \\ g=0,004~{\rm m\cdot s^{-2}} \\ 0,04 \\ 17,8~{\rm UA} \\ {\rm T}=76,1~{\rm a} \\ i=18^\circ~({\rm mouvement\ r\acute{e}trograde}) \\ e=0,97 \end{array}$				

Comètes

Les planètes du système solaire

Caractéristiques physiques des planètes

Planète	Masse	Taille	Masse	Accélération
	(M_{Terre})	(R_{Terre})	volumique $(\text{kg} \cdot \text{m}^{-3})$	pesanteur au pôle $(m \cdot s^{-2})$
Mercure \u03c4	0,056	0,387	5440	3,72
Vénus 9	0,82	0,95	5240	8,85
Terre 5	1	1	5500	9,81
Mars ♂	0,11	0,53	3940	3,72
Jupiter 4	317,8	11,19	1310	24,8
Saturne ħ	95,2	9,41	700	10,5
Uranus &	14,5	3,98	1300	9,0
Neptune 🖔	17,2	3,81	1660	11,0
Pluton ₽	0,0025	0,18	2000	1,0

Caractéristiques des orbites des planètes						
Planète	Période	Période	Demi-grand axe	Excentricité		
	sidérale	synodique				
			a	e		
			(UA)			
Mercure	87,969 j	115,88 ј	0,357	0,207		
Vénus ♀	224,701 ј	1 a 218 j	0,723	0,007		
Terre 5	365,256 ј	_	1	0,017		
Mars ♂	1 a 321 j	2 a 49 j	1,524	0,093		
Jupiter 4	11 a 314 j	1 а 33 ј	5,203	0,048		
Saturne ħ	29 a 167 j	1 а 13 ј	9,5	0,056		
Uranus &	84 a 7 j	1 а 4 ј	19,218	0,046		
Neptune 🖔	164 a 280 j	1 а 2 ј	30,11	0,009		
Pluton ₽	251 a 314 j	1а1ј	39,8	0,256		

Les planètes du système solaire

Caractéristiques physiques des planètes

Vitesse	Principaux	Température	Pression	Planète
libération	composants	moyenne	au sol	
$({\rm km\cdot s^{-1}})$	atmosphériques	(°C)	(hPa)	
4,3	_	90	0	Mercure ĕ
10,4	CO_2 N_2	460	90000	Vénus 9
11,2	N_2 O_2	14	1013	Terre 5
5,0	CO_2 N_2	-60	2 - 10	Mars $_{\mathcal{O}}$
60	H_2 He	-150	_	Jupiter 4
36	H_2 He	-180	_	Saturne \uparrow_l
21,2	H_2 He	-210	_	Uranus ô
23,6	H ₂ He	-220		Neptune \forall
1,0	_	-230	0	Pluton ₽

			Caractéristiques o	des orbites d	es planètes
Inclinaison	Longitude	Période	Inclinaison de	Nombre	Planète
sur l'écliptique	du périhélie	de rotation	l'équateur sur l'orbite	de satellites	
i	Ω				
(°)	(°)	(j)	(°)		
7,00	76,67	58,65	0	0	Mercure
3,39	130,85	243,02	177,4	0	Vénus ♀
0	102,07	1	23,45	1	Terre
1,85	335,57	1,026	24	2	Mars ♂
1,31	13,52	0,414	3,1	≥ 16	Jupiter 4
2,49	92,07	0,444	26,7	≥ 23	Saturne h
0,77	169,85	0,718	97,9	≥ 15	Uranus å
1,78	44,17	0,671	28,8	≥ 8	Neptune \forall
17,14	223,5	6,387	99	1	Pluton ₽

Le	es satelli	tes naturels d	les plane	ètes					
	Satellite	Découverte	Rayon orbite	Excen- tricité	Incli- naison	Période sidérale	Dia- mètre	Masse	Densité
			$(R_{\text{planète}})$		(°)	(j)	(km)	(10^{21} kg)	(ρ_{eau})
đ	Lune		60,2	0,0549	18,3-28,6	27,322	3476	73,4	3,34
ď	Phobos	1877 A. Hall	2,76	0,015	1,1	0,318	21,8	0,00001	2,0
	Deimos	1877 A. Hall	6,91	0,0008	0,9-2,7	1,262	11,4	0,000005	1,9
4	Métis	1979 S. Synnot	1,78	0,0	0,0	0,295	40	_	_
	Adrastée	1979 D. Jewitt	1,88	0,0	0,0	0,295	10	_	_
	Amalthée	1892 E. Barnard	2,53	0,0028	0,4	0,498	220	_	_
	Thébée	1979 S. Synnot	3,1	0,0	1,25	0,6726	80	_	_
	Io	1610 Galilée	5,91	0,0	0,0	1,769	3640	89,2	3,53
	Europe	1610 Galilée	9,4	0,0003	0,0	3,551	3130	48,6	3,03
	Ganymède	1610 Galilée	14,99	0,0015	0,1	7,155	5280	148,9	1,93
	Callisto	1610 Galilée	26,6	0,0075	0,4	16,689	4840	106,4	1,79
	Léda	1974 C. Kowal	156	0,148	26,7	240	10	_	_
	Himalia	1904 C. Perrine	161	0,158	27,6	250	170	_	_
	Elara	1938 S. Nicholson	165	0,207	24,8	260	80	_	_
	Lysithéa	1905 C. Perrine	166	0,13	29	263	24	_	_
	Ananké	1951 S. Nicholson	294	0,17	147	617	20	_	_
	Carmé	1938 S. Nicholson	313	0,21	164	692	30	_	_
	Pasiphaé	1908 P. Melotte	329	0,38	145	739	40	_	_
	Sinopé	1914 S. Nicholson	332	0,28	153	758	28	_	_
ħ	Pan	1990 Voyager 2	_	0,0	_	_	10	_	_
	Atlas	1980 R. Terrile	2,27	0,0	_	0,1599	15	_	_
	Prométhée	1980 S. Collins	2,31	0,0	_	0,611	100	_	_
	Pandore	1980 S. Collins	2,34	0,0	_	0,627	100	_	_
	Epiméthée	1966 R. Walker	2,51	0,01	0	0,692	80	_	_
	Janus	1966 A. Dollfus	2,51	0,01	0	0,698	80	_	_
	Mimas	1789 W. Herschel	3,12	0,02	1,5	0,942	390	0,038	1,17
	Encelade	1789 W. Herschel	3,98	0,0044	0,02	1,37	500	0,084	1,24
	Téthys	1684 G. Cassini	4,9	0,0022	1,08	1,887	1050	0,64	1,26
	Telesto	1980 B. Smith	4,9	0,01	_	1,887	30		_
	Calypso	1980 B. Smith	4,9	0,01	_	1,887	20		_
	Dioné	1684 G. Cassini	6,26	0,0022	0,02	2,236	1120	1	1,44
	Hélène	1980 P. Laques	6,27	0,01	0,2	2,74	30	_	_
	Rhéa	1672 G. Cassini	8,7	0,0009	0,35	4,517	1530	2,5	1,33
	Titan	1655 C. Huygens	20,3	0,029	0,2	15,94	5140	137	1,9
	Hypérion	1848 W. Bond	24,7	0,104	0,3	21,276	300	_	_
	Japet	1671 G. Cassini	59,3	0,028	14,72	79,33	1440	1,9	1,2
	Phoebé	1898 W. Pickering	216	0,163	150,05	550,45	200	_	_

	Satellite	Découverte	Rayon	Excen-	Incli-	Période	Dia-	Masse	Densité
			orbite	tricité	naison	sidérale	mètre		
			$(R_{\text{planète}})$		(°)	(j)	(km)	(10^{21} kg)	$(\rho_{\rm eau})$
ô	Cordelia	1986 Voyager 2	1,95	0,00047	0,19	0,335	25	_	_
	Ophélie	1986 Voyager 2	2,11	0,01	0,09	0,376	30	_	
	Bianca	1986 Voyager 2	2,3	0,00088	0,16	0,435	40	_	_
	Cressida	1986 Voyager 2	2,4	0,00023	0,04	0,464	60	_	_
	Desdémone	1986 Voyager 2	2,46	0,00023	0,16	0,474	55	_	_
	Juliette	1986 Voyager 2	2,5	0,00058	0,06	0,493	80	_	_
	Portia	1986 Voyager 2	2,58	0,00016	0,09	0,513	100	_	_
	Rosalinde	1986 Voyager 2	2,8	0,0001	0,28	0,558	50	_	_
	Belinda	1986 Voyager 2	2,93	0,00011	0,03	0,624	65	_	_
	Puck	1986 Voyager 2	3,36	0,00005	0,31	0,761	150	_	
	Miranda	1948 G. Kuiper	5,1	0,017	3,4	1,41	480	0,09	1,35
	Ariel	1851 W. Lassel	7,6	0,0028	0,0	2,52	1180	1,25	1,65
	Umbriel	1851 W. Lassel	10,5	0,0035	0,0	4,144	1220	1,3	1,5
	Titania	1787 W. Herschel	17,2	0,0024	0,0	8,706	1620	3,5	1,68
	Obéron	1787 W. Herschel	23,1	0,00	0,12	13,4	1570	3,00	1,6
₹	Naïade	1989 Voyager 2	1,94	0,00038	4,74	0,294	55	_	_
	Thalassa	1989 Voyager 2	2,00	0,00023	0,21	0,311	80	_	_
	Despina	1989 Voyager 2	2,12	0,00017	0,07	0,335	150	_	_
	Galathée	1989 Voyager 2	2,5	0,00007	0,05	0,429	160	_	_
	Larissa	1989 Voyager 2	2,97	0,00138	2	0,555	200	_	_
	Protée	1989 Voyager 2	4,74	0,00046	0,55	1,122	400	_	_
	Triton	1846 W. Lassel	14,6	0,00002	159,9	5,876	2700	20	2,00
	Néréide	1949 G. Kuiper	228	0,74	27,7	359,8	300	_	
Р	Charon	1978 J. Kristy	15,8	0	94	6,39	1200	1	1,4

Cette liste n'est pas exhaustive, elle évolue avec les techniques d'observation et la recherche spatiale

Météorites

Poussières et morceaux de matière solide tombant sur la Terre et portés à incandescence vers 100 km d'altitude. Origine généralement cométaire

```
Masses: - étoiles filantes < 1 g
          -\ bolides
                          > 1 kg (impact au sol!)
```

Débit de masse sur Terre $> 10^5 \; \mathrm{kg \cdot j^{-1}}$

Les étoiles

Principales grandeurs stellaires caractéristiques

Type spectral

Classification basée sur des critères d'intensités relatives des raies spectrales. Indication de température et de couleur. Types: W, O, B, A, F, G, K, M, R, N, S (par ordre de température décroissante), subdivisés en sous-types numérotés de 0 à 9

Classe de luminosité

Selon les intensités relatives de certaines raies. Classes numérotées de I à V (des supergéantes aux naines). Exemples : Sirius A1 V (bleue), Soleil G2 V (jaune), Arcturus K2 III (rouge)

Masse de 0,04 M_{\odot} à 150 M_{\odot}

Distribution : beaucoup d'étoiles peu massives, peu d'étoiles de grande masse

Rayon de 10 km à 1000 R_{\odot}

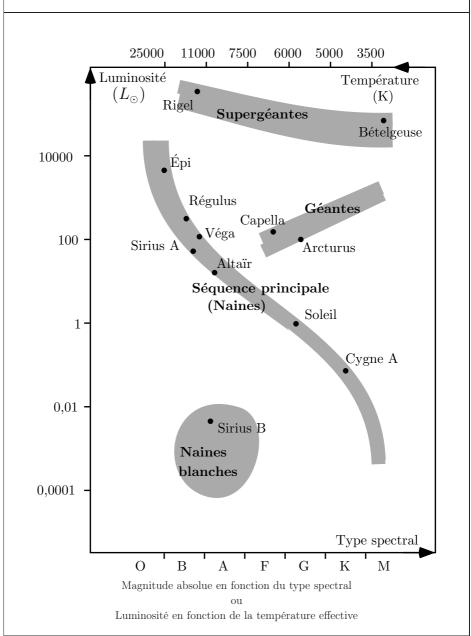
Relation masse-luminosité

Relation approximative pour les naines (séquence principale du diagramme HR) :

$$\frac{L}{L_{\odot}} \approx \left(\frac{M}{M_{\odot}}\right)^{3,5}$$

Propriétés des étoiles de la séquence principale							
Type spectral	$T_{ m eff}$	Masse	Luminosité	Durée de vie sur la SP			
	(K)	(M_{\odot})	(L_{\odot})	(a)			
O 7,5	38 000	25	80 000	$6 \cdot 10^{6}$			
В 0	33 000	16	10 000	$10 \cdot 10^{6}$			
В 5	17 000	6	600	$60 \cdot 10^{6}$			
A 0	9 500	3	60	$600 \cdot 10^{6}$			
F 0	6 900	1,5	6	$1,8 \cdot 10^9$			
G 0	5800	1	1	$10 \cdot 10^9$			
K 0	4800	0,8	0,4	$20 \cdot 10^{9}$			

Duplicité


Plus de la moitié des étoiles font partie de systèmes multiples (doubles, triples, etc.)

Exoplanètes

On connaît quelques dizaines d'étoiles qui sont accompagnées de planètes (fin du XXe siècle)

Diagramme de Hertzsprung-Russel

Évolution stellaire et nucléosynthèse

Phases principales de l'évolution stellaire

Phase	Durée	Phénomènes prépondérants
Contraction gravitationnelle	$\approx 10^7$ a pour le Soleil	Concentration de matière interstellaire. Formation de noyaux denses et chauds : les proto-étoiles
Combustion de l'hydrogène	$\approx 1 \cdot 10^{10} \text{ a si } M = 1 M_{\odot}$ $\approx 8 \cdot 10^{8} \text{ a si } M = 2 M_{\odot}$ $\approx 1 \cdot 10^{7} \text{ a si } M = 15 M_{\odot}$	Amorçage des réactions de fusion de H au centre des noyaux lourds (pour $T>10^7$ K). La fusion de H forme He au centre de l'étoile qui est alors sur la séquence principale du diagramme HR
Géante rouge	10 % de la phase précédente	L'hydrogène étant épuisé au centre, le noyau se contracte tandis que les couches extérieures se dilatent. La fusion de He s'amorce au centre lorsque T atteint $2\cdot 10^8$ K. Poursuite de la fusion de H dans une coquille autour du noyau. Phase souvent instable (étoiles variables)
Phases ultimes		Si $M < 4~M_{\odot}$: évolution en naine blanche (petite étoile, peu lumineuse et dense) Si $M > 4~M_{\odot}$: perte de masse brutale (nova ou supernova) puis évolution en étoile à neutrons Si $M > 8~M_{\odot}$: l'étoile synthétise des éléments lourds (jusqu'au Fe) avant d'exploser en supernova Si masse du noyau restant $> 2~M_{\odot}$: évolution en trou noir, sinon en étoile à neutrons

Réactions de nucléosynthèse

Fusion de l'hydrogène (étoiles de la séquence principale)

Tusion de l'hydrogene (ciones de la sequene	se principale)
Chaîne proton-proton, prépondérante dans les étoiles de faible masse (pour $T>10^6~{\rm K})$:	Cycle CNO, prépondérant dans les étoiles massives (pour $T>15\cdot 10^6~{\rm K})$:
$^{1}\mathrm{H} + ^{1}\mathrm{H} \longrightarrow ^{2}\mathrm{H} + \mathrm{e}^{+} + \nu$	$^{12}\text{C} + ^{1}\text{H} \longrightarrow ^{13}\text{N} + \gamma$
$^{2}\mathrm{H} + {}^{1}\mathrm{H} \longrightarrow {}^{3}\mathrm{He} + \gamma$	$^{13}N \longrightarrow ^{13}C + e^+ + \nu$
$^{3}\mathrm{He} + ^{3}\mathrm{He} \longrightarrow ^{4}\mathrm{He} + 2^{1}\mathrm{H} + \gamma$	$^{13}\text{C} + ^{1}\text{H} \longrightarrow ^{14}\text{N} + \gamma$
Bilan : 26,21 MeV	$^{14}\mathrm{N} + ^{1}\mathrm{H} \longrightarrow ^{15}\mathrm{O} + \gamma$
	$^{15}\mathrm{O} \longrightarrow ^{15}\mathrm{N} + \mathrm{e}^{+} + \nu$
	$^{15}\mathrm{N} + ^{1}\mathrm{H} \longrightarrow ^{12}\mathrm{C} + ^{4}\mathrm{He}$
	$Bilan: 25{,}03~\mathrm{MeV}$
Fusion de l'hélium (étoiles géantes rouges)	Cycle 3 α (pour $T > 100 \cdot 10^6$ K) :
	$^{4}\mathrm{He} + {^{4}\mathrm{He}} \longrightarrow {^{8}\mathrm{Be}} + \gamma$
	$^8{ m Be} + {}^4{ m He} \longrightarrow {}^{12}{ m C} + \gamma$
	Bilan: 7,3 MeV

Log ótoilog log plug b	willonted do notro	aial
Les étoiles les plus b	irmantes de notre	стег

	Nom	Nom latin	m	Distance	Type spectral	L	T	M	R
				(AL)		$({\rm L}_{\odot})$	(K)	$({\rm M}_{\odot})$	$({\rm R}_{\odot})$
1	Soleil		-26, 9	0,000016	G2 V	1	5800	1	1
2	Sirius	α Canis Majoris	-1,46	8,6	A1 V	23	10000	2,5	2,2
3	Canopus	α Carinae	-0,72	75	F0 II	1200	8000	10	15
4	Arcturus	α Bootis	-0,04	34	K1 IIIb	90	4800	3	15
5	Rigil Kent	$\alpha 1$ Centauri	-0,01	4,3	G2 V	1,4	5500	1	0,9
6	Véga	α Lyrae	0,03	25	A0 Va	40	10500	2,5	1,7
7	Capella	α Aurigae	0,08	41	$\mathrm{G5~III}+\mathrm{G0~III}$	120	5000	3	8
8	Rigel	β Orionis	0,12	630	B8 Ia	55000	12000	50	38
9	Procyon	α Canis Minoris	0,38	11	F5 IV-V	7	7000	1,5	1,4
10	Achernar	α Eridani	0,46	130	B3 V	600	18500	8	1,9
11	Bételgeuse	α Orionis	0,5	≤ 420	M1–2 Ia–Iab	9000	3000	30	1800
12	Hadar	β Centauri	0,61	≤ 300	B1 III	3900	21500	20	4,3
13	Altaïr	α Aquilae	0,77	16	A7 V	10	8000	2	1,5
14	Aldébaran	α Tauri	0,85	55	K5 III	110	3500	4	30
15	Antarès	α Scorpii	0,96	≤ 500	M1,5 Iab Ib	≤ 8800	3000	25	400
16	Spica	α Virgini	0,98	≤ 300	B1 III–IV+B2 V	3000	21500	18	4
17	Pollux	β Gemini	1,14	35	K0 IIIb	35	5000	3	11
18	Fomalhaut	α Piscis Austrini	1,16	22	A3 V	20	9000	2	2

Les étoiles les plus proches de nous

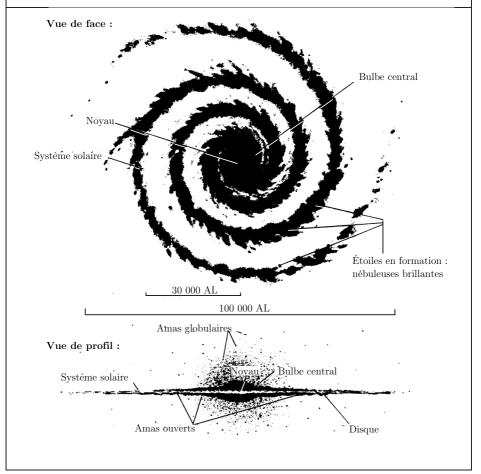
1	Soleil	-26, 9	0,000016	G2 V	1	5800	1	1
2	Alpha du Centaure C	10,7	4,238	M5 V	0,00055	6000	1,1	1
3	Alpha du Centaure A	-0,01	4,3	G2 V	1,4	5000	0,7	0,7
4	Alpha du Centaure B	1,4	4,3	K5 V	0,66			
5	Étoile de Barnard	9,5	5,9	M5 V	0,0029			
6	Wolf 359	13,7	7,6	M6 V	0,00015			
7	Lalande 21185	7,5	8,1	M2 V	0,015			
8	Sirius A	-1,46	8,7	A1 V	23	10000	2,5	2,2
9	Sirius B	8,7	8,7	A4 IV	0,002			
10	Luyten 726-8A	12,5	8,9	M6 V	0,00038			
11	Luyten 726-8B	12,9	8,9	M6 V	0,00026			
12	Ross 154	10,6	9,4	M4 V	0,0026			
13	Ross 248	12,2	10,3	M6 V	0,00072			
14	Epsilon de l'Eridan	3,7	10,7	K2 V	0,43	5000	0,7	0,6
15	Luyten 789-6	12,6	10,8	M6 V	0,0006			
16	Ross 128	11,1	10,8	M5 V	0,0022			
17	61 du Cygne A	5,2	11,2	K5 V	0,14			
18	61 du Cygne B	6,0	11,2	K7 V	0,072			

La Voie Lactée

Caractéristiques générales

Nombre total d'étoiles $(100-200)\cdot 10^9$

Masse $\approx 5 \cdot 10^{11} M_{\odot}$


Diamètre du disque $80\,000~\mathrm{AL}$ Épaisseur du disque $2\,000~\mathrm{AL}$ Distance Soleil-centre $26\,000~\mathrm{AL}$

Période de rotation $220 \cdot 10^6$ a (pour le Soleil)

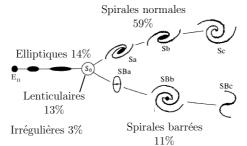
Masse de matière interstellaire $1, 5 \cdot 10^9 \ M_{\odot}$ sous forme atomique

 $10^9\;M_{\odot}$ sous forme moléculaire

Structure

Distrib	Distribution des constituants						
	Objets	Propriétés					
Bras	Objets très jeunes, étoiles O à B3 et supergéantes. Matière interstellaire	$\tau<10^8$ a. Relativement forte métallicité. Faibles vitesses perpendiculaires au plan galactique (< $10~{\rm km\cdot s^{-1}})$					
Disque	Objets jeunes, étoiles B5 à M, géantes G à M, naines blanches et nébuleuses planétaires. Amas ouverts	$\tau < 10^{10}$ a. Bras et disque : 90 % de la masse visible dans la Galaxie					
Halo	Objets anciens, sous-naines, variables de longues périodes, variables RR Lyrae. Amas globulaires	$\tau \approx 10^{11}$ a. Très faible métallicité. Grandes vitesses perpendiculaires au plan galactique ($\approx 75~{\rm km\cdot s^{-1}}$). 5 % de la masse visible					
Centre	Région très riche en étoiles et en matière interstellaire. Source radio très intense et compacte et peut-être trou noir massif	Densité 100 fois supérieure à celle du voisinage solaire. Bulbe central : 5 % de la masse visible de la Galaxie					

La matière interstellaire							
Forme	Constitution	Propriétés					
Gaz neutre (région HI)	Nuages hétérogènes d'hydrogène atomique et moléculaire. Traces d'autres éléments et molécules (une centaine est connue) parfois complexes (plus de 10 atomes)	$T \approx 1000-2000 \text{ K}$ Densité : 0, 1–10 ⁴ atomes · cm ⁻³ Nuages typiques : masse $\approx 10^5 M_{\odot}$; taille $< 30 \text{ AL}$					
Gaz ionisé (région HII)	Masse de gaz dilué et ionisé par le rayonnement UV des étoiles chaudes (O à B5), situées dans les nuages de gaz neutre	T jusqu'à 10^4 K Densité : $10-10^4$ atomes \cdot cm ⁻³					
Poussières	Grains allongés de graphite, fer et silicates recouverts de glace ou d'ammoniac, représentant environ 1 % de la masse du gaz	Taille des grains $\approx 10^{-7}$ m					
Particules cosmiques	Électrons, protons et ions lourds en prove- nance des vents stellaires, de supernovae et de sources inconnues	Énergie : $10^7 - 10^{20}$ eV					



Les galaxies

Les divers types de galaxies

Les galaxies normales

Classification morphologique des galaxies selon Hubble :

Propriétés des galaxies

1 0			
	Elliptiques	Spirales	Irrégulières
Masse * (M_{\odot})	10^6 à 10^{13}	$10^9 \ {\rm a} \ 10^{11}$	$10^7 \ \text{à} \ 10^{10}$
Magnitudes absolues	$-9 \ a \ -23$	−15 à −21	−13 à −18
Luminosité (L_{\odot})	$3\cdot 10^5$ à 10^{10}	10^8 à $2\cdot 10^{10}$	$10^7 \ \text{à} \ 10^8$
M/L	50	2 à 20	1
Diamètre (kAL)	2 à 500	20 à 150	5 à 30
Type spectral moyen	G-K	F-G	F-G
Population stellaire dominante	vieille	jeunes (bras) + vieilles (bulbe)	plutôt jeune
Présence de gaz interstellaire	peu	oui	beaucoup
Présence de poussière interstellaire	très peu	oui	oui
Mouvement de rotation	faible	grand	faible

^{*} Les galaxies contiennent une importante quantité de matière obscure dont on ne sait pratiquement rien (problème de la masse cachée ou masse manquante)

Les galaxies actives

Environ 5 % des galaxies présentent à des degrés divers des propriétés particulières :

- énorme luminosité intrinsèque
- spectres de rayonnement synchrotron ou avec excès dans les domaines X, UV, IR ou radio
- noyau très lumineux relativement à l'objet entier (aspect quasi-stellaire)
- variabilité parfois rapide

Principaux types : galaxies de Seyfert, radio-galaxies, quasars ...

Groupes, amas et superamas de galaxies

Groupes: quelques dizaines de galaxies centaines ou milliers de galaxies Amas:

Superamas: groupement d'amas

Le Groupe Local

Une trentaine de galaxies (dont la Voie Lactée) situées dans un volume de $3\cdot 10^6$ AL de rayon. Extension de l'Amas de la Vierge

Galaxie	Type	Distance	Diamètre	Masse	Magn.	Vitesse radiale
		(10^3 AL)	(10^3 AL)	$(10^9 \ M_{\odot})$	abs.	$(\text{km} \cdot \text{s}^{-1})$
La Galaxie (Voie Lactée)	Sb	_	100	150	-20	_
Grand Nuage de Magellan *	Irr I	170	23	10	-18, 5	+270
Petit Nuage de Magellan *	Irr I	200	10	20	-16, 8	+170
Andromède	Sb	2250	160	300	-21, 1	-275
NGC 221 (satellite d'Andromède)	E 2	2150	3	3	-16, 4	-210
NGC 205 (satellite d'Andromède)	E 1	2100	6	10	-16, 4	-240
Nébuleuse du Triangle	Sc	2250	26	10	-18.9	-190
NGC 147	E 5	2150	3	1	-14, 9	-250
NGC 185	E 5	2150	3	1	-15, 2	-300
IC 1613	Irr I	2400	3	0,3	-14, 8	-240
NGC 6822	Irr I	1500	6	0,4	-15, 7	-40
Galaxie du Sculpteur	Е	280	3	0,003	-11, 7	
Galaxie du Fourneau	Е	550	6	0,02	-13, 6	+40
Galaxie du Lion I	E 4	750	3	0,003	-11, 0	
Galaxie du Lion II	E 1	750	3	0,001	-9, 4	
Système du Dragon	naine	220	3	0,0001	-8, 6	
Système de la Petite Ourse	naine	220	3	0,0001	-8, 8	

 $^{\ ^*}$ Les Nuages de Magellan sont satellites de la Voie Lactée

Au-delà du Groupe Local	(10^6 AL)	(10^3 AL)	$(10^9 \ M_{\odot})$		$({\rm km\cdot s^{-1}})$	
M 82 de la Grande Ourse	Irr II	10	23	30	-19, 5	+400
M 81 de la Grande Ourse	Sb	10	100	200	-21,0	+80
M 51 des Chiens de Chasse	Sc	13	65	80	-19, 7	+550
NGC 5128 du Centaure	E 0p	16	30	1000	-20, 0	+260
M 101 de la Grande Ourse	Sc	20	200	300	-20, 0	+400
M 83 de l'Hydre	SBc	26	300	1000	-20, 5	+320
M 104 de la Vierge	Sa	40	30	500	-22, 0	+1050
M 87 de la Vierge	E 1	50	40	300	-22, 0	+1220

M: catalogue Messier; NGC: New General Catalogue

Le Superamas Local

Système aplati d'environ $150 \cdot 10^6$ AL de rayon constitué du Groupe Local, de l'Amas de la Vierge et d'une cinquantaine de groupes

Amas de galaxies proches	Distance	Nombre d'objets	Vitesse radiale
	10^6 AL		$(\mathrm{km}\cdot\mathrm{s}^{-1})$
de la Vierge	70	2 500	+1150
de Pégase I	230	100	+3800
des Poissons	235	100	+5000
du Cancer	280	150	+4800
de Persée	340	500	+5400
de la Chevelure de Bérénice	400	1 000	+6700
de la Grande Ourse III	465	90	
d'Hercule	615	300	+10300
Amas A	850	400	+15800
du Centaure	880	300	
de la Grande Ourse I	950	300	+15400
du Lion	1 095	300	+19500
Amas B	1 165	300	
des Gémeaux	1 235	200	+23300
de la Couronne Boréale	1 235	400	+21600
du Bouvier	2 300	150	+39400
de la Grande Ourse II	2 400	200	+41000
de l'Hydre	3 530	_	+60600

Le Grand Attracteur : Amas de galaxies Abell 3627 (très massif : $5\cdot 10^{15}~M_{\odot}$), situé à plus de $300 \cdot 10^6$ AL du Soleil. Attire le Groupe Local, le Superamas Local et l'Amas de la Vierge

Cosmologie

Observations	acamalagianas	fondamentales
Observations	cosmologiques	londamentales

Abondances cosmiques

Principaux éléments en nombre d'atomes par million d'atomes d'hydrogène

Н	Не	О	С	N	Ne	Si	Fe	Mg	S	Al	Na	Ni	Ca	Ar	Tous
1,000,000	00.000	700	400	100	100	40	- 00	20		9	0	0		-	autres
1 000 000	80 000	700	400	100	100	40	30	30	20	3	2	2	2	1	2

Expansion de l'Univers

r · 1 m 111		v: vitesse de récession (km · s ⁻¹)
Loi de Hubble :	v = Hd	$H:$ constante de Hubble $(\text{km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1})$
		d: éloignement (Mpc)

 ${\cal H}^{-1}$: durée caractéristique de l'âge de l'Univers.

$$H \approx (62 \pm 10) \; \mathrm{km \cdot s^{-1} \cdot Mpc^{-1}} \quad \Rightarrow \quad \tau_{\mathrm{Univers}} \approx (13 \pm 2) \cdot 10^9 \; \mathrm{a}$$

Rayonnement cosmologique

Rayonnement très isotrope montrant une distribution d'énergie du corps noir à $2,73~\mathrm{K}$

Le scénario	Le scénario du Big Bang								
	Âge *	Température * (K)	Événements						
Ère de Planck	$< 10^{-43} \text{ s}$	$> 10^{32}$	Flou quantique. La physique de l'Univers est indéterminée						
Ère des quarks	$(10^{-43}-10^{-32})$ s	$10^{32} - 10^{27}$	L'Univers est formé d'une soupe de photons, de quarks, de leptons et de leurs antiparticules. Inflation de 10^{-34} à 10^{-32} s: accélération brusque des processus; l'Univers enfle brusquement d'un facteur 50						
Ère hadronique	$(10^{-32}-10^{-5})$ s	$10^{27} - 10^{12}$	Équilibre entre photons et paires hadrons- antihadrons. Puis, lorsque $T<10^{13}$ K, hadrons et antihadrons s'annihilent, sauf une infime disymétrie de $1/10^9$. Les pro- tons et les neutrons sont nés						
Ère leptonique	$(10^{-5}-10) \text{ s}$	$10^{12} – 10^{10}$	Même processus avec les leptons. <i>Naissance des électrons</i> en même quantité que les protons : neutralité électrique de l'Univers						
Ère radiative	10 s - 300 000 a	10 ¹⁰ -3000	Premières minutes : nucléosynthèse pri- mordiale. L'univers est alors un mélange de photons, de neutrinos et d'électrons libres avec quelques noyaux légers (75 % H, 25 % He). Ensuite expansion et lent refroidissement						
Ère stellaire	> 300 000 a	3 000-2,73	Vers 3000 K cessation des interactions matière-rayonnement; les électrons se lient aux noyaux et l'Univers devient transparent. Les premiers atomes sont nés. Après environ 109 a, formation des galaxies et des étoiles dans lesquelles la nucléosynthèse stellaire continue la fabri-						

^{*} Valeurs très approximatives dépendant du modèle de Big Bang choisi

Réactions de la nucléosynthèse cosmologique					
Formation du deutérium	$n + {}^{1}H \longrightarrow {}^{2}H + \gamma$				
Production d'hélium 3	$^{2}\mathrm{H} + ^{2}\mathrm{H} \longrightarrow {}^{3}\mathrm{He} + \mathrm{n} + \gamma$				
Production de tritium	$^{3}\mathrm{He}+\mathrm{n}^{3}\mathrm{H}+{}^{1}\mathrm{H}+\gamma$				
Formation de l'hélium	$^{2}\mathrm{H} + ^{3}\mathrm{H} \longrightarrow ^{4}\mathrm{He} + \mathrm{n} + \gamma$				

cation des éléments chimiques

Tables générales

Avertissement

Les valeurs qui figurent dans les tables suivantes ont été prioritairement exprimées en unités de base du Système International d'Unités (SI), sauf les températures pour lesquelles on a utilisé le degré Celsius (°C).

Les coefficients d'électronégativité sont ceux de Mulliken (J. Chem. Ed. 65 (1988) p. 34) complétés, pour les métaux de transition, par ceux du livre de L. & P. Pauling (Chemistry; W.H.Freeman & Co (1975) p. 175).

Sans indications supplémentaires, les valeurs sont tabulées pour une température de 25 °C.

Signes de renvoi

À la température de fusion Κ || axe : À la température d'ébullition L amorphe \mathbf{C} : À 12,4 GPa Χ À 2000 °C : À -188 °C (air liquide) D Υ Àθ°C Е РТ Point triple : Valeur movenne entre simple et double-liaison GSublimation : Gaz Η : ⊥ axe THValeur estimée

Sources

- Handbook of Chemistry and Physics, 91^e édition (2010-2011).
- Eidgenössische Materialprüfungs- und Versuchanstalt (EMPA), Dübendorf
- Association suisse de fabricants d'objets en matière plastique, Zurich
- Shell Switzerland, Zurich
- Hecht, Physique, DeBoeck, 1999

					M	asse volumiq	ue
		- 1 -	- 2 -	- 3 -	- 4 -	- 5 -	- 6 -
	Nom	Formule	Numéro	Masse	Solide	Liquide	Gaz
			atomique	atomique			(à 1 atm)
			Z	A_r		ρ	l
				(u)	(kg	$\frac{\rho}{\mathbf{g} \cdot \mathbf{m}^{-3} = \mathbf{g} \cdot \mathbf{L}}$	-1)
1	Acétone	CH ₃ COCH ₃				790	
2	Acier	99~% Fe $0,2~%$ C			7850		
3	Actinium	Ac	89	[227]	10070		
4	Air	$21~\%~\mathrm{O_2}$ 78 % $\mathrm{N_2}$					1,293
5	Alcool (éthanol)	CH ₃ CH ₂ OH				790	
6	Aluminium	Al	13	26,98	2700	2375 B	
7	Araldit [®]	Résine époxy			1200		
8	Américium	Am	95	[243]	12000		
9	Antimoine	Sb	51	121,76	6680		
10	Argent	Ag	47	107,87	10500	9320^{-B}	
11	Argon	Ar	18	39,95	1784	$1400^{\ B}$	1,63
12	Arsenic (gris)	As	33	74,92	5750	5220^{-B}	
13	Astate	At_2	85	[210]			
14	Azote	N_2	7	14,01	1250^{-A}	808 ^B	1,15
15	Baryum	Ba	56	137,33	3620	$3338^{\ B}$	
16	Benzène	C_6H_6				877	
17	Béton				2300-2500		
18	Berkelium	Bk	97	[247]	14780		
19	Béryllium	Ве	4	9,01	1850	$1690^{\ B}$	
20	Bismuth	Bi	83	208,98	9790	$10050^{\ B}$	
21	Bohrium	Bh	107	[264]			
22	Bois (chêne)				600-750		
23	Bois (ébène)				1110-1330		
24	Bois (épicéa)				440-470		
25	Bore	В	5	10,81	2340	$2080^{\ B}$	
26	Brique				1100-1200		
27	Brome	Br_2	35	79,90		3103	
28	Bronze	Cu, Sn			8730-8850		
29	Cadmium	Cd	48	112,41	8690	$7996^{\ B}$	
30	Calcium	Ca	20	40,08	1540	$1378 ^B$	
31	Californium	Cf	98	[251]	15100		
32	Caoutchouc (naturel)	$(C_5H_8)_n + 2 \% S$			930		
33	Carbone (Diamant)	С	6	12,01	3513		
34	Carbone (Graphite)	С	6	12,01	2250		
35	Carbone (Fullerène)	C_{60}	6	12,01	1650		
36	Cérium	Се	58	140,12	6770	$6550^{\ B}$	
37	Césium	Cs	55	132,91	1873	$1843 ^B$	
38	Chlore	Cl_2	17	35,45		$1560^{\ B}$	2,898
39	Chloroforme	CHCl ₃				1490	
40	Chlorure de poly- vinyle (PVC)	$(C_2H_3Cl)_n$			1350		
41	Chrome	Cr	24	52,00	7190	$6300^{\ B}$	
42	Cobalt	Со	27	58,93	8860	7750 ^B	
43	Constantan	60 % Cu 40 % Ni			8900		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Coefficient de	e dilatation				Tempe	érature]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 7 -	- 8 -	- 9 -	- 10 -	- 11 -	- 12 -	- 13 -	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Linéique	Volumique	Conductivité	Résistivité	Coefficient	Fusion	Ébullition	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(solide)	(liquide)	thermique		de température			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					de la résistivité			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	γ		ρ		$ heta_{ m f}$	$\theta_{ m e}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(K-	1)	$(W \cdot m^{-1} \cdot K^{-1})$	$(\Omega \cdot m)$	(K^{-1})	(°	C)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,162			-94,8	56,0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$11 \cdot 10^{-6}$		50-60	$(10-13)\cdot 10^{-8}$	$(5,7-6,6)\cdot 10^{-3}$	1515	2500	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1050	3200	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,-	$25 \cdot 10^{-3}$			-220	-194	4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11.10^{-4}	0,169			-114,1	78,2	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			237	· · · · · · · · · · · · · · · · · · ·	$4,0.10^{-3}$	660	2519	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60.10^{-6}		0,15	10.10^{13}				7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			10			1176	2011	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			24,3			630,5	1587	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$18,9 \cdot 10^{-6}$		_	$1,617 \cdot 10^{-8}$	$4,1\cdot10^{-3}$	961,9	2162	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$17,9 \cdot 10^{-3}$					11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			50	$33,3\cdot10^{-8}$		$817 ^{PT}$	616 ^S	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,			302		13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$36,7\cdot10^{-4}$ G	$26 \cdot 10^{-3}$			-210	-195,8	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$20,6\cdot10^{-6}$		18,4	$34 \cdot 10^{-8}$		725	1640	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,141			5,5	80,1	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.10^{-6}		0,3-1,8	$10^8 - 10^{10}$				17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$11,3\cdot 10^{-6}$		200	$3,7\cdot10^{-8}$		1278	2970	19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$13,4\cdot10^{-6}$		7,85	$130 \cdot 10^{-8}$		271,3	1560	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(45-55)\cdot 10^{-6}$ H		0,23					22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(35-45)\cdot 10^{-6}$ H		0,12	$10^{10} - 10^{14} \ ^{H}$				24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			27	$1,67 \cdot 10^5$		2077	4000	25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,1-0,5					26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$0,122 \cdot 10^{-3}$	$1,0.10^{10}$	$0,226 \cdot 10^{-3}$	-7,2	58,8	27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(14,6-17,5)\cdot 10^{-6}$		54	$3,6\cdot10^{-8}$	$1,7\cdot10^{-3}$	900-1170		28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$30,8 \cdot 10^{-6}$		96,8	7.10^{-8}		320,9	765	29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$22,3\cdot10^{-6}$		200	$3,42\cdot10^{-8}$		839	1484	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						900		31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,22-0,29	10^{13}		60-90		32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1,18 \cdot 10^{-6}$		103	1014		4440 ^C		33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5	$1,2\cdot 10^{-5}$		$4489 \ PT$	4827 ^S	34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						> 280		35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$6,3\cdot10^{-6}$		11,4	$74,4\cdot10^{-8}$		799	3426	36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$97 \cdot 10^{-6}$		35,9			28,5	671	37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,0089			-101,5	-34,6	38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,117			-63,6	61,1	39
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$78 \cdot 10^{-6}$		0,14	10^{14}		160		40
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$4,9\cdot10^{-6}$		93,7	$12,6\cdot10^{-8}$		1857	2672	41
	13,0.10-6		,	5,6·10 ⁻⁸ Y	6.10^{-3}			42
$15 \cdot 10^{-6}$ 22 $ 49 \cdot 10^{-8} 10^{-5} \approx 1200 43$	15.10^{-6}		22	49.10-8	10^{-5}	≈1200		

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Chaleur	latente		Chaleur massique			
Actione		Nom								
Actione			$L_{\rm f}$	$\Delta_{\mathrm{f}}H$	$L_{\rm v}$	$\Delta_{\rm v} H$		c	c_{p}	
Acier 3,966 10,7 108,97 294 460							($J \cdot kg^{-1} \cdot K^{-1}$	r	
Actinium	1	Acétone	0,98	5,69	5,230	30,373		2180	1300	
Alicol (ethanol)	2	Acier	3,966	10,7	108,97	294	460			
5 Alcool (éthanol) 1,09 5,02 8,500 39,16 2460 1430 6 Aluminium 3,97 10.7 109 294 897 1090 7 Araldit®	3	Actinium	0,529	12,0	17,6	400	120			
6 Aluminium 3,97 10,7 109 294 897 1090 7 Araditi®	4	Air							1000	
7 Aradit® Américium 0,593 14,4 14,6 14,6 14,6 14,6 14,4 1,0 1,0 1,0 1,0 1,0 1,0 1,1 2,0 1,0 1,1 3,1 23,6 255 235 280 x 1117 B 520 11 Argent 1,05 11,3 23,6 255 235 280 x 1117 B 520 12 Arsenic (gris) 3,26 24,4 4,33 s 32,4 s 329 1117 B 520 13 Astate 0,286 12 0,952 40 40 414 204 140 204 116 Benzène 1,28 3,9 1740 2041 B 1040 1040 15 80 1000 1000 1050	5	Alcool (éthanol)	1,09	5,02	8,500	39,16		2460	1430	
8 Américium 0,593 14,4 9 Antimoine 1,63 19,8 5,59 68 207 10 Argent 1,05 11,3 23,6 255 235 280 x 11 Argon 0,295 1,18 1,63 6,5 1117 B 520 12 Arsenic (gris) 3,26 24,4 4,33 S 32,4 S 329 113 13 Astate 0,286 12 0,952 40 40 144 Azote 0,253 0,71 1,99 5,57 2041 B 1040 104 1040 104 1040 104	6	Aluminium	3,97	10,7	109	294	897	1090		
9 Antimoine 1,63 19,8 5,59 68 207 10 Argent 1,05 11,3 23,6 255 235 280 X 11 Argent 1,05 11,3 23,6 255 235 280 X 11 Argent (gris) 3,26 24,4 4,33 *3 32,4 *8 329 13 Astate 0,286 12 0,952 40 14 Azote 0,253 0,71 1,99 5,57 2041 *B 1040 15 Baryum 0,518 7,12 10,2 140 204 16 Berzène 1,28 3,9 1740 1050 <td>7</td> <td>Araldit[®]</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	7	Araldit [®]								
10	8	Américium	0,593	14,4						
11	9	Antimoine	1,63	19,8	5,59	68	207			
12	10	Argent	1,05	11,3	23,6	255	235			
13	11	Argon	0,295	1,18	1,63			$1117^{\ B}$	520	
14	12	Arsenic (gris)	3,26	24,4	$4,33^{\ S}$	$32,4$ S	329			
15	13	Astate	0,286	12	0,952	40				
16	14	Azote	0,253	0,71	1,99	5,57		$2041 ^{B}$	1040	
17	15	Baryum	0,518	7,12	10,2	140	204			
18	16	Benzène	1,28		3,9			1740	1050	
Béryllium	17	Béton					800-1000	1000-1100		
20 Bismuth	18	Berkelium								
21	19	Béryllium	8,76	7,90	330	297	1825			
22 Bois (chêne) 2400 23 Bois (ébène) 24 Bois (épicéa) 1500	20	Bismuth	0,531	11,1	7,23	151	122			
Bois (ébène) 24 Bois (épicéa) 25 Bore	21	Bohrium								
24 Bois (épicéa)	22	Bois (chêne)					2400			
25 Bore 46,4 50,2 469 507 1026 26 Brique 27 Brome 0,661 10,6 1,88 30,0 474 226 28 Bronze	23	Bois (ébène)								
26 Brique 27 Brome 0,661 10,6 1,88 30,0 474 226 28 Bronze 29 Cadmium 0,552 6,21 8,88 99,9 232 30 Calcium 2,13 8,54 38,7 155 647 31 Californium 32 Caoutchouc (naturel) 2100 33 33 Carbone (Diamant) 510 510 34 Carbone (Graphite) 97,4 117 595 715 709 35 Carbone (Fullerène) 35 Cérium 0,390 5,46 25,0 350 192 37 Césium 0,157 2,09 4,89 65 242 38 Chlore 0,903 6,40 2,88 20,41 479 39 Chloroforme 0,398 9,500 1236 29500 40 Chlorure de polyvinyle (PVC) 1050 1050 41 Chrome 4,04 21,	24	Bois (épicéa)					1500			
27 Brome 0,661 10,6 1,88 30,0 474 226 28 Bronze .	25	Bore	46,4	50,2	469	507	1026			
28 Bronze 29 Cadmium 0,552 6,21 8,88 99,9 232 30 Calcium 2,13 8,54 38,7 155 647 31 Californium 2100 32 Caoutchouc (naturel) 2100 33 Carbone (Diamant) 510 34 Carbone (Graphite) 97,4 117 595 715 709 35 Carbone (Fullerène) 35 Cérium 0,390 5,46 25,0 350 192 37 Césium 0,157 2,09 4,89 65 242 38 Chlore 0,903 6,40 2,88 20,41 479 39 Chloroforme 0,398 9,500 1236 29500 40 Chlorure de polyvinyle (PVC) 1050 41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2 63,6 375 421 <td></td> <td>Brique</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Brique								
29 Cadmium 0,552 6,21 8,88 99,9 232 30 Calcium 2,13 8,54 38,7 155 647 31 Californium 2100 32 Caoutchouc (naturel) 2100 33 Carbone (Diamant) 510 34 Carbone (Graphite) 97,4 117 595 715 709 35 Carbone (Fullerène) 35 Carbone (Fullerène) 35 192 36 Cérium 0,390 5,46 25,0 350 192 37 Césium 0,157 2,09 4,89 65 242 38 Chlore 0,903 6,40 2,88 20,41 479 39 Chloroforme 0,398 9,500 1236 29500 40 Chlorure de polyvinyle (PVC) 1050 41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2		Brome	0,661	10,6	1,88	30,0		474	226	
30 Calcium 2,13 8,54 38,7 155 647		Bronze								
31 Californium 2100 32 Caoutchouc (naturel) 2100 33 Carbone (Diamant) 510 34 Carbone (Graphite) 97,4 117 595 715 709 35 Carbone (Fullerène) 25,0 350 192 350 192 37 Césium 0,157 2,09 4,89 65 242 38 Chlore 0,903 6,40 2,88 20,41 479 479 39 Chloroforme 0,398 9,500 1236 29500 1050 1050 40 Chlorure de polyvinyle (PVC) 1050 1050 1050 1050 1050 41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2 63,6 375 421			,							
32 Caoutchouc (naturel) 2100 33 Carbone (Diamant) 510 34 Carbone (Graphite) 97,4 117 595 715 709 35 Carbone (Fullerène) 36 Cérium 0,390 5,46 25,0 350 192 37 Césium 0,157 2,09 4,89 65 242 38 Chlore 0,903 6,40 2,88 20,41 479 39 Chloroforme 0,398 9,500 1236 29500 40 Chlorure de polyvinyle (PVC) 1050 41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2 63,6 375 421			2,13	8,54	38,7	155	647			
33 Carbone (Diamant) 510 34 Carbone (Graphite) 97,4 117 595 715 709 35 Carbone (Fullerène)										
34 Carbone (Graphite) 97,4 117 595 715 709 35 Carbone (Fullerène)		` ′		L						
35 Carbone (Fullerène) 36 Cérium 0,390 5,46 25,0 350 192 37 Césium 0,157 2,09 4,89 65 242 38 Chlore 0,903 6,40 2,88 20,41 479 39 Chloroforme 0,398 9,500 1236 29500 40 Chlorure de polyvinyle (PVC) 1050 1050 41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2 63,6 375 421		` '	05.							
36 Cérium 0,390 5,46 25,0 350 192 37 Césium 0,157 2,09 4,89 65 242 38 Chlore 0,903 6,40 2,88 20,41 479 39 Chloroforme 0,398 9,500 1236 29500 40 Chlorure de polyvinyle (PVC) 1050 1050 41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2 63,6 375 421		` - /	97,4	117	595	715	709			
37 Césium 0,157 2,09 4,89 65 242 38 Chlore 0,903 6,40 2,88 20,41 479 39 Chloroforme 0,398 9,500 1236 29500 40 Chlorure de polyvinyle (PVC) 1050 1050 41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2 63,6 375 421		` '	0.611			0.00	4.6.5			
38 Chlore 0,903 6,40 2,88 20,41 479 39 Chloroforme 0,398 9,500 1236 29500 40 Chlorure de polyvinyle (PVC) 1050 1050 41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2 63,6 375 421										
39 Chloroforme 0,398 9,500 1236 29500 40 Chlorure de polyvinyle (PVC) 1050 41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2 63,6 375 421							242		4=0	
40 Chlorure de polyvinyle (PVC) 1050 41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2 63,6 375 421									479	
40 vinyle (PVC) 41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2 63,6 375 421	39		0,398	9,500	1236	29500				
41 Chrome 4,04 21,0 65,2 339 449 42 Cobalt 2,75 16,2 63,6 375 421	40							1050		
42 Cobalt 2,75 16,2 63,6 375 421	41	/	4.04	21.0	65.2	339	449			
				· · · · · · · · · · · · · · · · · · ·	,					
40 Constantan 410	43	Constantan	,,,,	· · · · ·	, , , , , , , , , , , , , , , , , , ,	1	410			

$\begin{array}{c} -23 - \\ \text{Rayon de} \\ \text{an der Waals} \\ \hline r_W \\ \\ \\ \hline \\ 2,6 \\ \\ \\ 2,6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	- 22 - Rayon	- 21 -	-	- 20	
Tw 2,6 1,84 2,44 2,06 2,03 1 1,88 1 2,02 1 1,55 1 2,68 1 1 1 2,44 1 1,53 1 2,07 2 1,41 2 2 2 1,92 2 2 2	covalent	Rayon atomique		Potenti première ic	- 19 - Électro- négativité
2,6 1,84 2,44 2,06 2,03 1,88 1,85 1,85 2,02 1,55 1,55 2,68 1,53 1,53 2,07 2,44 1,53 2,07 2,44 2,20 2,44 1,53 2,07 2,44 2,141 2,21 2,21 2,22 1,92 2,24	r_{cov}	r_{at}		E_i	χ
2,6 1,84 2,44 2,06 2,03 1,88 1,85 1,85 1,55 1,55 2,68 1,53 1,53 2,07 2,44 1,53 2,07 2,41 2,22 1,41 2,21 2,1,92 2,21	(Å)	· at	(eV)	$(10^6 \cdot \text{J·mol}^{-1})$	χ
2,6 : : : : : : : : : : : : : : : : : : :				,	
1,84					
1,84 2,44 2,06 2,03 1,88 1,85 1,85 1,55 1,55 1,55 2,68 1 1,53 1,53 2,07 2,44 1,53 2,07 2 1,41 2 2 1,92 2 1,92 2	2,01	1,88	5,17	0,499	1,1
1,84 2,44 2,06 2,03 1,88 1,85 1,85 1,55 1 2,68 1 1 2,44 1 1,53 1 2,07 2,44 2 1,41 2 2 1,92 2 2					
2,44 2,06 2,03 1 1,88 1 1,85 1 2,02 1 1,55 1 2,68 1 1 2,44 1 1,53 1 2,07 2,141 2 2 1,92 2 1,92 2		1.10		0.550	
2,44 2,06 2,03 1 1,88 1 1,85 1 2,02 1 1,55 1 2,68 1 1 2,44 1 1,53 1 2,07 2,44 1 1,53 2,07 2 1,41 2 2 1 2,44 2 2 2 1,92 2 2	1,24	1,43	5,986	0,578	1,8
2,06 2,03 1 1,88 1 1,85 1 2,02 1 1,55 1 2,68 1 1 2,44 1 1,53 2,07 2 1,41 2 2 1,92 2 1,92 2	1,73	1,84	5,974	0,576	1,3
2,03 1 1,88 1 1,85 1 2,02 1 1,55 1 2,68 1 1 2,44 1 1,53 1 2,07 2 1,41 2 2 1,92 2	1,73	1,59	8,6084	0,831	2,1
1,88 1 1,85 1 2,02 1 1,55 1 2,68 1 2,68 1 1 2,44 1 1,53 1 2,07 2 1,41 2 2 1,92 2	1,36	1,44	7,5762	0,731	1,9
1,85 1 2,02 1 1,55 1 2,68 1 1 2,68 1 1 2,44 1 1,53 1 2,07 2 1,41 2 2 1,92 2	1,01	0,88	15,760	1,521	1,0
2,02	1,20	1,39	9,789	0,944	2,3
1,55 1. 2,68 1 1 2,68 1 1 2,44 1 1,53 1 2,07 2 1,41 2 2 2 1,92 2 2	1,48	1,45	9,535	0,92	2,8
2,68 1 1 2,44 1 1,53 1 2,07 2 1,41 2 2 2 1,92 2	0,71	0,92	14,534	1,402	2,9
1 1 2,44 1 1 1,53 1 2,07 2 1,41 2 2 2 2 1,92 2 2	2,06	2,22	5,212	0,503	0,8
2,44 1 1,53 1 2,07 2 1,41 2 2 2 1,92 2 1,92 2	,	,	,	,	,
1,53 1 2,07 2 1,41 2 2 2 2 1,92 2 2 2					
2,07 2 1,41 2 2 2 2 1,92 2 1,92 2	1,68		6,198	0,598	1,3
1,41 2 2 2 2 1,92 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,99	1,12	9,322	0,899	1,5
2 2 2 1,92 2 2	1,50	1,7	7,2855	0,703	2,1
1,92 2 2 2 2 2					
1,92 2 2					
1,92 2					
2					
	0,84	0,98	8,298	0,801	2,0
1.83					
,	1,17	1,12	11,814	1,14	3,0
2	1.10		0.0000	2.000	
2,3 2	1,40	1,41	8,9938	0,868	1,7
2,31 3	1,74	1,97	6,113	0,59	1,0
2,45 3	1,68		6,282	0,606	1,3
3					
1,7 3	0,75	0,91	11,26	1,086	2,5
3	0,75	0,91	11,20	1,000	2,0
2,35 3	1,84	1,81	5,5387	0,534	1,1
3,43 3	2,38	2,67	3,894	0,376	0,6
1,75 3	1,00	0,97	12,967	1,251	3,1
3	-,00	-,-,-	,55,	-,	~,-
4					
1,89 4	1,30	1,3	6,766	0,653	1,6
1,92 4	1,18	1,25	7,881	0,76	1,8

					M	asse volumiq	ue
		- 1 -	- 2 -	- 3 -	- 4 -	- 5 -	- 6 -
	Nom	Formule	Numéro	Masse	Solide	Liquide	Gaz
	110111	Tormaio	atomique	atomique	Sondo	Diquido	(à 1 atm)
			atomique	atomique			(a radin)
			Z	A_r		ρ	
				(u)	(ks	$g \cdot m^{-3} = g \cdot L$	-1)
44	Cuivre	Cu	29	63,55	8960	8020 ^B	
45	Curium	Cm	96	247	13510		
46	Dubnium	Db	105	[262]	$21600\ ^{TH}$		
47	Dysprosium	Dy	66	160,50	8550	8370 ^B	
48	Eau	H ₂ O		,	917 ^A	998	$0,59^{-B}$
49	Einsteinium	Es	99	252	13500		- ,
50	Erbium	Er	68	167,26	9070	8860 ^B	
51	Essence (avion)					690	
52	Essence (voiture)					725	
53	Etain (blanc)	Sn	50	118,71	7287	6990 ^B	
54	Éther	$(C_2H_5)_2O$	30	110,11	1201	714	
55	Europium	Eu	63	151,96	5240	5130 ^B	
56	Fer	Fe	26	55,85	7870	6980 ^B	
57	Fermium	Fm	100	257	1010	0300	
58	Fluor	F ₂	9	19,00	1700 ^A	1500 ^B	1,553
59	Fonte grise	95 % Fe 5 % C	Э	19,00	7100-7300	1000	1,000
60	Francium	95 % Fe 5 % C	87	223	2900		
	Gadolinium	Gd				7400 ^B	
61		1	64	157,25	7900	6080 ^B	
62	Gallium	Ga	31	69,72	5910	1100 ^B	1.00
63	Gaz carbonique	CO ₂	00	70.01	1560 A	5600 ^B	1,98
64	Germanium	Ge	32	72,61	5323		
65	Glycérine	$C_3H_5(OH)_3$			2000 2500	1260	
66	Granit	TIC	Fo.	150 50	2600-2700	12000 B	
67	Hafnium	Hf	72	178,50	13300	12000 ^B	
68	Hassium	Hs	108	269	28600 TH		
69	Hélium	Не	2	4,00	214 ^A	011	0,164
70	Huile (arachide)					914	
71	Huile (chauffage)					840	
72	Huile (olive)					918	
73	Huile (transmis-					870	
	sion de chaleur)	¥-	0.7	40	0077		
74	Holmium	Но	67	164,93	8800	8340 ^B	0.655
75	Hydrogène	H_2	1	1,01	88 A	70 ^B	0,082
76	Indium	In	49	114,81	7310	7020 ^B	
77	Invar	64 % Fe 36 % Ni			8130		
78	Iode	I_2	53	126,90	4933		
79	Iridium	Ir	77	192,22	22562	19000 ^B	
80	Krypton	Kr	36	83,80	2155^{-A}		3,425
81	Laiton	70 % Cu 30 % Zn			8470		
82	Lanthane	La	57	138,90	6150	$5940^{\ B}$	
83	Lawrentium	Lr	103	262			
84	Liège				120-260		
85	Lithium	Li	3	6,94	534	$512^{\ B}$	
86	Lutécium	Lu	71	174,97	9840	9300 ^B	

Coefficient	de dilatation				Tempe	érature	
- 7 -	- 8 -	- 9 -	- 10 -	- 11 -	- 12 -	- 13 -	
Linéique	Volumique	Conductivité	Résistivité	Coefficient	Fusion	Ébullition	
(solide)	(liquide)	thermique		de température			
				de la résistivité			
α	γ	λ	ρ	α	$ heta_{ m f}$	$\theta_{ m e}$	
	⁻¹)	$(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$	$(\Omega \cdot m)$	(K^{-1})	(°	C)	
$16,6\cdot10^{-6}$		401	$1,712\cdot10^{-8}$	4.10^{-3}	1085	2560	44
		10			1345	3100	45
		58 TH					46
$9,9 \cdot 10^{-6}$		10,7	$92,6\cdot10^{-8}$		1411	2567	47
	$2 \cdot 10^{-4}$	0,561	2.10^{5}		0	100	48
		10			860		49
$12,2\cdot 10^{-6}$		0,122	$86,0\cdot10^{-8}$		1529	2868	50
					< -60	[40; 160]	51
					< -40	[35; 200]	52
$22 \cdot 10^{-6}$		66,6	$11,5\cdot10^{-8}$	$4,7\cdot10^{-3}$	231,9	2602	53
	$17 \cdot 10^{-4}$	0,138		,	-116,3	34,6	54
$35 \cdot 10^{-6}$		13.9	$90,0\cdot10^{-8}$		822	1529	55
$11.8 \cdot 10^{-6}$		80,2	$9.87 \cdot 10^{-8}$	$6,5\cdot10^{-3}$	1538	2861	56
,		10		-,-	1527		57
		0,0279			-219,7	-188,1	58
9.10^{-6}		40-65	$67 \cdot 10^{-8}$	5.10^{-3}	1177	100,1	59
3 10		15	01 10	0.10	27	598	60
$9.4 \cdot 10^{-6}$		10,6	131.10-8		1313	3273	61
18.10 ⁻⁶		40,6	$13,6\cdot10^{-8}$ Y		29,8	2204	62
10.10	$37 \cdot 10^{-4} G$	$16.8 \cdot 10^{-3}$	13,0.10		-57 PT	-78,5 ^S	63
$5.8 \cdot 10^{-6}$	37-10	10,0-10	$\approx 5 \cdot 10^{-4}$	$-5 \cdot 10^{-2}$	938	2833	64
5,6.10	$5 \cdot 10^{-4}$	0,292	~ 3 · 10	-3.10	18,2	290	65
$(5-9)\cdot 10^{-6}$	9.10		$10^4 - 10^6$			290	
$(5-9)\cdot 10^{-6}$ 5,9·10 ⁻⁶		2–10	$33.7 \cdot 10^{-8}$		1200–1300 2233	4603	66 67
3,9.10		20	33,7.10		2233	4005	
	00.0.10-4	0.1510			070.0	960.0	68
	$36,6\cdot10^{-4}$	0,1513			-272,2	-268,9	69
					3		70
					-15		71
					-6		72
	7.10^{-4}	0,134			-10	>360	73
11.010.6		100	01.4.7.0 %		1,50	0500	
$11,2\cdot 10^{-6}$	200:-4	16,2	$81,4\cdot10^{-8}$		1472	2700	74
22.16	$36,6\cdot10^{-4}$	0,1805	001- 0V		-259,2	-252,7	75
$32,1\cdot10^{-6}$		81,6	$8,0\cdot10^{-8}$ Y		156,6	2072	76
2.10-6		11	4 - 1		1450	10	77
$2 \cdot 10^{-6}$			107		113,7	184,4	78
$6,4\cdot10^{-6}$		147	$4,7\cdot10^{-8}$ Y		2446	4428	79
		$10 \cdot 10^{-3}$			-157,4	-153,3	80
(18-19)·10 ⁻⁶		90-120	$6,4\cdot10^{-8}$	$2 \cdot 10^{-3}$	932		81
$12,1\cdot 10^{-6}$		13,4	$61,5\cdot 10^{-8}$		920	3464	82
							83
		$42 \cdot 10^{-3}$					84
$46 \cdot 10^{-6}$		84,7	$9,47\cdot10^{-8}$		180,5	1342	85
$9,9 \cdot 10^{-6}$		16,4	$58,2\cdot10^{-8}$		1663	3402	86

Chaleur latente Chal	Chaleur massiq			
Nom Fusion Vaporisation Solide	- 17 - Liquide	- 18 - Gaz		
$L_{ m f}$ $\Delta_{ m f}H$ $L_{ m v}$ $\Delta_{ m v}H$	9	c_p		
	$J \cdot kg^{-1} \cdot K^{-1}$)		
44 Cuivre 2,09 13,3 47,2 300 385	490			
45 Curium 0,593 14,6 13,0 320				
46 Dubnium				
47 Dysprosium 0,704 11,3 17,4 280 173				
48 Eau 3,3 5,944 23,0 41,423 2060 ^E	4180			
49 Einsteinium 0,373 9,41 204				
50 Erbium 1,19 19,9 17,0 285 168				
51 Essence (avion)				
52 Essence (voiture)				
53 Etain (blanc) 0,602 7,15 24,4 290 227	240 X			
54 Éther 0,98 7,265 3,7 27,425	2300			
55 Europium 0,606 9,21 11,5 175 182				
56 Fer 2,47 13,8 62,1 347 449	830 X			
57 Fermium				
58 Fluor 0,134 0,51 1,74 6,62		824		
59 Fonte grise 1,3 530				
60 Francium 0,094 2,1 2,92 65				
61 Gadolinium 0,615 9,67 19,4 305 236				
62 Gallium 0,800 5,58 36,4 254 373				
63 Gaz carbonique 1,81 7,965 5,9 25,965		840		
64 Germanium 5,08 36,9 46,0 334 320				
65 Glycérine 2 18,13 6,67 61,42	2400			
66 Granit ≈ 840				
67 Hafnium 1,52 27,2 35,3 630 144				
68 Hassium				
69 Hélium 0,050 0,02 0,208 0,083	5480 ^B	5193		
70 Huile (arachide)	0 - 0 0			
71 Huile (chauffage)				
72 Huile (olive)				
Huile (transmis-	1000			
sion de chaleur)	1870			
74 Holmium 0,713 11,8 16,1 265 165				
75 Hydrogène 0,594 0,12 4,46 0,90	9702 ^B	14304		
76 Indium 0,287 3,29 20,0 230 233				
77 Invar 500				
78 Iode 0,612 15,5 1,64 41,6 214				
79 Iridium 2,14 41,1 29,1 560 131				
80 Krypton 0,196 1,64 1,08 9,08		248		
81 Laiton 1,7 390				
82 Lanthane 0,446 6,20 28,8 400 195				
83 Lawrentium				
84 Liège				
85 Lithium 4,32 3,00 212 147 3582				
86 Lutécium 1,06 18,6 23,7 415 154				

		É	ément			
- 19 -	- 2) -	- 21 -	- 22 -	- 23 -	
Électro-	Potent	iel de	Rayon	Rayon	Rayon de	
négativité	première	onisation	atomique	covalent	van der Waals	
χ	E		r_{at}	r_{cov}	r_W	
	$(10^6 \cdot \text{J} \cdot \text{mol}^{-1})$	(eV)		(Å)		
1,9	0,745	7,7264	1,28	1,22	1,86	
1,3	0,578	5,991		1,68	2,45	
					1,49	
1,2	0,573	5,939	1,8	1,80	2,29	
1,3	0,619	6,42		1,65	2,45	
1,2	0,589	6,1077	1,78	1,77	2,35	
1,2	0,709	7,344	1,62	1,40	2,17	
1,1	0,547	5,67	1,99	1,83	2,33	
1,8	0,762	7,902	1,26	1,24	1,94	
1,3	0,627	6,50		1,67	2,45	
3,9	1,681	17,423	0,57	0,60	1,47	
,	,	,	,	,	,	
0,7	0,393	4,0727	2,7	2,42	3,48	
1,1	0,593	6,1498	1,8	1,82	2,37	
2,0	0,579	5,999	2,0	1,23	1,87	
-,~	0,010	0,000		-,	-,-,	
2,3	0,762	7,899		1,20	2,11	
2,0	0,102	1,000		1,20	2,11	
1,3	0,658	6,8251		1,64	2,12	
1,0	0,000	0,0201		1,34	2,12	
	2,372	24,587		0,37	1,4	
	2,312	24,001		0,57	1,4	
1,2	0,581	6,0215		1,79	2,16	
2,2	1,312			0,32	2,16	
	· ·	13,598				
1,8	0,558	5,7864		1,42	1,93	
2.7	1.000	10 4519		1.90	1.00	
2,7	1,008	10,4513		1,36	1,98	
2,2	0,865	8,967		1,32	2,02	
	1,351	13,999		1,16	2,02	
1.1	0.500	F F700		1.04	2.1	
1,1	0,538	5,5769		1,94	2,4	
1,3				1,61	2,46	
1,0	0,52	5,3917		1,30	1,81	
1,2	0,524	5,4259		1,74	2,21	

					M	asse volumiq	ue
		- 1 -	- 2 -	- 3 -	- 4 -	- 5 -	- 6 -
	Nom	Formule	Numéro	Masse	Solide	Liquide	Gaz
			atomique	atomique			(à 1 atm)
			Z	A_r		ρ	
				(u)	(kg	$g \cdot m^{-3} = g \cdot L^{-3}$	-1)
87	Magnésium	Mg	12	24,30	1740	$1584~^B$	
88	Manganèse	Mn	25	54,94	7300	$5950^{\ B}$	
89	Manganine	83~% Ni $13~%$ M n $4~%$ Ni			8400		
90	Marbre	$CaCO_3$			2700-2800		
91	Meitnerium	Mt	109	268	$28200\ ^{TH}$		
92	Mélamine-Formol				1500		
93	Mendélévium	Md	101	[258]			
94	Mercure	Hg	80	200,59	14400^{D}	13530	
95	Méthane	CH_4				446^{B}	0,717
96	Méthanol	CH ₃ OH				791	
97	Molybdène	Мо	42	95,94	10200	$9330^{\ B}$	
98	Naphtaline	$C_{10}H_{8}$			960		
99	Néodyme	Nd	60	144,24	7010	6840^{-B}	
100	Néon	Ne	10	20,18	1444^{-A}		0,825
101	Neptunium	Np	93	237	20200		
102	Nichrome	60 % Ni 12 % Cr 28 % Fe			8200		
103	Nickel	Ni	28	58,69	8900	7810^{-B}	
104	Niobium	Nb	41	92,90	8570		
105	Nobélium	No	102	[259]			
106	Nylon	[NH(CH ₂) ₆ NHCO(CH ₂) ₆ CO] _n			1140		
107	Or	Au	79	196,97	19300	$17310^{\ B}$	
108	Osmium	Os	76	190,23	22587	20000 ^B	
109	Oxygène	O_2	8	16,00	1495^{A}		1,308
110	Ozone	O_3	8	16,00		1352^{-B}	1,962
111	Palladium	Pd	46	106,42	12000	$10380~^B$	
112	Phénol	C_6H_5OH			1060		
113	Phosphore (blanc)	P_4	15	30,97	1823		
114	Phosphore (rouge)	Р	15	30,97	2160		
115	Platine	Pt	78	195,08	21500	$19770^{\ B}$	
116	Plomb	Pb	82	207,21	11300	10660 ^B	
117	Plutonium	Pu	94	244	19700	$16630^{\ B}$	
118	Polonium	Po	84	[209]	9200		
119	Polyéthylène	$(CH_2)_n$			930		
120	Polypropylène	$(CH_3CHCH_2)_n$			910		
121	Polystyrène	$(C_6H_5CHCH_2)_n$			1050		
122	Polyuréthane				350-650		
123	Potassium	K	19	39,10	890	$828^{\ B}$	
124	Praséodyme	Pr	59	140,91	6770	6500 ^B	
125	Prométhium	Pm	61	145	7260		
126	Protactinium	Pa	91	231,04	15400		
127	Quartz (Silice)				2640-2660		
128	Radium	Ra	88	[226]	5000		
129	Radon	Rn	86	222	4400 A		9,07

Coefficient d	e dilatation				Temp	érature	
- 7 -	- 8 -	- 9 -	- 10 -	- 11 -	- 12 -	- 13 -	
Linéique	Volumique	Conductivité	Résistivité	Coefficient	Fusion	Ébullition	
(solide)	(liquide)	thermique		de température			
				de la résistivité			
α	γ	λ	ρ	α	$ heta_{ m f}$	$\theta_{ m e}$	
(K-	-1)	$(W \cdot m^{-1} \cdot K^{-1})$	$(\Omega \cdot m)$	(K^{-1})	(C)	
$24,8\cdot10^{-6}$		156	$4,48\cdot10^{-8}$	$16,5\cdot10^{-3}$	650	1090	87
$21,7\cdot10^{-6}$		7,82	$144 \cdot 10^{-8}$		1246	2061	88
		22	$44 \cdot 10^{-8}$	10^{-5}	900		89
$(6-26)\cdot 10^{-6}$		5–6	$10^4 - 10^6$		800		90
							91
$40 \cdot 10^{-6}$		0,35	108				92
					827		93
$60,4\cdot10^{-6}$	$1,811\cdot10^{-4}$	8,34	$96,1\cdot10^{-8}$	$9 \cdot 10^{-4}$	-38,8	356,5	94
		$34 \cdot 10^{-3}$			-182	-164	95
		$20 \cdot 10^{-3}$			-93,9	65,1	96
$4.8 \cdot 10^{-6}$		138	$5,47\cdot10^{-8}$		2623	4640	97
					80,5	218	98
$9,6\cdot 10^{-6}$		16,5	$64,3\cdot 10^{-8}$		1016	3074	99
		$50 \cdot 10^{-3}$			-248	-246	100
		6,3	$120 \cdot 10^{-8}$		644	≈4000	101
		12	$108 \cdot 10^{-8}$	$5 \cdot 10^{-3}$	1400	3000	102
$13,4\cdot10^{-6}$		90,7	$7,12\cdot10^{-8}$	$6,3\cdot10^{-3}$	1455	2913	103
$7,3\cdot 10^{-6}$		53,7	$15,2\cdot 10^{-8}$ Y		2477	4740	104
					827		105
$70 \cdot 10^{-6}$		0,1-0,3	$5 \cdot 10^{10}$		215		106
$14,2\cdot10^{-6}$		317	$2,255\cdot10^{-8}$	$4 \cdot 10^{-3}$	1064,2	2856	107
$5.1 \cdot 10^{-6}$		87,6	8,1·10 ⁻⁸ Y		3033	5012	108
,		$26 \cdot 10^{-3}$			-218	-182,9	109
					-193	-111,3	110
$11.8 \cdot 10^{-6}$		71,8	$10,73 \cdot 10^{-8}$		1555	2963	111
,			,		43	181,7	112
			10.10-8		44,2	280,5	113
					,	431 ^S	114
8,8.10-6		71,6	$10,7\cdot10^{-8}$	$3,9\cdot10^{-3}$	1768	3825	115
$28,9 \cdot 10^{-6}$		35,3	$21,1\cdot10^{-8}$	$3,4\cdot10^{-3}$	327,5	1749	116
$46,7\cdot10^{-6}$		6,74	150·10 ⁻⁸	, -	640	3228	117
$23.5 \cdot 10^{-6}$		20	40·10 ⁻⁸ Y		254	962	118
(100-200)·10-6		0,31	10^{15}		120		119
$150 \cdot 10^{-6}$		0,22	1014		165	1740	120
$(60-80)\cdot 10^{-6}$		0,15	> 10 ¹⁴		>160		121
$(50-80)\cdot 10^{-6}$		18.10-3			120		122
83,3·10 ⁻⁶		102,4	$7,39 \cdot 10^{-8}$		63,5	759	123
$6.7 \cdot 10^{-7}$		12,5	70.10-8		931	3520	124
11.10^{-6}		15	$75\cdot10^{-8\ TH}$		1042	3000	125
11 10			17,7·10 ⁻⁸ Y		1572	3000	126
		6–12	10 ¹² K		1610	2400	127
		0 12	100.10-8		696	1737	128
			100 10		-71	-62	129
					11	02	123

			Chaleur	latente		Chale	eur massiqu	ıe
	Nom	- 14 Fusi		- 15 - Vaporisation		- 16 - Solide	- 17 - Liquide	- 18 - Gaz
		L_{f}	$\Delta_{\mathrm{f}}H$	$L_{\rm v}$	$\Delta_{\rm v} H$	c	l	c_p
		$(10^5 \cdot J \cdot kg^{-1})$	(kJ·mol ⁻¹)	$(10^5 \cdot J \cdot kg^{-1})$	(kJ·mol ⁻¹)	(J-	$kg^{-1} \cdot K^{-1}$	r
87	Magnésium	3,49	8,48	52,7	128	1023		
88	Manganèse	2,35	12,9	40,0	220	479		
89	Manganine							
90	Marbre					880		
91	Meitnerium							
92	Mélamine-Formol					1380		
93	Mendélévium							
94	Mercure	0,114	2,30	2,95	59,1	140		
95	Méthane	0,586	0,94	5,11	8,196	610	5780	2200
96	Méthanol	0,99					2720	1470
97	Molybdène	3,90	37,4	62,5	600	251		
98	Naphtaline	1,48	19,01	3,37	43,19			
99	Néodyme	0,495	7,14	19,8	285	190		
100	Néon	0,163	0,328	0,847	1,71			1030
101	Neptunium	0,135	3,20	14,1	335			
102	Nichrome							
103	Nickel	2,98	17,5	64,4	378	444		
104	Niobium	3,23	30	74,3	690	265		
105	Nobélium							
106	Nylon					1360		
107	Or	0,637	12,6	16,4	324	129		
108	Osmium	3,04	57,8	33,1	630	130		
109	Oxygène	0,138	0,44	2,13	6,82		1699 ^B	918
110	Ozone			3,16	15,2			813
111	Palladium	1,57	16,7	35,7	380	246		
112	Phénol	1,2	11,29	6,14	57,8			
113	Phosphore (blanc)	0,213	2,64	4,00	49,6	769		
114	Phosphore (rouge)	5,99	18,5	4,00	12,4			
115	Platine	1,14	22,2	25,1	490	133		
116	Plomb	0,230	4,77	8,66	180	130		
117	Plutonium	0,116	2,82	13,3	325			
118	Polonium	0,478	10,0	4,79	100			
119	Polyéthylène					2100-3200		
120	Polypropylène					1600		
121	Polystyrène							
122	Polyuréthane							
123	Potassium	0,597	2,34	19,7	76,9	757		
124	Praséodyme	0,489	6,89	23,4	330	193		
125	Prométhium			20,0	290	190		
126	Protactinium	0,534	12,3	20,3	470			
127	Quartz (Silice)					800		
128	Radium	0,341	7,7	5,53	125			
129	Radon			0,766	17			94

			ément	Élé		
	- 23 - Rayon de van der Waals	- 22 - Rayon covalent	Rayon atomique	tiel de ionisation	- 20 Potent première i	- 19 - Électro- négativité
	r_W	r_{cov}	r_{at}	i1	E_i	χ
		(Å)		(eV)	$(10^6 \cdot \text{J} \cdot \text{mol}^{-1})$	
8	1,73	1,40		7,646	0,738	1,4
8	1,97	1,29		7,4340	0,717	1,5
8						
6						
6	1,29					
6	2,46	1,73		6,58	0,635	1,3
	2,09	1,32		10,4375	1,007	1,9
6						
6						
6	2,09	1,46		7,0924	0,684	1,8
6						
6	2,29	1,88		5,5250	0,533	1,1
10	1,54	0,62		21,564	2,081	
10	2,21	1,80		6,2657	0,605	1,4
10						
10	1,84	1,17		7,6398	0,737	1,8
10	2,07	1,56		6,759	0,652	1,6
10	2,46	1,76		6,65	0,642	1,3
10						
10	2,17	1,30		9,2255	0,89	2,4
10	2,16	1,36		8,4382	0,814	2,2
10	1,52	0,64		13,618	1,314	3,4
11		0,60 E				
11	2,02	1,30		8,3369	0,804	2,2
11						2.2
11	1.0			40.400	1.010	2,3
11	1,8	1,09		10,4867	1,012	2,3
11	2,09	1,30		8,9588	0,864	2,2
11	2,02	1,45		7,4167	0,716	2,4
11	2,43	1,80		6,026	0,581	1,3
11	1,97	1,42		8,414	0,812	2,1
12						
12						
12						
1:	2,75	2,00		4,341	0,419	0,7
1:	2,79	1,90		5,473	0,419	1,1
1:	2,36	1,90		5,582	0,539	1,1
1:	2,30	1,86		5,89	0,568	1,1
1:	2,40	1,04		9,09	0,505	1,4
1:	2,83	2,11		5,2784	0,509	0,9
1:	2,83	1,46		10,7485	1,037	0,0

					M	asse volumiq	ue
		- 1 -	- 2 -	- 3 -	- 4 -	- 5 -	- 6 -
	Nom	Formule	Numéro	Masse	Solide	Liquide	Gaz
			atomique	atomique			(à 1 atm)
			Z	A_r		ρ	
				(u)	(k	$g \cdot m^{-3} = g \cdot L^{-3}$	⁻¹)
130	Rhénium	Re	75	186,21	20800	$18900^{\ B}$	
131	Rhodium	Rh	45	102,91	12400	$10700 \ ^{B}$	
132	Rubidium	Rb	37	85,47	1530	$1460~^B$	
133	Ruthénium	Ru	44	101,07	12100	$10650^{\ B}$	
134	Rutherfordium	Rf	104	261	$17000\ ^{TH}$		
135	Sagex [®]				20		
136	Samarium	Sm	62	150,36	7520	7160 ^B	
137	Scandium	Sc	21	44,96	2990	$2800^{\ B}$	
138	Seaborgium	Sg	106	266	$23200\ ^{TH}$		
139	Sélénium (gris)	Se	34	78,96	4890	$3990^{\ B}$	
140	Silicium	Si	14	28,09	2329	2570^{-B}	
141	Sodium	Na	11	22,99	970	927^{-B}	
142	Soufre	S8	16	32,07	2000	1819 ^B	
143	Strontium	Sr	38	87,62	2640	$2375^{\ B}$	
144	Tantale	Ta	73	180,95	16400	15000 ^B	
145	Technétium	Tc	43	[98]	11000		
146	Téflon® (PTFE)		•		2160		
147	Tellure	Te	52	127,60	6230	5700 ^B	
148	Terbium	Tb	65	158,93	8230	$7650^{\ B}$	1
149	Thallium	Tl	81	204,38	11800	11200 ^B	
150	Thorium	Th	90	232,04	11700		
151	Thulium	Tm	69	168,93	9320	8560 ^B	
152	Titane	Ti	22	47,87	4560	4110 ^B	
153	Tungstène	W	74	183,84	19300	17600 ^B	
154	Uranium	U	92	238,03	19100	$17300^{\ B}$	
155	Vanadium	V	23	50,94	6000	5500 ^B	
156	Verre (acrylique)				1180		
157	Verre (Pyrex [®])				2320		
158	Xénon	Xe	54	131,29	3640^{-A}	3520^{-B}	5,366
159	Ytterbium	Yb	70	173,04	6900	6210 ^B	
160	Yttrium	Y	39	88,91	4470	$4240^{\ B}$	<u> </u>
161	Zinc	Zn	30	65,39	7134	6570^{-B}	
162	Zirconium	Zr	40	91,22	6520	5800 ^B	·

Coefficient	de dilatation				Tempe	érature	
- 7 -	- 8 -	- 9 -	- 10 -	- 11 -	- 12 -	- 13 -	
Linéique	Volumique	Conductivité	Résistivité	Coefficient	Fusion	Ébullition	
(solide)	(liquide)	thermique		de température			
				de la résistivité			
α	γ	λ	ρ	α	$ heta_{ m f}$	$\theta_{ m e}$	
	(-1)	$(W \cdot m^{-1} \cdot K^{-1})$	$(\Omega \cdot m)$	(K^{-1})	(°	C)	
$6,2\cdot 10^{-6}$		47,9	$18 \cdot 10^{-8}$		3185	5596	130
$8,3\cdot10^{-6}$		150	$4,3\cdot10^{-8}$ Y		1964	3695	131
		58,2	$13,1\cdot10^{-8}$		39,3	688	132
$6,4\cdot10^{-6}$		117	$7,1\cdot10^{-8}$ Y		2333	4150	133
							134
		$38 \cdot 10^{-3}$					135
$12,7\cdot10^{-6}$		13,3	$94 \cdot 10^{-8}$		1072	1794	136
$10,2\cdot 10^{-6}$		15,8	$56,2\cdot10^{-8}$		1541	2836	137
							138
					220,8	685	139
$2,6\cdot10^{-6}$			$\approx 1.0 \cdot 10^{-3}$	$-75 \cdot 10^{-3}$	1414	3265	140
$71 \cdot 10^{-6}$		141	$4,88 \cdot 10^{-8}$		97,8	882,9	141
			> 1015		115,2	444,6	142
$22,5\cdot 10^{-6}$		35,3	$13,4\cdot10^{-8}$		777	1382	143
$6,3\cdot10^{-6}$		57,5	$13,4\cdot10^{-8}$		3017	5458	144
		50,6	$\approx 22 \cdot 10^{-8}$		2157	4265	145
$195 \cdot 10^{-6}$		0,23	$>10^{14}$		327		146
			$\approx 1.0 \cdot 10^{-4}$		449,5	988	147
$10,3\cdot 10^{-6}$		11,1	$115 \cdot 10^{-8}$		1359	3230	148
$29,9 \cdot 10^{-6}$		46,1	$15 \cdot 10^{-8} Y$		304	1473	149
$11,0\cdot 10^{-6}$		54,0	$14,7\cdot10^{-8}$ Y		1750	4788	150
$13,3\cdot10^{-6}$		16,9	$67,6\cdot10^{-8}$		1545	1950	151
$8,6\cdot10^{-6}$		21,9	$39 \cdot 10^{-8} Y$		1668	3287	152
$4.5 \cdot 10^{-6}$		174	$5,39 \cdot 10^{-8}$	$4 \cdot 10^{-3}$	3422	5555	153
$13,9 \cdot 10^{-6}$		27,6	$28 \cdot 10^{-8} Y$		1135	4131	154
$8,4\cdot10^{-6}$		30,7	$20,1\cdot 10^{-8}$		1910	3407	155
$68 \cdot 10^{-6}$		0,18	10^{17}		210		156
$3 \cdot 10^{-6}$		1,0-1,3	10^{12}		700-1200		157
		$5,5\cdot 10^{-3}$			-111,7	-108,1	158
$26,3\cdot10^{-6}$		38,5	$25,0\cdot10^{-8}$		824	1196	159
$10,6\cdot10^{-6}$		17,2	$59,6\cdot10^{-8}$		1522	3345	160
$30,2\cdot 10^{-6}$		116	$6,01\cdot10^{-8}$	$4,2\cdot10^{-3}$	419,5	907	161
$5,7 \cdot 10^{-6}$		22,7	$42,9 \cdot 10^{-8}$	$4,4\cdot10^{-3}$	1854	4409	162

			Chaleur	r latente		Cha	aleur massi	que
		- 14		- 15		- 16 -	- 17 -	- 18 -
	Nom	Fusi	ion	Vapori	sation	Solide	Liquide	Gaz
		$L_{\rm f}$	$\Delta_{\mathrm{f}}H$	$L_{\rm v}$	$\Delta_{\rm v} H$		c	c_p
		$(10^5 \cdot \text{J} \cdot \text{kg}^{-1})$	$(kJ \cdot mol^{-1})$	$(10^5 \cdot \text{J} \cdot \text{kg}^{-1})$	$(kJ \cdot mol^{-1})$	($(J \cdot kg^{-1} \cdot K^{-1})$	١
130	Rhénium	1,83	34,1	37,9	705	137		
131	Rhodium	2,59	26,6	48,1	495	243		
132	Rubidium	0,256	2,19	8,42	72	363		
133	Ruthénium	3,82	38,6	57,4	580	238		
134	Rutherfordium							
135	Sagex®							
136	Samarium	0,573	8,62	11,6	175	197		
137	Scandium	3,14	14,1	70,7	318	568		
138	Seaborgium							
139	Sélénium (gris)	0,847	6,69	12,1	95,48	321		
140	Silicium	17,9	50,2	128	359	712		
141	Sodium	1,13	2,60	42,5	97,7	1228		
142	Soufre	0,536	13,8	1,75	45	708		
143	Strontium	0,848	7,43	15,6	137	306		
144	Tantale	2,02	36,6	40,6	735	140		
145	Technétium	3,40	33,3	56,1	550	63		
146	Téflon® (PTFE)					1050		
147	Tellure	1,36	17,4	8,94	114	202		
148	Terbium	0,639	10,2	18,6	295	182		
149	Thallium	0,203	4,14	8,07	165	129		
150	Thorium	0,595	13,8	22,8	530	118		
151	Thulium	0,997	16,8	14,8	250	160		
152	Titane	2,96	14,2	88,8	425	524		
153	Tungstène	2,85	52,3	43,5	800	132		
154	Uranium	0,384	9,14	17,6	420	116		
155	Vanadium	4,22	21,5	88,9	453	489		
156	Verre (acrylique)			,		1450		
157	Verre (Pyrex [®])					830		
158	Xénon	0,173	2,27	0,957	12,6			158
159	Ytterbium	0,443	7,66	9,25	160	155		
160	Yttrium	1,28	11,4	42,7	380	298		
161	Zinc	1,08	7,07	18,2	119	388		
162	Zirconium	2,30	21,0	63,6	580	278		

	Élément					
- 19 - Électro- négativité	- 20 - Potentiel de première ionisation		- 21 - Rayon atomique	- 22 - Rayon covalent	- 23 - Rayon de van der Waals	
χ	E_{i1}		r_{at}	r_{cov}	r_W	
	$(10^6 \cdot \text{J} \cdot \text{mol}^{-1})$	(eV)		(Å)	•	
1,9	0,756	7,8335		1,41	2,17	130
2,2	0,72	7,4589		1,34	1,95	131
0,7	0,403	4,177		2,15	3,03	132
2,2	0,71	7,3605		1,36	2,07	133
					1,57	134
						135
1,1	0,545	5,6437		1,85	2,29	136
1,3	0,633	6,5615		1,59	2,16	137
					1,43	138
2,6	0,941	9,7524		1,18	1,9	139
2,3	0,787	8,1517		1,14	2,1	140
0,9	0,496	5,139		1,60	2,27	141
2,7	1	10,3600		1,04	1,8	142
1,0	0,549	5,695		1,90	2,49	143
1,5	0,728	7,5496		1,58	2,17	144
1,9	0,702	7,28		1,38	2,09	145
						146
2,4	0,869	9,0096		1,37	2,06	147
1,2	0,566	5,8638		1,81	2,21	148
2,0	0,589	6,1082		1,44	1,96	149
1,3	0,609	6,3067		1,90	2,37	150
1,2	0,597	6,1843		1,77	2,27	151
1,5	0,659	6,828		1,48	1,87	152
1,7	0,759	7,864		1,50	2,1	153
1,4	0,598	6,1941		1,83	2,4	154
1,6	0,651	6,7462		1,44	1,79	155
						156
						157
	1,17	12,1298		1,36	2,16	158
1,2	0,603	6,2542		1,78	2,42	159
1,2	0,6	6,2173		1,76	2,19	160
1,6	0,906	9,394		1,20	2,1	161
1,4	0,64	6,6339		1,64	1,86	162

Chimie

Formulaire de chimie

Quantité chimique n d'un corps pur

$$\begin{array}{cccc}
n & = & \text{quantit\'e chimique [mol]} \\
m & = & \text{masse de l'\'echantillon [g]} \\
M & = & \text{masse molaire [g·mol}^{-1}
\end{array}$$
(1)

Loi des gaz parfaits

$$p = \text{pression [Pa]}$$

$$V = \text{volume [m^3]}$$

$$pV = nRT$$

$$n = \text{quantit\'e chimique [mol]}$$

$$R = \text{constante des gaz parfaits} = 8,314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$

$$T = \text{temp\'erature absolue [K]}$$

$$(2)$$

Mélanges de plusieurs constituants A, B, C, \dots

$$x(A) = \frac{n(A)}{n(A) + n(B) + \dots}$$

$$x(A) = \text{fraction molaire de } A$$

$$n(A) = \text{quantit\'e chimique de } A \text{ [mol]}$$
(3)

Concentration c

Solubilité S

$$S \equiv c_{max} = \frac{n_{max}}{V}$$

$$c_{max} = \text{concentration maximum [mol·L^{-1}]}$$

$$S = \text{solubilité [mol·L^{-1}]}$$
(6)

Équilibre chimique $aA + bB \rightleftharpoons cC + dD$

La constante d'équilibre peut être expriméee en fonction des concentrations selon :

$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

$$a, b, c, d = \text{ coefficients stoechiom\'etriques}$$

$$K_c = \text{ constante de l'\'equilibre}$$

$$(7)$$

NB: Si l'une des espèces A, B, C ou D est le solvant ou une espèce insoluble dans l'eau (solide ou gaz), sa concentration ne figure pas dans la définition de K_c .

Si A, B, C et D sont des gaz, la constante d'équilibre peut être exprimée en fonction des pressions partielles:

$$K_p = \frac{p_C^c \ p_D^d}{p_A^a \ p_B^b} \qquad p_i = \text{pression partielle du } i^{\text{ème}} \text{ constituant}$$

$$a, b, c, d = \text{coefficients steechiométriques}$$
(8)

La relation entre K_p et K_c est :

$$\begin{bmatrix} K_c = K_p \, (R \, T)^{\Delta n} \end{bmatrix} \quad \begin{array}{rcl} R & = & \text{constante des gaz parfaits} = 8{,}314 \, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ T & = & \text{temp\'erature absolue [K]} \\ \Delta n & = & c + d - a - b : \text{variation de la quantit\'e de gaz [mol]} \\ \end{array}$$

Produit de solubilité d'un sel K_s

Pour un sel de type
$$MX$$
, comme AgCl ou BaSO₄, $K_s = [M^+][X^-]$
Pour un sel de type MX_2 , comme CaF₂, $K_s = [M^{2+}][X^-]^2$
Pour un sel de type M_2X , comme Ag₂CrO₄, $K_s = [M^+]^2[X^2]$ (10)

NB: La solubilité d'un acide ou d'un sel formant des ions chargés $\pm z$ (z > 2) est toujours plus élevée que celle issue du calcul de K_s , à cause de la formation d'ions intermédiaires.

Produit ionique de l'eau K_e

$$K_e = [H_3O^+][OH^-]$$
 $K_e = 10^{-14} \text{ à } 25 \text{ °C}$ (11)

Constante d'acidité K_a

Pour la réaction $HA + H_2O \rightleftharpoons H_3O^+ + A^-$, on a :

$$K_a = \frac{[\mathrm{H}_3\mathrm{O}^+][A^-]}{[\mathrm{H}A]}$$
 [HA] = concentration de HA non dissocié [mol·L⁻¹] (12)

$$K_a = -\log K_a$$
 constante d'acidité ou de dissociation acide (13)

pH et acidité

$$pH = -\log[H_3O^+] \qquad [H_3O^+] = \text{concentration du ion } H_3O^+ \text{ [mol·L}^{-1]}$$
(14)

$$[H_3O^+] = 10^{-pH}$$
 (15)

pH des solutions d'acides forts ($c_a < 1 \text{ mol} \cdot \text{L}^{-1}$)

$$pH = -\log c_a \qquad c_a = \text{concentration initale de l'acide [mol·L^{-1}]}$$
(16)

pH des solutions diluées d'acides faibles ($c_a < 1 \text{ mol} \cdot \text{L}^{-1}$)

En solution diluée, un acide faible HA, est caractérisé par :

$$pH = \frac{pK_a - \log c_a}{2} \qquad \text{ou} \qquad [H_3O^+] = \sqrt{K_a c_a}$$
(17)

 $c_a = \text{concentration initiale de l'acide [mol·L^{-1}]}$

pH des solutions de bases fortes ($c_b < 1 \text{ mol} \cdot \text{L}^{-1}$)

$$pH = 14 + \log c_b \qquad c_b = \text{concentration initiale de la base [mol·L^{-1}]}$$
(18)

pH des solutions diluées de bases faibles $(c_b < 1 \text{ mol} \cdot \text{L}^{-1})$

En solution diluée, pour une base faible, on a :

$$\boxed{pH = \frac{1}{2}(14 + pK_a + \log c_b)} \quad \text{ou} \quad \left[H_3O^+\right] = \sqrt{\frac{10^{-14}K_a}{c_b}}$$
(19)

 $c_b = \text{concentration intiale de la base } [\text{mol} \cdot \text{L}^{-1}]$

pH des solutions tampons

Si une solution diluée contient un acide faible et sa base conjuguée, le pH de la solution est :

$$pH = pK_a + \log \frac{c_b}{c_a} \qquad \text{ou} \qquad \left[[H_3 O^+] = K_a \frac{c_a}{c_b} \right]$$
 (20)

 $c_a = \text{concentration initiale de l'acide [mol·L^{-1}]}$

 $c_b = \text{concentration initiale de la base conjuguée } [\text{mol} \cdot \text{L}^{-1}]$

Enthalpies de réaction – Loi de Hess

Dans une réaction générale de type $aA+bB\to cX+dY$, la variation d'enthalpie molaire $\Delta_r H$ accompagnant la réaction est donnée par l'expression :

$$\Delta_r H = c \cdot \Delta_f H(X) + d \cdot \Delta_f H(Y) - a \cdot \Delta_f H(A) - b \cdot \Delta_f H(B)$$
(21)

où $\Delta_f H$ désigne l'enthalpie molaire de formation [kJ·mol⁻¹].

Oxydations et réductions – Équation de Nernst

Dans un équilibre redox défini par la demi-équation $a \operatorname{Ox} + z \operatorname{e}^- \rightleftharpoons b \operatorname{Red}$, on a :

$$E = E^{0} + \frac{RT}{zF} \ln \frac{[Ox]^{a}}{[Red]^{b}}$$

$$E = Costante de Faraday = 96485 A·s·mol-1$$

$$E = Costante de Faraday = 96485 A·s·mol-1$$

[Ox] et [Red] désignent les concentrations des espèces oxydantes et réductrices, et les pressions correspondantes, en bar, si Ox et Red sont des gaz.

A 25 °C, l'équation précédente devient :

$$E = E^{0} + \frac{0,0591}{z} \log \frac{[Ox]^{a}}{[Red]^{b}} \qquad \log x = \text{logarithme décimal de } x$$
 (23)

NB: Si l'une des espèces Ox ou Red est insoluble dans l'eau, sa concentration ne figure pas dans les équations de Nernst.

Électrolyse – Loi de Faraday

Lors de la réduction du cation A^{z+} selon $A^{z+}+z\,\mathrm{e}^-\to A$, ou de l'oxydation de l'anion X^{z-} selon $X^{z-} - z e^- \rightarrow X$, on a :

$$n = \text{quantit\'e chimique d'ions d\'echarg\'es [mol]}$$

$$I = \text{intensit\'e du courant [A]}$$

$$t = \text{temps [s]}$$

$$z = \text{charge de l'ion d\'echarg\'e}$$

$$F = \text{constante de Faraday} = 96485 \text{ A·s·mol}^{-1}$$

Absorption lumineuse - Loi de Lambert-Beer

L'absorbance d'un échantillon d'une solution est définie par :

$$A = \log \frac{I}{I_{\theta}}$$
 avec
$$A = \varepsilon \cdot l \cdot c$$
 avec
$$A = \varepsilon \cdot l \cdot c$$

$$A = \log \frac{I}{I_{\theta}}$$
 avec
$$A = \varepsilon \cdot l \cdot c$$
 avec
$$A = \varepsilon \cdot l \cdot c$$

ntensité de la lumière entrante
$$\varepsilon = \text{coefficient d'absorption } [L \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}]$$

$$L = \text{longueur du trajet de la lumière } [cm]$$

$$L = \varepsilon \cdot l \cdot c$$

$$L = \varepsilon \cdot l \cdot c$$

Tables de chimie

Constantes d'acidité de quelques couples acide-base à 25°C

Nom de l'acide	Acide	Base	Nom de la base	K_a	pK_a
par force décroissante			par force croissante		r u
acide perchlorique	HClO ₄	ClO ₄	perchlorate	$\sim 10^{9}$	
acide iodhydrique	HI	I-	iodure	$\sim 10^{9}$	
acide bromhydrique	HBr	Br^-	bromure	$\sim 10^{9}$	
acide chlorhydrique	HCl	Cl-	chlorure	$\sim 10^{7}$	
acide sulfurique	H_2SO_4	HSO_4^-	hydrogénosulfate	$\sim 10^{2}$	
acide nitrique	HNO_3	NO_3^-	nitrate	~ 25	
oxonium	H_3O^+	H_2O	eau	1	0
acide oxalique	HOOCCOOH	HOOCCOO-	hydrogénooxalate	$5,9\cdot10^{-2}$	1,23
acide dichloracétique	$Cl_2CHCOOH$	Cl_2CHCOO^-	dichloracétate	$3,32\cdot10^{-2}$	1,48
acide sulfureux	H_2SO_3	HSO ₃	hydrogénosulfite	$1,58\cdot10^{-2}$	1,80
hydrogénosulfate	HSO_4^-	SO_4^{2-}	sulfate	$1,20\cdot10^{-2}$	1,92
acide phosphorique	H_3PO_4	$\mathrm{H_2PO_4}^-$	dihydrogénophosphate	$7,59 \cdot 10^{-3}$	2,12
hexaaqua-fer(III)	$[Fe(H_2O)_6]^{3+}$	$[Fe(H_2O)_5(OH)]^{2+}$		$6,03\cdot10^{-3}$	2,22
acide chloracétique	ClCH ₂ COOH	$ClCH_2COO^-$	chloracétate	$1,38 \cdot 10^{-3}$	2,86
acide fluorhydrique	HF	F^-	fluorure	$6,76\cdot10^{-4}$	3,17
acide nitreux	HNO_2	NO_2^-	nitrite	$4,57 \cdot 10^{-4}$	3,34
acide formique	HCOOH	HCOO-	formiate	$1,78 \cdot 10^{-4}$	3,75
hydrogénooxalate	HOOCCOO-	OOCCOO ²⁻	oxalate	$6,4\cdot10^{-2}$	4,19
phénylammonium	$C_6H_5NH_3^+$	$C_6H_5NH_2$	aniline	$2,40\cdot10^{-5}$	4,62
acide acétique	CH_3COOH	CH ₃ COO ⁻	acétate	$1,78 \cdot 10^{-5}$	4,75
hexaaqua-aluminium(III)	$[Al(H_2O)_6]^{3+}$	$[Al(H_2O)_5(OH)]^{2+}$		$1,29 \cdot 10^{-5}$	4,89
acide carbonique ^a	H_2CO_3	HCO_3^-	hydrogénocarbonate	$4,47\cdot10^{-7}$	6,35
acide sulfhydrique	H_2S	HS ⁻	hydrogénosulfure	$9,12\cdot10^{-8}$	7,04
hydrogénosulfite	HSO_3^-	SO_3^{2-}	sulfite	$6,17\cdot10^{-8}$	7,21
dihydrogénophosphate	$\mathrm{H_2PO_4}^-$	HPO_4^{2-}	hydrogénophosphate	$6,17\cdot10^{-8}$	7,21
acide hypochloreux	HClO	ClO-	hypochlorite	$3,63\cdot10^{-8}$	7,44
ammonium	$\mathrm{NH_4}^+$	NH_3	ammoniac	$6,03\cdot10^{-10}$	9,22
acide cyanhydrique	HCN	CN-	cyanure	$6,03\cdot10^{-10}$	9,22
acide borique	H_3BO_3	$H_2BO_3^-$	dihydrogénoborate	$5,75 \cdot 10^{-10}$	9,24
phénol	C_6H_5OH	$C_6H_5O^-$	phénolate	$1,29 \cdot 10^{-10}$	9,89
hydrogénocarbonate	HCO ₃ -	CO_3^{2-}	carbonate	$5,62 \cdot 10^{-11}$	10,25
hydrogénosulfure	HS ⁻	S^{2-}	sulfure	$1,10\cdot10^{-12}$	11,96
hydrogénophosphate	$\mathrm{HPO_4^{2-}}$	PO_4^{3-}	phosphate	$4,27\cdot 10^{-13}$	12,37
eau	H_2O	OH-	hydroxyde	10^{-14}	14
éthanol	C_2H_5OH	$C_2H_5O^-$	éthanolate	$1, 2 \cdot 10^{-16}$	
hydroxyde	OH-	O^{2-}	oxyde	$\sim 10^{-36}$	

a. À tout pH, le CO2 dissous, non transformé en ion, est à 99,72 % sous forme CO2 et à $0.28\,\%$ sous forme H2CO3.

Produit ionique de l'eau K_e et pH en fonction de T

T	K_e	pH (eau pure)	$pH(HCl 0,1 mol \cdot L^{-1})$	pH (NaOH 1 mol·L ⁻¹)
0 °C	$0,114 \cdot 10^{-14}$	7,47	1,00	14,94
20 °C	$0,681 \cdot 10^{-14}$	7,08	1,00	14,16
$25^{\circ}\mathrm{C}$	$1,008 \cdot 10^{-14}$	7,00	1,00	14,00
30 °C	$1,469 \cdot 10^{-14}$	6,92	1,00	13,84
100 °C	$54 \cdot 10^{-14}$	6,13	1,00	12,26

pH de boissons et liquides divers

Boissons

Solution	рΗ
Jus de citron	1,8-2,3
Vinaigre	2,4 - 3,4
Vin	2,8 - 3,8
Jus de pommes	2,9 - 3,3
Jus de grapefruit	3,0 - 3,3
Boissons au cola	3,1 - 3,3
Jus de tomates	4,0-4,4
Bière	4,0 - 5,5
Jus de carottes	4,9 - 5,3
Lait de vache	6,3 - 6,6
Eau potable	5,5 - 8,0

Liquides organiques et divers

Solution	рΗ
Suc gastrique	1,0-2,3
Salive	5,8-7,1
Urine	4.8 - 7.4
Lait maternel	6,6-7,6
Bile	6.8 - 7.0
Plasma sanguin	7,3 - 7,5
Suc pancréatique	7,8 - 8,2
Eau du lac Léman	7,5 - 8,5
Eau de mer	7,8 - 8,2
Eau de savon	8,2 - 8,7
Eau de chaux	12,3

Concentrations usuelles de quelques acides et bases

Nom	Formule	% massique	Densité d_4^{20}	Concentration approximative $[\text{mol}\cdot\text{L}^{-1}]$	Concentration approximative $[g \cdot L^{-1}]$
Acide acétique glacial	CH ₃ COOH	99	1,06	18	1050
Acide chlorhydrique concentré	HCl	36	1,18	12	425
Acide chlorhydrique	HCl	25	1,12	8	280
Acide chlorhydrique $1 \text{ mol} \cdot L^{-1}$	HCl	3,6	1,02	1	36,5
Acide formique pur	НСООН	99	1,22	26	1210
Acide nitrique concentré	HNO_3	65	1,40	14	910
Acide nitrique 1 mol· L^{-1}	HNO_3	6	1,03	1	63
Acide phosphorique concentré	H_3PO_4	85	1,71	15	1450
Acide sulfurique concentré	H_2SO_4	96	1,84	18	1770
Acide sulfurique $1 \text{ mol} \cdot L^{-1}$	H_2SO_4	9,4	1,06	1	98
Ammoniaque concentrée	NH_3	25	0,91	13	228
Ammoniaque 1 mol·L ⁻¹	NH_3	1,7	0,99	1	17
Hydroxyde de sodium	NaOH	10	1,11	2,3	111

Potentiels standards d'oxydo-réduction inorganiques

Les potentiels sont donnés à 25 °C, à 1 bar, pour des concentrations de 1 mol·L $^{-1}.$

	Oxydants $+ z e^-$	Réducteurs	E^0 [V]
	$\mathrm{Li^{+}} + \mathrm{e^{-}}$	Li	-3,04
	$K^{+} + e^{-}$	K	-2,92
	$Ca^{2+} + 2 e^{-}$	Ca	-2,76
	$\mathrm{Na^{+}} + \mathrm{e^{-}}$	Na	-2,71
	${ m Mg^{2+}}+2~{ m e^-}$	Mg	-2,37
	$Al^{3+} + 3 e^{-}$	Al	-1,70
	$2 \text{ H}_2\text{O} + 2 \text{ e}^-$	$\mathrm{H_2}+2\mathrm{OH^-}$	-0,83
	$Zn^{2+} + 2e^{-}$	Zn	-0.76
	$Ni(OH)_2 + 2 e^-$	$\mathrm{Ni} + 2~\mathrm{OH^-}$	-0,72
	$Fe^{2+} + 2e^{-}$	Fe	-0,41
	$\mathrm{Cd}^{2+} + 2 \; \mathrm{e}^{-}$	Cd	-0,40
	$\mathrm{PbSO_4} + 2~\mathrm{e^-}$	$Pb + SO_4^{2-}$	-0,36
	$Ni^{2+} + 2 e^{-}$	Ni	-0,23
	$\mathrm{Sn^{2+}} + 2 \; \mathrm{e^{-}}$	Sn	-0,14
	${ m Pb^{2+}}+2~{ m e^-}$	Pb	-0,13
	$Fe^{3+} + 3 e^{-}$	Fe	-0.04
	$2 \text{ H}^+ + 2 \text{ e}^-$	H_2	0
	$S + 2 H^{+} + 2 e^{-}$	H_2S	0,14
t	$\mathrm{Sn^{4+}} + 2 \; \mathrm{e^{-}}$	Sn^{2+}	0,15
an	$Cu^{2+} + e^{-}$	Cu ⁺	0,16
yd	$SO_4^{2-} + 4 H^+ + 2 e^-$	$\mathrm{SO}_2 + 2~\mathrm{H}_2\mathrm{O}$	0,24
οx	$Cu^{2+} + 2 e^{-}$	Cu	0,34
Pouvoir oxydant	$[{ m Fe}({ m CN})_6]^{3-} + { m e}^-$	$[Fe(CN)_{6}]^{4-}$	0,36
IVC	$O_2 + 2 H_2O + 4 e^-$	4 OH ⁻	0,44
oı	$\mathrm{Cu^+} + \mathrm{e^-}$	Cu	0,52
щ	$I_2 + 2 e^-$	2 I-	0,53
	$PtCl_4^{2-} + 2 e^-$	$Pt + 4 Cl^-$	0,73
	$Fe^{3+} + e^{-}$	$\mathrm{Fe^{2+}}$	0,77
	$Ag^+ + e^-$	Ag	0,84
	$\mathrm{Cl}\mathrm{O}^- + \mathrm{H}_2\mathrm{O} + 2~\mathrm{e}^-$	$\mathrm{Cl^-} + 2~\mathrm{OH^-}$	0,81
	${ m NO_3}^- + 2 { m H}^+ + { m e}^-$	$NO_2 + H_2O$	0,81
	$NO_3^- + 4 H^+ + 3 e^-$	$NO + 2 H_2O$	0,96
	$\mathrm{Hg^{2+}} + 2~\mathrm{e^{-}}$	Hg	0,85
	$2 \text{ Hg}^{2+} + 2 \text{ e}^{-}$	Hg_2^{2+}	0,94
	$\mathrm{AuCl_4}^- + 3~\mathrm{e}^-$	Au+4 Cl-	0,99
	$\mathrm{Br}_2 + 2~\mathrm{e}^-$	$2~\mathrm{Br}^-$	1,06
	$Pt^{2+} + 2 e^{-}$	Pt	1,12
	$O_2 + 4 H^+ + 4 e^-$	$2~\mathrm{H_2O}$	1,23
	$\text{Cr}_2\text{O}_7^{2-} + 14 \text{ H}^+ + 6 \text{ e}^-$	$2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O}$	1,33
	$\text{Cl}_2 + 2 \text{ e}^-$	2 Cl-	1,36
	$Au^{3+} + 3e^{-}$	Au	1,42
	$Mn O_4^- + 8 H^+ + 5 e^-$	${\rm Mn^{2+}} + 4 {\rm ~H_2O}$	1,49
	$PbO_2 + SO_4^{2-} + 4 H^+ + 2 e^-$	$PbSO_4 + 2 H_2O$	1,68
	$H_2O_2 + 2 H^+ + 2 e^-$	2 H ₂ O	1,77
	$F_2 + 2 e^-$	2 F ⁻	2,87
	4 · · ·		-,~.

Potentiels standards d'oxydo-réduction en milieu biologique

Les potentiels sont donnés à $25\,^{\circ}$ C, à 1 bar, pour des concentrations de 1 mol·L⁻¹, et à pH 7,0.

	Oxydants $+ z e^-$	Réducteurs	$E^{0\prime}$ [V]
	Ac. acétique $+ 2 H^+ + 2e^-$	acétaldéhyde $+$ H_2O	-0.58
	$2~{ m H^+} + 2~{ m e^-}$	H_2	-0,42
	Ac. α -cétoglutarique + CO ₂ + 2 H ⁺ + 2e ⁻	Ac. isocitrique	-0.38
	$NAD^{+} + 2 H^{+} + 2 e^{-}$	$NADH + H^{+}$	-0.32
·	$NADP^{+} + 2 H^{+} + 2 e^{-}$	$NADPH + H^{+}$	-0.32
an	${ m FAD} + 2 \; { m H}^+ + 2 \; { m e}^-$	$FADH_2$	-0,22
oxydant	Acétaldéhyde $+$ 2 H $^+$ $+$ 2 e $^-$	Éthanol	-0,20
ŏ	Ac. pyruvique $+ 2 H^+ + 2 e^-$	Ac. lactique	-0.19
ir	Ac. oxaloacétique $+$ 2 H $^+$ $+$ 2 e $^-$	Ac. malique	-0,17
Pouvoir	Ac. fumarique $+ 2 H^+ + 2 e^-$	Ac. succinique	0,03
Ď	Cytochrome b $(Fe^{3+}) + 1 e^{-}$	Cytochrome b (Fe ²⁺)	0,08
4	Ac. déshydroascorbique $+ 2 H^+ + 2 e^-$	Ac. ascorbique	0,08
	Ubiquinone $+ 2 H^+ + 2 e^-$	Ubiquinol	0,09
	Cytochrome c (Fe ³⁺) + 1 e ⁻	Cytochrome c (Fe^{2+})	0,25
	Cytochrome a $(Fe^{3+}) + 1 e^{-}$	Cytochrome a (Fe ²⁺)	0,29
	$O_2 + 2 H^+ + 4 e^-$	H_2O_2	0,30
	${ m O_2+4H^++4e^-}$	$2~\mathrm{H_2O}$	0,82

Répartition naturelle des éléments

Corps	humain	Eau c	de mer	Croûte terrestre		
élément	% masse	élément	% masse	élément	% masse	
0	64,8	0	85,7	0	46,4	
С	18,1	Н	10,8	Si	28,2	
Н	10	Cl	1,9	Al	8,2	
N	3,11	Na	1,05	Fe	5,6	
Ca	1,97	Mg	0,135	Ca	4,1	
P	1,08	S	0,0885	Na	2,4	
K	0,37	Ca	0,04	Mg	2,3	
S	0,26	K	0,038	K	2,1	
Cl	0,17	Br	0,0065	Ti	0,57	
Na	0,11	С	0,0027	Н	0,14	

Terre	entière	Un	ivers	Atmosphère (sèche)		
élément	% masse	élément	% atomes	gaz	% volume	
Fe	39,8	Н	90	N_2	78,09	
О	27,7	Не	9	O_2	20,95	
Si	14,5	О	0,1	Ar	0,93	
Mg	8,7	С	0,06	CO_2	0,03	
Ni	3,2	Ne	0,012	Ne	0,0018	
Ca	2,5	N	0,01	He	$5, 2 \cdot 10^{-4}$	
Al	1,8	Mg	0,005	Kr	$1,0\cdot 10^{-4}$	
S	0,6	Si	0,005	H_2	$5,0\cdot 10^{-5}$	

Énergies d'ionisation E_i [MJ·mol⁻¹]

É	Élément					Élect	ron				
Z	symbole	1	2	3	4	5	6	7	8	9	10
1	Н	1,31									
2	$_{\mathrm{He}}$	2,37	5,25								
3	Li	0,52	7,29	11,80							
4	$_{\mathrm{Be}}$	0,90	1,76	14,90	21,0						
5	В	0,80	2,42	3,66	25,0	32,8					
6	$^{\mathrm{C}}$	1,09	2,35	4,62	6,22	37,8	47,3				
7	N	1,40	2,86	4,57	7,48	9,45	53,3	64,4			
8	O	1,31	3,40	5,30	7,47	11,0	13,3	71,3	84,0		
9	\mathbf{F}	1,68	3,38	6,04	8,41	11,0	15,1	17,8	92,0	106	
10	Ne	2,08	3,96	6,13	9,36	12,2	15,2	20,0	23,0	115	130
11	Na	0,49	$4,\!56$	6,91	9,54	13,4	16,6	20,1	25,5	28,9	141
12	Mg	0,73	1,45	7,73	10,5	13,6	18,0	21,7	25,7	31,6	35,4
13	Al	0,58	1,81	2,74	11,6	14,9	18,3	23,3	27,5	32,0	38,5
14	Si	0,78	1,57	3,23	$4,\!35$	16,1	19,8	23,7	29,2	35,7	39,3
15	Р	1,06	1,90	2,91	4,96	$6,\!27$	21,2	25,4	29,8	36,7	41,8
16	$_{\rm S}$	1,00	2,26	3,38	$4,\!56$	7,00	8,49	27,1	31,7	36,6	44,3
17	Cl	1,25	2,30	3,85	5,16	$6,\!54$	9,33	11,0	33,6	38,6	43,7
18	Ar	1,52	2,66	3,95	5,77	7,24	8,81	12,0	13,9	41,9	47,7
19	K	0,42	3,07	4,44	5,88	7,97	9,75	11,6	15,0	17,0	48,3
20	Ca	0,59	1,15	4,94	6,47	8,11	10,7	12,3	14,6	18,2	20,4

Énergies moyennes de dissociation D [kJ·mol⁻¹] Liaisons simples

Н	С	N	О	F	Si	Р	S	Cl	Br	I	
436	414(*)	389	464	570	318	318	338	431	366	299	Н
	348	293	360	439	289	264	259	331	276	238	С
		159	201	272	335	209	_	193	_	_	N
			146	184	368	351	_	205	235	201	О
				159	540	490	285	256	197	280	F
					176	213	226	360	289	213	Si
						201	230	331	272	213	Р
							213	252	213	_	S
								243	218	211	Cl
									193	180	Br
										151	I

Liaisons multiples

C = C	610		N == N	418		C = O	1077	(CO)
C = N	615		N = O	606		N = N	949	
C = O	803	(CO_2)	O = O	498		C = C	835	
C = O	694	(HCHO)	C = S	536	(CS_2)	C = N	890	
C = O	736	(RCHO)	S = O	536	(SO_2)			
C = O	748	(R_2CO)	S = O	470	(SO_3)			

Rayons atomiques et ioniques

Valeurs données en picomètres (1 pm = 10^{-12} m)

Cl114 216 140 195 133 136 181 Br. Ľ 2 66 Br (<u>D</u> (A) _ Te 2- j Se 2-0 2-117 140 104 137 184 191 221 99 (Po) 0 (S Te) S 110 141 146 121 2 <u>a</u> $\left(\begin{array}{c} A \\ S \end{array}\right)$ Sb $\overrightarrow{B_i}$ **2** $\mathrm{Ge}\,4^+$ $\rm Sn~4^+$ Pb 4+ 117 (Ge) 122 140 175 77 53 7 84 Si Sn) Pb) 0 Ga 3+ Al 3+ $\ln 3^+$ (Al) 125 (Ga) 122 In) 162 П 3+ 88 51 62 81 95 F (B) Hg 2+ 1 Cd 2+ $\mathrm{Zn}\,2^+$ Zn) 133 Cd) 149 Hg) 150 74 97 Ag + Au + cī+ (Cu) 128 (Ag) 144 (Au) 144 126 137 96 O Atomes O Ions La 3+ Sc 2+ 160 180 188 $^{\rm Y}$ $^{3+}$ 115 81 93 Га Sc Mg 2+ Be 2+ Ca 2+ $\rm Sr\,2^+$ Ba 2+ 215 217 112 160 197 113 135 31 65 97 Be $_{\rm Mg}$ Ca Ва Sr 244 262 H⁺ < 0,01 152 186 231 Na+ Rb^+ Cs+ + 17 + 133 148 169 09 95 Na := Rb $^{\rm c}$ ×

ΗО

Configuration électronique

37 (
Numéro	Élément	Configuration
atomique		électronique
1	Н	$1s^1$
2	н Не	$1s$ $1s^2$
3	Li	(He) 2s ¹
4	Be	(He) 2s ²
5	В	(He) 2s ² 2p ¹
6	C	(He) $2s^2 2p^2$
7	N	(He) 2s ² 2p ³
8	0	(He) $2s^2 2p^4$
9	F	(He) $2s^2 2p^5$
10	Ne	(He) $2s^2 2p^6$
11	Na	(Ne) 3s ¹
12	Mg	(Ne) $3s^2$
13	Al	(Ne) $3s^2 3p^1$
14	Si	(Ne) $3s^2 3p^2$
15	P	(Ne) $3s^2 3p^3$
16	S	(Ne) $3s^2 3p^4$
17	Čl	(Ne) $3s^2 3p^5$
18	Ar	(Ne) $3s^2 3p^6$
19	K	(Ar) $4s^1$
20	Ca	$(Ar) 4s^2$
21	Sc	$(Ar) 3d^1 4s^2$
22	Ti	(Ar) $3d^2 4s^2$
23	V	(Ar) $3d^3 4s^2$
24	Cr	(Ar) $3d^5 4s^1$
25	Mn	(Ar) $3d^5 4s^2$
26	Fe	$(Ar) 3d^6 4s^2$
27	Co	(Ar) $3d^7 4s^2$
28	Ni	$(Ar) 3d^8 4s^2$
29	Cu	$(Ar) 3d^{10} 4s^1$
30	Zn	(Ar) 3d ¹⁰ 4s ²
31	Ga	(Ar) $3d^{10} 4s^2 4p^1$
32	Ge	(Ar) $3d^{10} 4s^2 4p^2$
33	As	(Ar) $3d^{10} 4s^2 4p^3$
34	Se	$(Ar) 3d^{10} 4s^2 4p^4$
35	$_{\mathrm{Br}}$	(Ar) $3d^{10} 4s^2 4p^5$
36	Kr	(Ar) $3d^{10}$ $4s^2$ $4p^6$
37	Rb	$(Kr) 5s^{1}$
38	Sr	(Kr) 5s ²
39	Y	$(Kr) 4d^{1} 5s^{2}$
40	Zr	$(Kr) 4d^2 5s^2$
41	Nb	(Kr) 4d ⁴ 5s ¹
42	Mo	$(Kr) 4d^5 5s^1$
43	Tc	(Kr) 4d ⁵ 5s ²
44	Ru	(Kr) 4d ⁷ 5s ¹
45	Rh	(Kr) 4d ⁸ 5s ¹
46	Pd	(Kr) 4d ¹⁰
47	Ag	(Kr) 4d ¹⁰ 5s ¹
48	Cd	(Kr) 4d ¹⁰ 5s ²
49	In	(Kr) 4d ¹⁰ 5s ² 5p ¹
50	Sn	$(Kr) 4d^{10} 5s^2 5p^2$ $(Kr) 4d^{10} 5s^2 5p^3$
51	Sb	(Kr) 4d ¹⁰ 5s ² 5p ³ (Kr) 4d ¹⁰ 5s ² 5p ⁴
52	Te	(Nr) 4d - 3S 5p

Numéro		Configuration
	Élément	Configuration
atomique		électronique
E9	T	(Kr) $4d^{10} 5s^2 5p^5$
53	I	(Kr) 4d ¹⁰ 5s ² 5p ⁶ (Kr) 4d ¹⁰ 5s ² 5p ⁶
54	Xe	
55	Cs	(Xe) 6s ¹
56	Ba	(Xe) 6s ²
57	La	(Xe) $5d^1 6s^2$
58	Се	(Xe) $4f^2 6s^2$
59	$_{\mathrm{Pr}}$	(Xe) $4f^3$ $6s^2$
60	Nd	(Xe) 4f ⁴ 6s ²
61	$_{\mathrm{Pm}}$	(Xe) $4f^5 6s^2$
62	Sm	(Xe) $4f^6 6s^2$
63	Eu	(Xe) $4f^7 6s^2$
64	Gd	(Xe) $4f^7 5d^1 6s^2$
65	Tb	(Xe) $4f^9 6s^2$
66	Dy	(Xe) $4f^{10} 6s^2$
67	Но	(Xe) $4f^{11} 6s^2$
68	Er	(Xe) $4f^{12} 6s^2$
69	Tm	(Xe) $4f^{13} 6s^2$
70	Yb	(Xe) $4f^{14} 6s^2$
71	Lu	(Xe) $4f^{14} 5d^1 6s^2$
72	Hf	(Xe) $4f^{14}$ $5d^2$ $6s^2$
73	Ta	(Xe) $4f^{14} 5d^3 6s^2$
74	W	(Xe) $4f^{14} 5d^4 6s^2$
75	Re	(Xe) $4f^{14} 5d^5 6s^2$
76	Os	(Xe) $4f^{14}$ $5d^6$ $6s^2$
77	Ir	(Xe) $4f^{14}$ $5d^{7}$ $6s^{2}$
78	Pt	(Xe) $4f^{14}$ $5d^{9}$ $6s^{1}$
79	Au	(Xe) $4f^{14} 5d^{10} 6s^1$
80	Hg	(Xe) $4f^{14}$ $5d^{10}$ $6s^2$
81	ng Tl	(Xe) $4f^{14}$ $5d^{10}$ $6s^2$ $6p^1$
82	Pb	(Xe) $4f^{14}$ $5d^{10}$ $6s^2$ $6p^2$
		(Xe) $4f^{14}$ $5d^{10}$ $6s^2$ $6p^2$
83	Bi	(Xe) $4f^{14}$ $5d^{10}$ $6s^2$ $6p^2$
84	Po	(Xe) $4f^{14}$ $5d^{10}$ $6s^2$ $6p^2$
85	At	(Xe) 4f ¹¹ 5d ¹⁰ 6s ² 6p ²
86	Rn	(Xe) $4f^{14} 5d^{10} 6s^2 6p^2$
87	Fr	(Rn) 7s ¹
88	Ra	(Rn) 7s ²
89	Ac	(Rn) 6d ¹ 7s ²
90	Th	(Rn) 6d ² 7s ²
91	Pa	(Rn) 5f ² 6d ¹ 7s ²
92	U	$(Rn) 5f^3 6d^1 7s^2$
93	Np	(Rn) $5f^4 6d^1 7s^2$
94	Pu	$(Rn) 5f^6 7s^2$
95	Am	(Rn) 5f ⁷ 7s ²
96	Cm	$(Rn) 5f^7 6d^1 7s^2$
97	Bk	(Rn) 5f ⁹ 7s ²
98	Cf	$(Rn) 5f^{10} 7s^2$
99	Es	$(Rn) 5f^{11} 7s^2$
100	Fm	$(Rn) 5f^{12} 7s^2$
101	Md	$(Rn) 5f^{13} 7s^2$
102	No	(Rn) $5f^{14} 7s^2$
103	Lr	$(Rn) 5f^{14} 6d^1 7s^2$
		l .

Constantes physico-chimiques de quelques espèces inorganiques

Toutes les valeurs numériques sont données à 25 °C et 1 bar, sauf indications contraires (température en exposant [°Cl, pression en indice).

État état physique : g = gaz , l = liquide , c = cristallin , am = amorphe , aq = en solution M masse molaire [g·mol^-1]

masse volumique [g·cm⁻³]

d = se décompose , sub = sublime , expl = explose , vac = sous vide température de fusion [°C]

dans 100 mL d'eau [g·dL⁻¹] : i = insoluble, s = soluble, ts = très soluble, $\infty = soluble$ en toutes proportions température d'ébullition ['Cl Solubilité

produit de solubilité

enthalpie standard de formation [kJ·mol^1] entropie standard [J·mol^1·K^1] $K_s o F$ $\Delta_f H^0$

enthalpie standard de dissolution [kJ·mol⁻¹] $\Delta_{diss}H^0$

Espèce chimique	État	M	θ	$ heta_{fus}$	θ_{cb}	Solubilité	K_s	$\Delta_f H^0$	$_0S$	$\Delta_{diss}H^0$
Aluminium Al	С	26,98	2,7	660,4	2467			0	28	
Al^{3+}	ad							-538	-0,325	
Al Cl ₃	С	133,34	2,44	190 2,5atm	sub 177,8	62,9 15		-704	109	-326
$Al(OH)_3$	am	78,00	2,42	$-{\rm H}_{2}{\rm O}$ 300		.1.	$3.0 \cdot 10^{-34}$	-1277	71	
Al_2O_3	С	101,96	3,97	2072	2980	.1.		-1676	51	
$Al_2(SO_4)_3$	၁	342,15	2,71	d 770		37		-3432	239	
Argent Ag	С	107,87	10,5	961	2212	.1		0	43	
Ag^+	ad							106	74	
AgBr	С	187,87	6,47	432	d 1300	$8,4.10^{-6}$	$5,3 \cdot 10^{-13}$	-100	107	
AgCl	С	143,32	5,56	455	1550	$8.9 \cdot 10^{-5}$ 10	$1,8 \cdot 10^{-10}$	-127	96	
Ag_2CO_3	С	275,75	80,9	d 218		$3.2 \cdot 10^{-3}$ 20	$8.5 \cdot 10^{-12}$	-206	167	
$\mathrm{Ag_2CrO_4}$	С	331,73	5,63			$1,4\cdot 10^{-3}$ 0	$1,1 \cdot 10^{-12}$	-732	217	
$Ag_2Cr_2O_7$	С	431,72	4,77	q		$8,3.10^{-3.15}$	$2,0.10^{-7}$	-732		
AgF	С	126,87	$5,85^{-15}$	435	1159	182 15		-203	84	
AgI	С	234,77	234,77 $6,01$ ¹⁵	558	1506		$8,4 \cdot 10^{-17}$	-62	114	
$AgNO_2$	С	153,87	4,45	d 140		$0,155^{-0}$		-45	128	37
Ag NO.	٠	169.87	4.35° 19	919	J 444	199 0		101	1/1	66

6.6 · 10 · 50 1,2 · 10 · 5
` ;;
0 0
97 27,9 ° ts 154,2 °
vac 235 520 sub 40 vac 220
sub 452 vac sub 340 55 d 36 sub sub 551 vac
sub 340 d 36 sub 551
a 50 sub 551
0.00

Espèce chimique	État	M	θ	$ heta_{fus}$	θ_{cb}	Solubilité	K_s	$\Delta_f H^0$	S_0	$\Delta_{diss}H^0$
$Bi(OH)_3$	С	260,00	4,36	-H ₂ O 100	$-1\frac{1}{2}$ H ₂ O 400	$1,4\cdot 10^{-4}$		-710		
Brome Br_2	I	150,81	$3,12$ 20	-7,2	58,8	4,17 0		0	152	
Br-	ad							-121	83	
HBr	6.0	80,92	$3.5 \cdot 10^{-3}$ 0	-88,5	29-	0 662,0		-36	199	-85
Cadmium Cd	С	112,41	8,64	320,9	292	i		0	52	
Cd^{2+}	ad							92-	-73	
$Cd(NO_3)_2$	၁	236,41		350		109 0		-456		
$Cd(OH)_2$	၁	146,41	4,79 15	d 300		$2,6.10^{-4}$	$5,3 \cdot 10^{-15}$	-560	92	
CdS	၁	144,46	4,82	1750 100atm		$1,3.10^{-4.18}$	$2,0.10^{-28}$	-162	71	
$CdSO_4$	С	208,47	4,69	1000		2.2		-933	123	
Calcium Ca	С	40,08	1,54	839	1484			0	42	
Ca^{2+}	aq							-543	26	
CaCl ₂	၁	110,99	2,15	782	1600	74.5 20		-795	108	18
$CaCl_2 \cdot 6H_2O$	С	219,08	1,71	29,9	-ен ₂ о 200	279 0		-2605		19
CaCO ₃	၁	100,00	2,71 18	d 898,6		$1,4\cdot 10^{-3}$	5.10^{-9}	-1207	92	
CaF_2	С	78,08	3,18	1423	2500	$1,6.10^{-3.18}$	$1,6 \cdot 10^{-10}$	-1228	69	
$Ca(NO_3)_2$	С	164,09	2,50 18	561		121,2 18		-938	193	
CaO	С	56,08	3,3	2614	2850	0,131 10		-635	38	
$Ca(OH)_2$	С	74,09	2,24	$-\text{H}_2\text{O}$ 580	р	0,185 0	6 $^{-01}$ $^{-6}$	-985	83	-72
$CaSO_4$	С	136,14	2,61	1450		0,241	$3.7 \cdot 10^{-5}$	-1435	107	-19
$CaSO_4 \cdot 2H_2O$	С	172,17	2,32	$-\frac{3}{2}$ H ₂ O 128	$-2H_2O$ 163	0,30		-2021	194	1
Carbone Cgraphite	С	12,01	$2,25$ 20	sup 3650	4827	i		0	5,7	
Carbone C diamant	С	12,01	3,51	4030	4827	i		1,9	2,4	
00	80	28,01	$1,25.10^{-3}$ 0	-199	-191,5	$2,6.10^{-3}$		-111	198	
CO_2	60	44,01	$1,98.10^{-3}$ 0	-56,6 2.5atm	sub -78.5	0,145		-394	214	
CO_3^{2-}	ad	60,01						-675	-20	
HCN	60	27,03	$0.9 \cdot 10^{-3}$	-14	26	8		109	113	
$\mathrm{HCO_{3}}^{-}$	ad	61,02						069-	86	
Chlore Cl_2	20	70,91	$3,21.10^{-3}$ 0	-100,98	-34,6	0,665		0	223	
Cl-	ad	35,45						-167	22	
Cl_2O	50	86,91	$3,89.10^{-3}$ 0	-20	$\exp 3.8$	0,77		80	266	
Cl_2O_7	_	182,9		-91,5	82	S		265		

H_0																																Ĺ
$\Delta_{diss}H^{0}$	-75	68-								22-	12									-46	-18							89-	12			GO
S_0	187				22			30	-113	109	343		23	62	55	23	41	66-	98	108	167	26		43	108	29	121	109	280	203	-14	177
$\Delta_f H^0$	-92	-41	24	-251	069-	-1140	-1304	0	-58	-313	-2115	-2211	-238	-540	-83	0	22	65	281-	-206	-821	89-	-2111	291-	-449	-53	-80	-771	-2280	0	988-	646
K_s			0				$2,0.10^{-30}$							$1,1 \cdot 10^{-15}$	$9,7 \cdot 10^{-21}$				$1,7 \cdot 10^{-7}$			5.10^{-12}			$4.5 \cdot 10^{-21}$	$9 \cdot 10^{-36}$	$2,2 \cdot 10^{-48}$					
Solubilité	89	8	1:		169			.1.		45 7	0 2	133.8 0	i	$3,2 \cdot 10^{-4}$	$3.8 \cdot 10^{-4}$ 18	i			$6,2 \cdot 10^{-3}$	0 9.07	110,4 0	8.10^{-4} 18	243,7 0	i	i	$3,3.10^{-5.18}$	10^{-14}	14.3 0	21,6 0			8
θ_{cb}	-84,9	39 56mmHg	2672		d 250	4000		2870		1049	-6H2O 110	-3H ₂ O 55	d 2800			2567			1490	d 993	q	1290				d 220		d 650	$-5H_2O$ 150	-188,1		10 5
$ heta_{fus}$	-114,8	-112	1857		196	2266		1495		724	98	d 56	1795	p	1116	1083			430	620	-2H ₂ O 100	605	$-3H_2O$ 26,4	1026	$-H_2O$ d	103	1100	200	$-4H_2O$ 110	-219,6		93.1
θ	$1,00.10^{-3}$	1,76 22	7,20 28		2,7	5,21		8,9		3,3	1,92	1,87	6,45	3,60 15	5,45 18	8,92			4,14	3.39	2,54	5,2	2,07	6,32	3,37	4,6	5,6	3,6	2,28	$1,69.10^{-3}$ 15		0.00
M	36,46	100,46	52,00		66,66	151,99	103,2	58,93		129,84	237,93	291,04	74,93	92,95	91,00	63,55			00,66	134.5	170,47	190,44	295,64	79,54	92,26	95,60	159,14	159,60	249,68	38,00		90.10
État	5.0	Ι	၁	aq	С	၁	С	၁	aq	С	၁	၁	С	၁	၁	С	ad	aq	С	၁	၁	С	С	С	С	С	၁	၁	С	0.0	ad	ď
Espèce chimique	HCl	HClO_4	Chrome Cr	Cr^{3+}	CrO_3	Cr_2O_3	$Cr(OH)_3$	Cobalt Co	Co^{2+}	C_0Cl_2	$C_0Cl_2 \cdot 6H_2O$	$Co(NO_3)_2 \cdot 6H_2O$	CoO	$Co(OH)_2$	CoS	Cuivre Cu	Cu^+	Cu^{2+}	CuCl	$CuCl_2$	$Cu Cl_2 \cdot 2H_2O$	CuI	$Cu(NO_3)_2 \cdot 6H_2O$	CuO	$Cu(OH)_2$	CuS	Cu_2S	CuSO_4	$CuSO_4 \cdot 5H_2O$	Fluor F_2	_ [H	HF

Espèce chimique	État	M	θ	θ_{fus}	θ_{cb}	Solubilité	K_s	$\Delta_f H^0$	S_0	$\Delta_{diss}H^0$
Fer Fe	С	55,85	7,86	1535	2750	.1.		0	27	
Fe ²⁺	ad							68-	-138	
Fe ³⁺	be							-48	-316	
FeCl ₂	С	126,75	3,16	029	qns	64,4 10		-342	118	-75
$\text{FeCl}_2 \cdot 4\text{H}_2\text{O}$	С	198,81	1,93			$160,1$ 10		-1549		-12
FeCl ₃	С	162,21	2,9	306	d 315	74,4 0		-400	142	
Fe_2O_3	С	159,69	5,24	1565		1:		-824	87	
Fe_3O_4	С	231,54	5,18	1594		i		-1118	146	
$Fe(OH)_2$	О	96,68	3,4	р		$1,5.10^{-4.18}$	$8 \cdot 10^{-16}$	-569	88	
$Fe(OH)_3$	О	106,87	3,12	d 500		1.	$2,7 \cdot 10^{-39}$	-824	107	
FeS	О	87,91	4,74	1193	р	$6,2\cdot 10^{-4}$ 18	5.10^{-18}	-100	09	
$Hydrog\`ene$ H_2	S	2,02	$8,99.10^{-5}$	-259,1	-252,8	$1,5.10^{-4}$		0	131	
D_2	S	4,03	0,169	-254,6	-249,7			0	145	
+H	ad	1,01						0	0	
H_2O	S	18,02						-242	189	
H_2O	1	18,02	1,00 4	0	100			-286	02	
$\mathrm{H}_2\mathrm{O}_2$	1	34,01	1,41	-0,41	150,2	8		-188	110	
D_2O	1	20,03	$1,105$ 20	3,82	101,4	8		-295	92	
$Iode I_2$	О	253,81	4,93	113,7	184,3	$0,029$ 20		0	116	
_I	be	126,90						-56	201	
HI	60	127,91	$5,66.10^{-3}$ 0	-50,8	-35,6	234		26	206	-82
HIO_{3}	О	175,91	4,63	d 110		286°		-230		6
Lithium Li	О	6,94	0.53 20	180,5	1342			0	59	
Li ⁺	aq							-278	12	
LiBr	О	98,85	3,46	550	1265	145 4		-351	74	-49
Licl	С	42,39	2,07	605	1325			-409	69	-37
LiF	О	97	2.63 20	845	1676	0,27 18		-616	0.036	2
LiI	О	133,84	4,08	449	1180	165 20		-270	28	-63
ГіОН	С	23,95	1,46	450	d 924	$12,8$ 20		-479	43	-24
Magnésium Mg	С	24,31	1,74 5	648,8	1107	i		0	33	
${ m Mg}^{2+}$	ad							-467	137	
${ m MgCl}_2$	С	95,22	2,32	714	1412	$54,25$ 20		-641	90	-150

$\Delta_{diss}H^0$	-12							29-	9-				-28									-19										
S_0	366	99	22	27	63	32	-74	118	303	09	53	66	112	92	99	-36	192	20	82	30	-129	86	88	53	205	-11	41	151	65	10	131	
$\Delta_f H^0$	-2499	-1096	-1124	-602	-925	0	-221	-481	-1687	-385	-520	-694	-1064	0	167	170	-265	-91	-58	0	-54	-305	-530	-83	0	-230	0	-1271	0	-1,7	669-	-931
K_s		$1,2 \cdot 10^{-5}$	$6.4 \cdot 10^{-9}$		10^{-11}							$2 \cdot 10^{-13}$					$1,4 \cdot 10^{-18}$		$6,3 \cdot 10^{-53}$					10^{-24}							$6 \cdot 10^{-14}$	$3 \cdot 10^{-13}$
Solubilité	167	0,011	$7,6.10^{-4.18}$	$6.2 \cdot 10^{-4}$	9.10^{-4} 18			72,3	151 8	٠	٠	3.10^{-4} 18	52 5	. 1			2.10^{-4}		10^{-6} 18			$64,2$ 20	0,013	$3,6.10^{-4.18}$	$3.9 \cdot 10^{-3}$		3.10^{-4} 15	548	i		$1,1\cdot 10^{-4}$ 20	$5.8 \cdot 10^{-6}$
θ_{ab}	р	$-\cos_{2} 900$	2239	3600		1962		1190	$-\text{H}_{2}\text{O}$ 106		р		048 p	356,6						2730		826 qns			-183		280	$-\frac{1}{2}$ H ₂ O 213	1740			р
θ_{fus}	d 116	d 350	1261	2852	$-\text{H}_2\text{O}\ 350$	1244		650	58		535	р	002	6,86-			sub 400	00g P	283 cns	1455		1001	d 230	262	-218,4		44.1	42,4	327,5		d 315	844
θ	1.57	2,96	3,1	3,6	2,36	7,2		2,98	2,01	5,45	5,03	3,26 13	3,25	$13,59$ 20			7,15	11,1 4	8,10	8,90		3,55	4,15	5,3	$1,43.10^{-3}$ 0		$1,82$ 20	1,83 18	11,34 16			6,12 15
M	203,31	84,32	62,31	40,31	58,33	54,94		125,84	16,761	70,94	86,94	88,95	151,00	200,59			472,09	216,59	232,65	58,71		129,62	9,72	22,06	32,00	17,01	123,90	98,00	207,19		267,20	323,18
État	С	С	С	၁	၁	С	ad	၁	၁	၁	၁	၁	С	I	aq	aq	С	С	С	С	aq	С	С	С	6.0	ad	၁	I	С	ad	С	С
Espèce chimique	$MgCl_2 \cdot 6H_2O$	MgCO_3	MgF_2	MgO	$Mg(OH)_2$	Manganèse Mn	$ m Mn^{2+}$	$\mathrm{Mn}\mathrm{Cl}_2$	$\operatorname{Mn} \operatorname{Cl}_2 \cdot 4\operatorname{H}_2\operatorname{O}$	MnO	$\mathrm{Mn}\mathrm{O}_2$	$Mn(OH)_2$	$\mathrm{Mn}\mathrm{SO}_4$	Mercure Hg	$\mathrm{Hg_2}^{2+}$	${ m Hg}^{2+}$	$ m Hg_2Cl_2$	HgO	HgS	Nickel Ni	$ m Ni^{2+}$	$Ni Cl_2$	$Ni(OH)_2$	NiS	Oxygène O_2	_HO	Phosphore P_4 blanc	$\mathrm{H_{3}PO_{4}}$	Plomb Pb	Pb^{2+}	$PbCO_3$	$PbCrO_4$

245,19
,
461,00 6,16 402
331,20 4,53 ²⁰ d 470
9,53
239,19 9,38 d 290
241,20 7,6 d 145
303,25 6,2 1170
$39,10 0.86^{20} 63,65$
119,01 2,75 734
167,01 3,27 ¹⁷ d 370
74,56 1,98 770
122,55 2,32 356
$65,12$ $1,52$ 16 $634,5$
97,18 1,88 14 173,2
194,20 2,73 18 968,3
2,68
2,48
166,01 3,13 681
$3,93^{-32}$
158,04 2,7 d 240
85,11 1,92 440
$101,11$ $2,11$ 16 334
56,11 2,04 360
28,09 2,3 1410
60,08 2,65 1610
8,76 0,97 97,8
102,90 3,2 747
2,17
1 2,49 15
49,01 563,7

Espèce chimique	État	M	θ	θ_{fus}	θ_{cb}	Solubilité	K_s	$\Delta_f H^0$	S_0	$\Delta_{diss}H^0$
Na_2CO_3	О	105,99	2,53	851	р	7,1 0		-1131	135	
$\mathrm{Na_2CrO_4}$	С	161,97	2,72			87,3 30		-1329	177	-2
NaF	О	41,99	2,56 41	993	1695	4,22 18		-222	51	1
NaI	О	149,89	3,67	661	1304	184		-288	86	8-
$NaNO_2$	С	69,00	2,17 0	271	d 320	81,5 15		-359	104	14
$NaNO_3$	С	84,99	2,26	8,908	d 380	92,1		-468	116	21
NaOH	С	40,00	2,13	318,4	1390	42 0		-426	64	-45
Na_2SO_4	С	142,04	2,68	884	d 2227	4,76 0		-1387	150	
$Na_2SO_4 \cdot 10H_2O$	С	322,19	1,5	32,4	$-10H_2O$ 100	28		-4327	592	
Soufre S ₈	am	256,51	1,92	112,8	444.6	.1		0	32	
S^{2-}	ad	32,06						33	-15	
$_{ m H_2S}$	6.0	34,08	$1,54.10^{-3}$ 0	-85,5	-60,7	0,337		-21	206	
$\mathrm{H}_2\mathrm{SO}_4$	_	80,86	1,84	10,36	338	8		-814	157	-74
SO_2	6.0	64,06	$2,92.10^{-3}$	-72,7	-10	9,41		-297	248	
SO_3	I	80,06	$1,97$ 20	16,83	44,1			-455	222	
SO_4^{2-}	ad	90,96						-909	19	
$S_2O_3^{2-}$	ad	112,13						-652	29	
Strontium Sr	С	87,62	$2,6$ 20	692	1384			0	22	
Sr^{2+}	ad							-546	-33	
$SrCO_3$	О	147,63	3,7	1497_{69atm}	$-\cos_2 1340$	$1,1.10^{-3.18}$	$1.6 \cdot 10^{-9}$	-1220	26	
$SrSO_4$	О	183,68	3,96	1605		0,011 0	$3.8 \cdot 10^{-7}$	-1453	117	
$Sr(OH)_2$	О	121,63	3,63	375	$-H_2O$ 710	0,41 0		-959		
Zinc Zn	О	65,38	7,14	419,6	206	i		0	42	
$\mathrm{Zn^{2+}}$	aq							-153	-110	
ZnO	О	81,37	5,61	1975		$1,6.10^{-4}$ 29		-351	44	
$\mathrm{Zn}(\mathrm{OH})_2$	С	86,66	3,05	d 125			$7.7 \cdot 10^{-17}$	-642	81	
$Zn(NO_3)_2 \cdot 3H_2O$	С	243,43	2,1	45,5		327,3 40		-2307	457	58
ZuZ	С	97,43	3,98	$170\theta_{0atm}$		$6.9 \cdot 10^{-4}$ 18	$2.9 \cdot 10^{-25}$	-206	28	

Solubilité des composés ioniques

Les solubilités sont indiquées à 25 °C et 1 bar.

- solubilité dans l'eau supérieure à 1 g \cdot L⁻¹
- solubilité dans l'eau inférieure à 1 g·L $^{-1}$
- ce composé n'existe pas.

	Ac [−] ^a	Br-	Cl-	CO_3^{2-}	F^-	I-	NO_2^-	NO_3^-	OH-	PO_4^{3-}	S^{2-}	SO_4^{2-}
Ag ⁺	0	▼	▼	▼	0	▼	0	0	▼	▼	▼	0
Al^{3+}	0	0	0	×	0	0	×	0	▼	▼	×	0
Ba ²⁺	0	0	0	▼	0	0	0	0	0	▼	0	▼
Bi ³⁺	▼	×	×	×	▼	▼	×	×	▼	▼	▼	×
Ca^{2+}	0	0	0	▼	•	0	0	0	0	▼	0	0
Cd^{2+}	0	0	0	▼	0	0	0	0	▼	▼	•	0
Co^{2+}	0	0	0	▼	0	0	0	0	▼	▼	•	0
Cr^{3+}	0	0	0	×	•	0	×	0	▼	▼	•	0
Cu ²⁺	0	0	0	▼	0	×	0	0	▼	▼	•	0
$\mathrm{Fe^{2+}}$	0	0	0	▼	•	0	×	0	▼	▼	•	0
Fe ³⁺	0	0	0	×	0	0	×	0	▼	▼	•	0
Hg^{2+}	0	0	0	▼	×	•	0	0	▼	▼	•	×
K^{+}	0	0	0	0	0	0	0	0	0	0	0	0
Mg^{2+}	0	0	0	▼	•	0	0	0	▼	▼	0	0
$\mathrm{Mn^{2+}}$	0	0	0	▼	0	0	0	0	▼	▼	•	0
Na ⁺	0	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{NH_4}^+$	0	0	0	0	0	0	0	0	×	0	0	0
Ni ²⁺	0	0	0	▼	0	0	0	0	▼	▼	▼	0
Pb^{2+}	0	0	0	▼	•	•	0	0	▼	▼	•	▼
Sn^{2+}	×	0	0	▼	0	0	×	×	•	•	•	0
Sn^{4+}	0	0	0	×	0	0	×	×	•	▼	•	0
Sr^{2+}	0	0	0	▼	•	0	0	0	0	▼	0	▼
Zn^{2+}	0	0	0	▼	0	0	0	0	▼	▼	•	0

a. Ac- désigne ici le ion acétate CH3COO-

Solubilité des gaz dans l'eau

V=volume de gaz [L] réduit à 0 °C et 1,013 bar qui se dissout dans un litre d'eau à température Tet p = 1.013 bar

 $c={\rm concentration}~[{\rm mg}{\cdot}{\rm L}^{-1}]$ du gaz dissous à $p=1{,}013~{\rm bar}$

T	Н	$[_2$	N	2	C)2	C	O_2
	V	c	V	c	V	c	V	c
0 °C	0,0216	1,928	0,0232	29,1	0,0489	68,8	1,7125	3366
10 °C	0,0195	1,740	0,0187	23,4	0,0380	54,4	1,1971	2350
$20^{\circ}\mathrm{C}$	0,0182	1,626	0,0157	19,6	0,0309	44,2	0,8776	1724
$25^{\circ}\mathrm{C}$	0,0176	1,572	0,0145	18,1	0,0283	40,3	0,7602	1492
30 °C	0,0172	1,536	0,0137	17,1	0,0262	37,4	0,6645	1307
70 °C	0,0158	1,410	0,0104	13,0	0,0183	26,2	0,3031	594

Nomenclature de quelques molécules et ions en solution

CH ₃ COOH	acide éthanoïque ou acétique
H_2CO_3	acide carbonique
H_2S	acide sulfhydrique
H ₂ SO ₃	acide sulfureux
H ₂ SO ₄	acide sulfurique
H_3PO_4	acide phosphorique
HBr	acide bromhydrique
HCl	acide chlorhydrique
HClO	acide hypochloreux
HClO ₂	acide chloreux
HClO ₃	acide chlorique
HClO ₄	acide perchlorique
HCN	acide cyanhydrique
НСООН	acide méthanoïque
	ou formique
HF	acide fluorhydrique
HI	acide iodhydrique
HNO_2	acide nitreux
HNO_3	acide nitrique
NIII	
NH_3	ammoniac
Ag ⁺	argent
Cu ⁺	cuivre (I) ou cuivreux
Cu^{2+}	cuivre (II) ou cuivrique
$\mathrm{Fe^{2+}}$	fer (II) ou ferreux
$\mathrm{Fe^{3+}}$	fer (III) ou ferrique
H_3O^+	oxonium
Hg^{2+}	mercure (II) ou mercurique
Hg_2^{2+}	mercure (I) ou mercureux
$\mathrm{NH_4}^+$	ammonium
Pb^{2+}	plomb (II)
Pb^{4+}	plomb (IV)
Sn^{2+}	étain (II) ou stanneux
Sn^{4+}	étain (IV) ou stannique

Br ⁻	bromure
$C_2O_4^{2-}$	oxalate
CH ₃ COO-	éthanoate ou acétate
ClO-	hypochlorite
ClO_2^-	chlorite
ClO ₃ -	chlorate
ClO_4^-	perchlorate
Cl-	chlorure
CN-	cyanure
CO_3^{2-}	carbonate
$\operatorname{Cr} \operatorname{O}_4{}^{2-}$	chromate
$\mathrm{Cr}_2\mathrm{O}_7{}^{2-}$	dichromate
F^-	fluorure
$Fe(CN)_6^{3-}$	hexacyanoferrate (III)
	ou ferricyanure
$Fe(CN)_6^{4-}$	hexacyanoferrate (II)
	ou ferrocyanure
$\mathrm{HCO_{3}}^{-}$	hydrogénocarbonate
	ou bicarbonate
HCOO-	méthanoate ou formiate
$\mathrm{HPO_4}^{2-}$	hydrogénophosphate
$\mathrm{H_2PO_4}^-$	dihydrogénophosphate
HS^-	hydrogénosulfure
$\mathrm{HSO_{3}^{-}}$	hydrogénosulfite
$\mathrm{HSO_4}^-$	hydrogénosulfate
I-	iodure
$\mathrm{Mn}\mathrm{O_4}^-$	permanganate
NO_2^-	nitrite
NO_3^-	nitrate
OH-	hydroxyde
O^{2-}	oxyde
PO_4^{3-}	phosphate
S^{2-}	sulfure
SCN-	thiocyanate
$S_2O_3^{2-}$	thiosulfate
SO_3^{2-}	sulfite
SO_4^{2-}	sulfate

Constantes physico-chimiques de composés organiques

Toutes les constantes sont données à 1 bar.

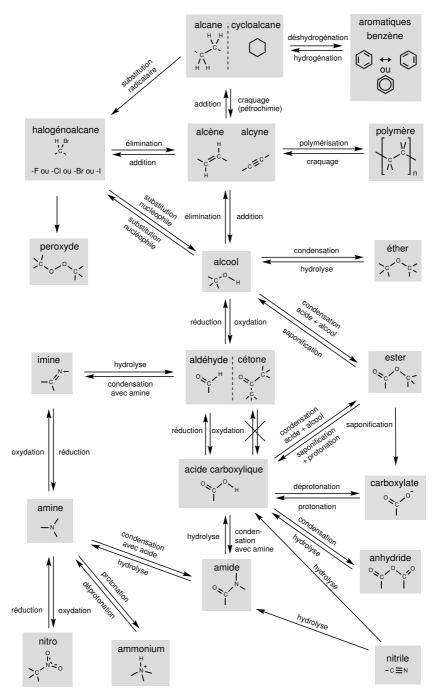
```
État état physique (à 25°C) : g = gaz, l = liquide, s = solide \rho masse volumique [g \cdot cm^{-3}] à la température indiquée en exposant [°C]
     \theta_{fus} température de fusion [°C]
\begin{array}{ll} \theta_{db} & \text{température d'ébullition [°C]} \\ \Delta_f H^0 & \text{enthalpie standard de formation (à 25°C) [kJ·mol^{-1}]} \\ \Delta_c H^0 & \text{enthalpie de combustion (à 25°C) [kJ·mol^{-1}]} \end{array}
     S^0 entropie standard (à 25°C) [J·mol<sup>-1</sup>]
```

NOM	FORMULE	État	ρ θ	θ_{fus}	θ_{db}	$\Delta_f H^0$	$\Delta_c H^0$	S^0
Hydrocarbures								
méthane	CH_4	g	$0,423^{-162}$	-182	-161	-75	-891	186
éthane	CH ₃ CH ₃	g	$0,545^{-89}$	-183	-89	-84	-1561	229
propane	$\mathrm{CH_{3}CH_{2}CH_{3}}$	g	$0,493^{-25}$	-188	-42	-104	-2119	270
n-butane	$\mathrm{CH_{3}(CH_{2})_{2}CH_{3}}$	g	$0,573^{-25}$	-138	-1	-126	-2878	310
n-pentane	$\mathrm{CH_{3}(\mathrm{CH_{2}})_{3}\mathrm{CH_{3}}}$	l	$0,626^{-20}$	-130	36	-174	-3509	350
n-hexane	$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{4}\mathrm{CH_{3}}$	l	$0,661^{-25}$	-95	69	-199	-4163	387
n-heptane	$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{5}\mathrm{CH_{3}}$	l	$0,680^{-25}$	-91	98	-224	-4817	425
n-octane	$\mathrm{CH_{3}(CH_{2})_{6}CH_{3}}$	l	$0,699^{-25}$	-57	126	-250	-5464	464
n-nonane	$\mathrm{CH_{3}(\mathrm{CH_{2}})_{7}\mathrm{CH_{3}}}$	1	$0,719^{-20}$	-53	151	-275	-6118	384
n-décane	$\mathrm{CH_{3}(CH_{2})_{8}CH_{3}}$	1	$0,727^{-25}$	-30	174	-301	-6770	426
n-hexadécane	$\mathrm{CH_{3}(CH_{2})_{14}CH_{3}}$	1	$0,770^{-25}$	18	287	-456	-10687	586
cyclohexane	$(CH_2)_6$	1	$0,774^{-25}$	7	81	-156	-3920	204
éthène	CH_2CH_2	g	$0,568^{-104}$	-169	-104	52	-1411	219
propène	$\mathrm{CH_{3}CHCH_{2}}$	g	$0,505^{-25}$	-185	-48	20	-2058	267
éthyne	CHCH	g	$0,377^{-25}$	-81	-85	227	-1301	201
benzène	C_6H_6	l	0.877^{-20}	5	80	49	-3268	173
toluène	$\mathrm{CH_{3}C_{6}H_{5}}$	1	$0,862^{-25}$	-95	111	12	-3910	221
Alcools								
méthanol	CH ₃ OH	l	$0,791^{-20}$	-98	65	-239	-726	127
éthanol	CH ₃ CH ₂ OH	l	$0,789^{-20}$	-114	78	-278	-1367	161
propan-1-ol	$\mathrm{CH_{3}(CH_{2})_{2}OH}$	l	$0,800^{-20}$	-124	97	-303	-2021	194
propan-2-ol	CH ₃ CHOHCH ₃	l	$0,781^{-25}$	-88	82	-318	-2003	181
butan-1-ol	$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{3}\mathrm{OH}$	1	0.810^{-20}	-89	118	-327	-2677	226
butan-2-ol	CH ₃ CHOHCH ₂ CH ₃	1	0.806^{-20}	-89	100	-343	-2658	215
éthane-1,2-diol	CH ₂ OH CH ₂ OH	1	$1,114^{-20}$	-13	197	-460	-1189	163
propane-1,2,3-triol	CH ₂ OHCHOHCH ₂ OH	1	1,261 20	18	290	-700	-1655	206
phénol	C_6H_5OH	s	$1,132^{-25}$	41	182	-165	-3054	144
Halogénures	~ ~		,					
chlorométhane	CH ₃ Cl	g	0.911^{-25}	-98	-24	-82	-764	235
dichlorométhane	$\mathrm{CH_2Cl_2}$	ì	$1,327^{-20}$	-97	40	-124	-603	178
trichlorométhane	CH Cl ₃	1	$1,479^{-25}$	-63	61	-131	-473	202
tétrachlorométhane	CCl ₄	1	1,594 20	-23	77	-128	-1326	276
chloroéthane	CH ₃ CH ₂ Cl	g	0,890 *	-138	12	-112	-1326	276
chlorobenzène	C_6H_5Cl	ì	$1,106^{-20}$	-45	132	11	-3110	198
Éthers	<u> </u>		,			_		
méthoxyméthane	CH ₃ O CH ₃	g	0,731 0	-142	-25	-184	-1460	266
méthoxyéthane	CH ₃ O CH ₂ CH ₃	g	0,725 0	-113	7	-216	-2108	309
éthoxyéthane	CH ₃ CH ₂ OCH ₂ CH ₃	1	70.14^{-20}	-116	35	-280	-2724	254
Contraction	01130112001120113	1	10,11	110	55	200	2127	204

NOM	FORMULE	État	ρ θ	θ_{fus}	θ_{db}	$\Delta_f H^0$	$\Delta_c H^0$	S^0
Aldéhydes								
méthanal	HCHO	g	0.815^{-20}	-92	-19	-109	-571	219
éthanal	CH ₃ CHO	g	$0,783^{-18}$	-123	20	-166	-1167	264
propanal	CH ₃ CH ₂ CHO	l	$0,866^{-25}$	-80	48	-216	-1823	213
benzaldéhyde	C_6H_5CHO	l	$1,040^{-25}$	-57	179	-87	-3532	221
Cétones								
propanone	$\mathrm{CH_{3}COCH_{3}}$	l	$0,785^{-25}$	-95	56	-248	-1790	200
butanone	CH ₃ CH ₂ CO CH ₃	l	$0,800^{-25}$	-87	80	-273	-2444	239
pentan-2-one	$\mathrm{CH_3CO}(\mathrm{CH_2})_2\mathrm{CH_3}$	1	$0,809^{-20}$	-77	102	-297	-3090	274
acétophénone	$C_6H_5COCH_3$	1	$1,028^{-20}$	21	202	-143	-4145	
Ac. carboxyliques								
acide méthanoïque	НСООН	l	$1,220^{-20}$	8	101	-425	-255	129
acide éthanoïque	CH ₃ COOH	l	$1,045^{-25}$	17	118	-484	-874	160
acide oxalique	HOOCCOOH	l	$1,900^{-17}$	189		-830	-254	110
acide propanoïque	CH ₃ CH ₂ COOH	l	$0,988^{-25}$	-21	141	-511	-1527	191
acide lactique	CH ₃ CHOHCOOH	S	$1,206^{-21}$	53	122	-675	-1363	142
acide benzoïque	C_6H_5COOH	s	$1,266^{-15}$	122	249	-385	-3228	168
acide stéarique	$\mathrm{CH_{3}(CH_{2})_{16}COOH}$	S	$0,941^{-20}$	69	350	-948	-11291	436
Amines								
méthylamine	CH_3NH_2	g	$0,656^{-25}$	-94	-6	-23	-1086	243
diméthylamine	$(CH_3)_2NH$	g	$0,680^{-0}$	-92	7	-19	-1743	273
triméthylamine	$(CH_3)_3N$	g	$0,627^{-25}$	-117	3	-24	-2443	287
éthylamine	$CH_3CH_2NH_2$	g	$0,677^{-25}$	-81	17	-48	-1713	284
phénylamine (aniline)	$C_6H_5NH_2$	1	$1,022^{-20}$	-6	184	32	-3393	191
Divers								
urée	$CO(NH_2)_2$	S	$1,323^{-20}$	133		-333	-633	105
glucose	$C_6H_{12}O_6$	S	$1,562^{-18}$	146		-1273	-2803	212
saccharose	$C_{12}H_{22}O_{11}$	s	$1,581^{-17}$	186		-2226	-5645	360

Fonctions organiques, par ordre de priorité décroissante

1	Acide O Carbo- VI OH	6	Nitrile —Ç—C≡N	11	Thiol — — SH
2	AnhydrideC_O_C_	7	Imine C=NH	12	Amine — C—N
3	EsterCOC	8	Aldéhyde — H	13	Éther — C—O—C—
4	Chlorure d'acyle —Cl	9	Cétone $ \stackrel{\text{O}}{\leftarrow}$ $\stackrel{\text{C}}{\leftarrow}$ $\stackrel{\text{C}}{\leftarrow}$	14	Nitro — C—NO2
5	Amide _C_N	10	Alcool —C—OH	15	Halo- génure — C—Cl


Représentation des molécules organiques

Exemple de l'acide lactique (énantiomère S).

Formule brute	C ₃ H ₅ O ₂	Indique la composition chimique et, le cas échéant, la nature des ions.
Formule semi-développée	СН3-СНОН-СООН	Décrit le squelette carboné. Le degré de simplification de la notation peut varier.
Formule développée (plane)	Н О О Н Н О Н О Н Н Н О О О Н Н Н О О О Н Н Н О О О Н Н Н О	Représentation plane, avec indication du type de liaison (simple ou multiple).
Formule topologique	ОН	Les carbones et les hydrogènes ne sont pas explicitement indiqués. Peut indiquer, comme ici, la stéréochimie.
Formule de Lewis	H O O H	C'est la formule développée avec en plus les doublets non liants (sous forme de traits ou de double points).
Projection de Newman	НО Н Н Н	Projection selon l'axe C–C d'une conformation de la molécule.
Représentation de Cram	н ^Н СООН Н ОН	Représentation spatiale des carbones tétraédriques. Parfois utilisée pour les carbones asymétriques dans les formules topologiques.
Représentation de Fischer	COOH HO — H CH ₃	Représentation de la stéréochimie, avec les liaisons horizontales au-dessus du plan, et les liaisons verticales au-dessous.
Représentation de Haworth	CH ₂ OH OH OH OH	Utilisée uniquement pour les formes cycliques des sucres, ici pour une des formes du glucose, le α -D-glucopyranose.

Résumé de chimie organique

Valeur énergétique de quelques aliments

Les valeurs sont données en kJ·g⁻¹. Pour les nutriments, elles peuvent varier faiblement du fait des différents types de composés dans chaque classe; pour les aliments, elles peuvent varier jusqu'à 20%.

Nutriments

Glucides	16,5
Lipides	39,5
Protides	17,5

Aliments

Beurre, margarine, crème	30
Bière	2
Bœuf	14
Céréales	15
Champignons	1,5
Chips, cacahuètes grillées	24
Eau	0
Fromage blanc	4,5

14
2,5
16
39
3
1
26
6

Pain	10
Poisson	5,5
Pommes de terre	3,5
Porc	12
Riz	15
Sel de cuisine	0
Vin	3,5
Volaille	6

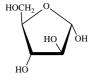
Additifs alimentaires

La table ci-dessous ne donne que les catégories d'additifs alimentaires. Certains additifs ont plusieurs fonctions (par exemple conservateur et antioxydant, ou acidifiant et antioxydant).

Numéros E	Fonction	Exemples
E 100 – E 199	colorants	E 104 : jaune de quinoléine ; E 110 : orangé S ;
		E 124 : ponceau 4R; E 150 : caramel
E 200 – E 299	conservateurs, saumure,	E 203 : sorbate de calcium ; E 221 : sulfite de
	antioxydants	sodium; E 250 : nitrite de sodium
E 300 – E 399	antioxydants, acidifiants	E 300 : acide ascorbique; E 322 : lécithine;
		E 330 : acide citrique; E 334 : acide tartrique
E 400 – E 499	gélifiants, épaississants,	E 406 : agar-agar ; E 414 : gomme arabique ;
	émulsifiants	E 440 : pectine; E 460 : cellulose
E 500 – E 599	antiagglomérants,	E 500 : Na ₂ CO ₃ ; E 509 : chlorure de calcium;
	correcteurs d'acidité	E 519 : sulfate de cuivre ; E 526 : Ca(OH) ₂
E 600 – E 699	exhausteurs de goût	E 621 : glutamate de sodium ; E 640 : glycine
E 900 – E 999	agents d'enrobage,	E 901 : cire d'abeilles ; E 905 : paraffine ; E 951 :
	édulcorants	aspartame; E 952 : cyclamate; E 954 : saccharine
E > 1200	gélifiants, épaississants,	E 1404 : amidon oxydé
	humectants	E 1520 : propylèneglycol

Biochimie

Monosaccharides


Monosaccharides courants

Cyclisation

En solution aqueuse, $\sim 95\%$ des molécules d'un monosaccharide sont sous forme cyclique. La forme pyranose (avec 5 carbones dans le cycle) est plus fréquente que la forme furanose (avec 4 carbones dans le cycle).

Stéréoisomères naturels

Pentoses

 α -D-arabinose (furanose)

 α -D-ribose (furanose)

 α -2-D-désoxyribose (furanose)

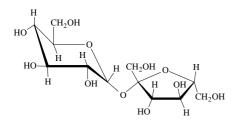
Sucres dérivés

Acide β -D-glucuronique

 β -D-glucosamine

HO
$$O = C < NH$$
 CH_3

 β -D-N-acétylglucosamine

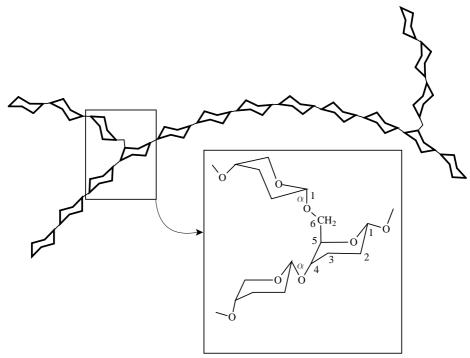

Disaccharides

Maltose

 $O-\alpha$ -D-glucosyl- $(1\rightarrow 4)-\beta$ -D-glucose

Lactose

O- β -D-galactosyl- $(1\rightarrow 4)$ - β -D-glucose



Saccharose $O-\alpha$ -D-glucosyl- $(1\rightarrow 2)-\beta$ -D-fructose

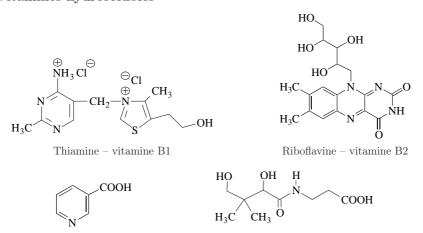
Polysaccharides

Polysaccharide	Composition et enchaînement	Nombre d'unités	Rôle biologique
Cellulose	$(\beta 1 \rightarrow 4)$ Glucose	> 10000	Paroi des cellules végétales
Amidon			
• Amylose	$(\alpha 1 \rightarrow 4)$ Glucose linéaire	> 1000	Réserve d'énergie des
Amylopectine	$(\alpha 1 \to 4)$ Glucose avec ramifications	> 10000	végétaux
	$(\alpha 1 \rightarrow 6)$ Glucose toutes les ~ 25 unités		
Glycogène	$(\alpha 1 \rightarrow 4)$ Glucose avec ramifications	> 50000	Réserve d'énergie des
	$(\alpha 1 \rightarrow 6)$ Glucose toutes les ~10 unités		animaux, bactéries et
			champignons
Chitine	$(\beta 1 \rightarrow 4)$ N-acéylglucosamine	très élevé	Exosquelette des
			arthropodes
Acide	N-acétylglucosamine $(\beta 1 \rightarrow 4)$	> 25000	Humeur vitrée de l'œil
hyaluronique	Acide glucuronique $(\beta 1 \rightarrow 4)$		et liquide synovial

Cellulose

Amylopectine

Vitamines


Vitamines liposolubles

Rétinol – vitamine A1

Ergocalciférol – vitamine D2

 $\alpha\text{-Tocophérol}$ – vitamine E

Vitamines hydrosolubles

Niacine - vitamine B3

266

Acide panthothénique – vitamine B5

$$O = C$$

$$CH_3$$

Utilité et besoins quotidiens de quelques vitamines pour l'être humain

L'abus des vitamines est dangereux. Il convient de prendre l'avis du médecin avant de consommer des comprimés de vitamines.

Provenance	Utilité	Symptômes de carence	Besoins quotidiens	otidiens
Huile de foie de morue Poison gras	Vue dans la pénombre Croissance	Arrêt de la croissance Cécité nocturne		0,8 a 1,0 mg
Beurre Carotte	Résistance aux infections Cicatrisation	Peau sèche Perte d'appétit	croissance et de grossesse :	1,2 à 1,4 mg
Levure de bière	Stimulation de l'appétit	Béri-béri	Enfant:	0.4 à 1.3 mg
Germe de blé	Cofacteur dans les	Troubles cardiaques	Adulte:	1,3 à 2,0 mg
Cereales Foie	Assimilation des nutriments	Kisque d'anorexie Névrites	remme encemte :	1,0 IIIB
Levure de bière	Respiration cellulaire	Glossite	Enfant:	0,4 à 1,5 mg
Soja	Elasticité et résistance	Chéilite	Adulte:	1,6 mg
Foie	de la kératine Résistance au froid	Diminution de l'acuité visuelle	Femme enceinte :	1,8 mg
T 1	_	1 4	-	10
Levure de biere	ıant du NAD ⁺ et du	Fellagre	Enrant:	4 a 12 mg
Foie	INADE	Photosensibilité	Adulte:	15 à 20 mg
Thon Fruits secs	Réduction du taux de cholestérol	Troubles nerveux Perte d'appétit		
Foie	Constituant du CoA	Dermite	Enfant:	2 à 10 mg
ou Levure de bière	Régénérescence des	Entérite	Adulte:	10 mg
Œuf	épithéliums et des phanères	Alopécie		
		Perte d'appétit		
Levure	Augmentation de	Nervosité	Enfant:	1,8 à $2,0$ mg
Abats	l'assimilation des sucres	Irritabilité	Adulte:	2,0 mg
Thon, Saumon	Diminution de la fatigabilité	Troubles de croissance Baissa da l'immunité	Femme enceinte :	2,5 à 10 mg

Vitamine	Provenance	Utilité	Symptômes de carence	Besoins quotidiens	otidiens
Vitamine B8 (H)	Levure	Catalyse la fixation	Dermite	Enfant :	$0.01 \ \text{a} \ 0.1 \ \text{mg}$
ou Distins	Foie	du CO ₂	Nausée	Adulte:	$0.1 \ ao$ 0,3 mg
Diotine	Jaune d'œuf		Chute des cheveux		
nyarosotuote	Avocat		Douleurs musculaires		
Vitamine B9	Levure	Synthèse de l'ADN	Anémie	Enfant:	0,1 mg
ou A side felieme	Foie	aturation des	Troubles de croissance	Adulte:	$0.2 \pm 0.4 \mathrm{mg}$
hydrosoluble	Légumes verts	globules rouges		Femme enceinte :	0,6 à 0,8 mg
Vitamine B12	Foie	Multiplication et croissance	Anémie pernicieuse	Enfant:	$0.3 \text{ à } 3 \mu\text{g}$
ou Cobalamina	Abats	des cellules du tube digestif,	Allergie	Adulte:	3 µg
Coparamine	Hareng, Thon	ud systeme nerveux et de la moelle ossense			
hydrosoluble	Œuf	Dende Oppense			
Vitamine C	Fruits frais	Stimulation du système	Scorbut	Enfant:	35 à 60 mg
ou	Agrumes	immunitaire	Faible résistance aux	Adulte:	60 mg
Acide ascorbique	(Euf	Stimulation de la croissance	infections	Femme enceinte :	
hydrosoluble		du tissu conjonctif	Cicatrisation lente		
			Troubles du sommeil		
Vitamine D2	Foie de poisson		Rachitisme		$10 \text{ à } 20 \mu\text{g}$
ou Ergocalciférol		l'absorption intestinale du	du Carie dentaire		
liposoluble					
Vitamine E	Germe de blé	au transport	Dystrophie musculaire	Nourrisson:	5 mg
liposoluble	Légumes verts	des électrons	Avortement	Adulte:	10 à 25 mg
	Lait				
Vitamine K	Légumes verts	Catalyse la synthèse de	Troubles de la circulation		$45\mu \mathrm{g}$
liposoluble		plusieurs facteurs de la coagulation	sangume		
		0	Hemon agres		

Acides aminés

Nom et symboles	Méthionine Met M	† Acides aminé	Sérine Ser S	Thréonine Thr T	Cystéine Cys C	$\begin{array}{c} \text{Tyrosine} \\ \text{Tyr} \\ \text{Y} \\ \dagger \end{array}$	Asparagine Asp N	Glutamine Glu Q	Les valeurs d le pKa du grv pI est le poin Les acides an
Formule	Acides aminés à chaîne latérale R non polaire (hydrophobe sauf glycine) Glycine Glycine $\begin{bmatrix} 2,34 \\ \xi_{07} \end{bmatrix}$	<u> </u>	$\begin{array}{c} H \\ H_{3}C \longrightarrow C \longrightarrow$	H ₃ C H C C C C O O H ₃ C NH ₃ O	$\begin{array}{c} H_{j,C} \\ H_{j,C} \\ H_{j,C} \\ \end{array} \xrightarrow[NH_{j}]{H_{j,0}} $	$\begin{array}{c} H \\ H_{3}C - H_{2}C - HC - COO^{\Theta} \\ \downarrow \\ H_{3} & H_{4}^{\Theta} \end{array}$	$\begin{array}{c} H_2 \\ H_3 \\ N \\ N \\ M_2 \end{array} $	$\begin{array}{c} H \\ -CCOOO \\ NH_{\frac{1}{2}O} \end{array}$	H,C—C—COO
$_{ m Id}$	latéral 5 07	6,0	6,00	5,96	5,98	6,02	6,30	5,48	5,89
pKa_i	s chaîne 2,34	9,58	2,33	2,27 9,52	2,32	2,26 9,60	1,95 10,47	2,18	2,38 9,34
Nom et symboles	Acides aminés à Glycine	ĵ	Alanine Ala A	Valine Val V	Leucine Leu L	Isoleucine Ile I	Proline Pro P	Phénylalamine Phe F $\dot{\Gamma}$	Tryptophane Trp W

de pKa indiquées sont, dans l'ordre : le pKa du groupe acide, roupe amine, le pKa de la chaîne latérale.

minés essentiels sont indiqués par le signe $\dagger.$ int isoélectrique de l'acide aminé.

. ⊕000—

H3C-S-H2C-H2C-C

5,74

2,16 9,08

Formule

 Id

 pKa_i

NH₃⊕

és avec chaîne latérale R non chargée (hydrophile)

000-

H₃C

5,60

2,20

⊕. NH

но—_{Н2}с—<mark>с</mark>—соо

5,68

 $2,13 \\ 9,05$

⊕. HZ

. [⊕]0007—

HS—H2C—C

5,07

1,91 10,28 8,14

⊕. NH3

9000—

-H,C

유

5,66

2,24 9,04 10,10

⊕. NH3

___coo_

—H₂C

5,41

2,16

 H_2N

⊕. NH3

0003—E

—H2C—H2C—

5,65

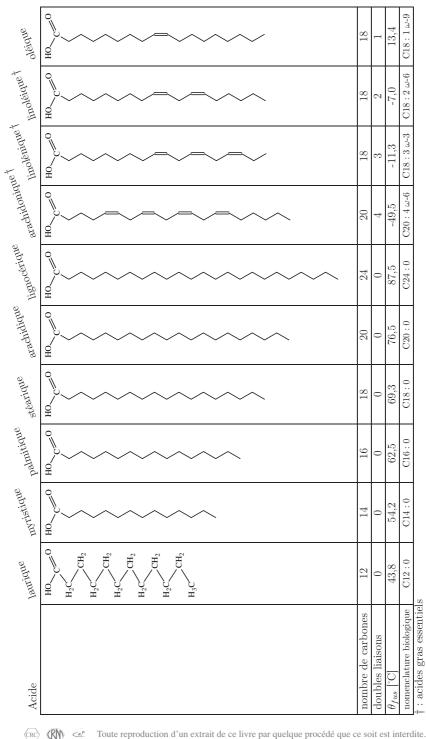
2,18 9,00

⊕. NH3

Acides aminés (suite)

Deux exemples de cofacteur

Hème	Heme A Home B R1 R2 CHO CHO CH1 R3 R4 R5 R1 R2 CH2 CH3 R3 R3 R3 R4 R4 R5 R5
Chlorophylle	$H_{5}C \xrightarrow{C_{CH}} H_{5}C \xrightarrow{C_{CH}} H_{5}C \xrightarrow{C_{CH}} H_{5}C \xrightarrow{C_{CH}} GH_{5}$ $G = C \xrightarrow{C_{CH}} G$
hile)*	H


Formule	Acides aminés à chaîne latérale R chargée négativement (acide, hydrophile)*	© 000—3——3——3——0	© H ₂ C H ₂ C C C C C C C C O ⊗ NH 9 O NH 9	Acides aminés à chaîne latérale R chargée positivement (basique, hydrophile)*	$\bigoplus_{\substack{\theta \text{ H}_N \\ \text{NH}_{\frac{1}{9}}}} \frac{\text{H}}{\text{H}_1^{10} \text{C} - \text{H}_2^{10} \text{C} - \text{H}_2^{10} \text{C} - \text{H}_2^{10} \text{C}} \oplus \sum_{\substack{\theta \text{ N} \\ \text{H}_{\frac{1}{9}}}} \frac{\text{H}}{\text{N}}$	$\begin{array}{c c} H & H_2N - C - HN - H_3C - H_3C - C - COO \\ \hline & M_1 & NH_2 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Iq	ine latérale I	2,77	3,22	ine latérale I	9,74	10,76	7,59	e (7,4), le coupe amine orme de es naturels
pKa_i	s à cha	1,95 9,66 3,71	2,16 9,58 4,15	s à cha	2,15 9,16 10,67	2,03 9,00 12,10	1,70 9,09 6,04	ologique et le gr sous la f les amin
Nom et symboles	Acides amine	Acide aspartique Asp D	Acide glutamique Glu E	Acides amine	$\begin{array}{c} \text{Lysine} \\ \text{Lys} \\ \text{K} \\ \dagger \end{array}$	Arginine Arg R	Histidine His H	Au pH physiologique (7,4), le groupe acide et le groupe amine sont ionisés sous la forme de Zwitterion. Tous les acides aminés naturels

 \ast formes ionisées lorsque le pH possèdent la configuration L.

se situe entre 6,0 et 7,0.

Acides gras

Les acides gras comportant une ou plusieurs doubles liaisons sont dits insaturés. Ces doubles liaisons sont en général de configuration cis (ou Z). $\dot{\lambda}$ p
H physiologique, les acides gras forment des anions carboxylates.

Lipides

Triglycérides

Dans un triglycéride, les trois acides gras peuvent être soit identiques soit différents.

Glycérol ou glycérine

Phospholipides

Les phospholipides sont formés d'une partie polaire (la choline, le groupe phosphate et le glycérol) ainsi que d'une partie non polaire (les deux acides gras). Le phospholipide représenté ici est une lécithine.

Autres lipides

Exemples: cires, sphingolipides, céramides, glycolipides (gangliosides et cérébrosides), cholestérol. Les hormones sexuelles (messagers chimiques) sont formées à partir du cholestérol.

Testostérone Progestérone
$$CH_3$$
 H_3C CH_3 H_4 CH_3 CH_3 H_4 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

Toute reproduction d'un extrait de ce livre par quelque procédé que ce soit est interdite.

Bases azotées

Pyrimidines

Purines

Désoxyribonucléotides particuliers

Adénosine 5'-triphosphate (ATP)

L'ATP, en se décomposant en ADP + 1 phosphate, libère $30.5~\rm kJ\cdot mol^{-1}.$ L'ATP est l'unité énergétique de la cellule.

$$\bigcirc O \qquad \bigcirc O \qquad \bigcirc O \qquad N = NH_2$$

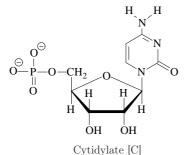
$$\bigcirc O \qquad P \qquad O \qquad N \qquad N$$

$$O = P \qquad O \qquad N$$

$$H_2C \qquad O \qquad N$$

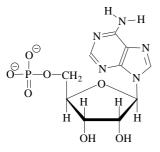
$$H \qquad H \qquad H$$

$$HO \qquad OH$$


Adénosine 5'-monophosphate cyclique (cAMP)

Le cAMP joue un rôle de molécule messagère intracellulaire. C'est un signal de faim.

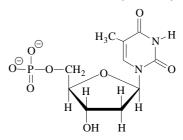
$$\begin{array}{c|c}
N & NH_2 \\
N & N \\
N & NH_2 \\
N & N \\$$


Nucléotides

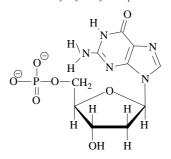
Ribonucléotides (ARN)

Uridylate [U]

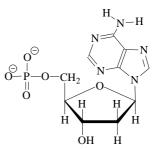
Guanylate [G]



Adénylate [A]


ARN en français = RNA en anglais

Désoxyribonucléotides (ADN)


Deoxycytidylate [C ou dC*]

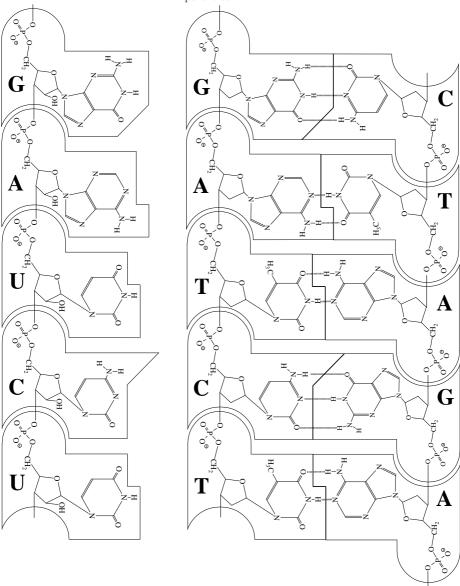
Deoxythymidylate [T ou dT*]

Deoxyguanylate [G ou dG*]

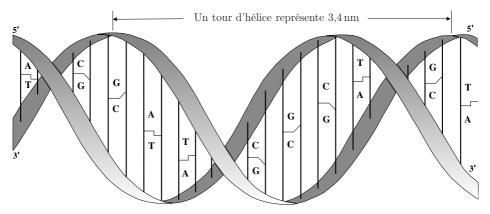
Deoxyadénylate [A ou dA*]

ADN en français = DNA en anglais

Toute reproduction d'un extrait de ce livre par quelque procédé que ce soit est interdite. 275


ARN et ADN

Simple brin d'ARN (acide ribonucléique)


Dans un brin d'ARN, les ribonucléotides sont liés par des liaisons covalentes (liaisons fortes).

Double brin d'ADN (acide désoxyribonucléique)

Dans chaque brin d'ADN, les désoxyribonucléotides sont liés par des liaisons covalentes (liaisons fortes). Les bases A et T ainsi que G et C sont complémentaires et liées par des ponts hydrogène. Les deux brins d'ADN sont antiparallèles.

La double hélice d'ADN

La torsion en hélice double rapproche et stabilise les paires de bases complémentaires.

1

Code génétique

Deuxième	position
Deament	position

		U	C	\mathbf{A}	G		
5′)	U	Phe (F) Phe (F) Leu (L) Leu (L)	Ser (S) Ser (S) Ser (S) Ser (S)	Tyr (Y) Tyr (Y) STOP STOP	Cys (C) Cys (C) STOP Trp (W)	U C A G	T_{r}
Première position (extrémité a	С	Leu (L) Leu (L) Leu (L) Leu (L)	Pro (P) Pro (P) Pro (P) Pro (P)	His (H) His (H) Gln (Q) Gln (Q)	Arg (R) Arg (R) Arg (R) Arg (R)	U C A G	Troisième position
Première posi	\mathbf{A}	Ile (I)	Thr (T) Thr (T) Thr (T) Thr (T)	Asn (N) Asn (N) Lys (K) Lys (K)	Ser (S) Ser (S) Arg (R) Arg (R)	U C A G	$({\rm extr\'emit\'e}\ 3')$
	G	Val (V) Val (V) Val (V) Val (V)	Ala (A) Ala (A) Ala (A) Ala (A)	Asp (D) Asp (D) Glu (E) Glu (E)	Gly (G) Gly (G) Gly (G) Gly (G)	U C A G	

* Met ou DÉPART

Un acide aminé est codé par un triplet de nucléotides appelé codon.

Index

U, 15	carboxylique, 257	d'un corps rond, 45
C, 6	désoxyribonucléique, 276	d'un polyèdre, 42
○, 5 ○, 5	D-glucuronique, 264	unité, 165
C, 5	folique, 267	ajustement
U, 5	glutamique, 270	par un polynôme, 100
∃, 4	gras, 272	par une droite, 99
∀, 4	essentiel, 272	alanine, 270
€, 5	insaturé, 272	alcool, 256, 257
⇔, 3	saturé, 272	aldéhyde, 257
\leftrightarrow , 3	hyaluronique, 265	aldohexose, 263
N, 6	panthothénique, 266	aldopentose, 263
π , 10	ribonucléique, 276	algorithme
∏, 15	acidité, 236, 239	de Heun, 101
Q, 6	action, 138	de Runge-Kutta (RK4),
R, 6	activité, 162	101
\Rightarrow , 3	additif alimentaire, 260	d'Euler, 101
\rightarrow , 3	addition de fonctions, 71	aliments, 260
5	adénine, 274	amide, 257
<, 5 < . 5 <	adénosine	amidon, 265
$\sum_{i=1}^{\infty}$, 14	5'-monophosphate	amylopectine, 265
×, 5	cyclique, 274	amylose, 265
Ø, 5, 103	5'-triphosphate (ATP), 274	amine, 257
V, 3	adénylate, 275	amortissement d'une dette,
∧, 3	adiabatique, 154	10
\mathbb{Z} , 6	admittance, 152	Ampère
,	ADN, 275–277	définition, 125
	affectation, 97	loi, 150
abondances cosmiques, 213	affinité, 27	Ampère-Maxwell, 151
abscisse, 53, 63	air sec, 197	angle
accélération	aire	de deux droites, 55, 64
angulaire, 131, 138, 139	d'un cercle, 41	de deux plans, 66
centre de masse, 137–139	d'un parallélogramme, 21,	de deux vecteurs, 51
instantanée, 130	52	de réflexion, 157
moyenne, 130	d'un polygone, 40	de réfraction, 157
normale, 131	d'un quadrilatère, 39	d'incidence, 157
pesanteur, 196	d'un secteur circulaire, 41	directeur d'une droite, 54
tangentielle, 131	d'un segment circulaire, 41	d'une droite et d'un plan,
N-acétylglucosamine, 264	d'un triangle, 37, 63	66
acide	sphérique, 34	solide
aminé, 270	d'une ellipse, 41	unité, 126
essentiel, 270	d'une surface, 86, 87	unité, 126
ascorbique, 267	latérale	anhydride, 257
aspartique, 270	d'un corps, 86, 87	année

lumière, 165, 189	Beer, 238	exinscrit, 37
sidérale, 197	Bernoulli, 62, 105, 143	inscrit, 37, 40
annuité, 10	Bézier, 98	cétohexose, 263
antirésonance, 152	biconditionnelle, 3	cétone, 257
antisymétrie d'une relation, 6	Bienaymé, 105	chaleur
aphélie, 192	Big Bang, 214	latente, 153
apothème, 40	bijection, 7	de fusion, 218, 222, 226,
application, 7	binôme de Newton, 8, 13, 98	230
bijective, 7	biotine, 267	de vaporisation, 218,
injective, 7	Biot-Savart, 150	222, 226, 230
linéaire,	bissection, méthode de, 97	massique, 153
surjective, 7	bissectrice de deux droites,	molaire, 154, 172
approximation	55	champ
de loi de probabilité, 109	boissons, 240	électrique, 145
du premier ordre, arabinose, 264	borne d'une fonction, 70	magnétique, 150 intensité, 173
arc		changement
de cubique, 98	c(A), 235	de base, 26
longueur, 86, 87	calcul	de variable, 81, 85
mineur, 33	algébrique, 13	charge, 145
Archimède, 62, 143	d'erreur, 96	élémentaire, 163
arginine, 270	différentiel,	test, 145
argument, 17	financier, 9	chimie
ARN, 275, 276	intégral,	organique (résumé), 259
messager, 277	matriciel, 23	chitine, 265
arrangement	calotte, 47	chlorophylle, 271
avec répétitions, 8	cAMP, 274	chlorure d'acyle, 257
simple, 8	candela, 125	cholestérol, 273
ascension droite, 33	capacité	circuit oscillant, 152
ascorbique, 267	d'un condensateur, 147	circulation, 150
asparagine, 270	d'un conducteur, 147	cire, 273
aspartate, 270	thermique, 153	cisaillement, 27
associativité	capital, 9	cissoïde de Dioclès, 62
d'une opération, 19	cardioïde, 62	cobalamine, 267
en logique, 4	Carnot, 154	code
en théorie des ensembles, 5	Cauchy, 90	E000, 260
astéroïdes, 198, 199	célérité, 155, 156	génétique, 277
astroïde, 60 asymptote,	cellulose, 265	codon, 277
d'une hyperbole, 59	Celsius, 153 centre	coefficient binomial, 7
atmosphère standard, 197	de gravité	de corrélation, 99, 110
ATP, 274	d'un arc de courbe, 86	de dilatation
auto-induction, 151	d'un corps, 86, 87	linéique, 217, 221, 225,
Avogadro, 163	d'un tétraèdre, 63	229
	d'un triangle, 36, 53, 63	volumique, 217, 221, 225,
	d'une surface, 86, 87	229
base	du cercle circonscrit à un	de frottement, 173
azotée, 274	triangle, 36	de température de la
faible, 237	céramide, 273	résistivité, 217, 221,
forte, 237	cercle, 41, 56, 60, 61	225, 229
orthonormée, 50	circonscrit, 38, 40	cofacteur, 271
Bayes, 104	équation cartésienne, 56	combinaison

avec répétitions, 9	d'une série, 90, 91	de deux plans, 66
simple, 9	à termes positifs, 90	de perpendicularité
combinatoire, 7	alternée, 91	de deux droites, 55
comète, 199	entière, 92	de deux plans, 66
commutativité	d'une suite, 89	du quotient (d'Alembert),
d'une opération, 19	conversion de taux, 10	90
en logique, 4	convexité d'une fonction, 70,	croissance d'une fonction, 70
en théorie des ensembles, 5	80	80
complémentaire, 5	coordonnées	cube, 42, 44
composante d'un vecteur, 49	cylindriques, 67	cubique, arc de, 98
composés	d'un point, 53, 63	cycloïde, 60
inorganiques, 246	polaires, 61	cylindre, 45
organiques, 256	sphériques, 67	cystéine, 270
composition de fonctions, 71	corps, 19	cytidylate, 275
concentration, 235	de révolution, 48	cytosine, 274
usuelle, 240	humain, 242	
conchoïde de Nicomède, 62	rond, 45	
condensateur, 147, 152	corrélation, 99, 110	d'Alembert, 90
conditions normales	cosinus, 29, 74	de Broglie, 161
pression, 163	hyperbolique, 72, 75	décapoise, 166
température, 163	cosmologie, 213	déclinaison, 33
conduction, 154	cotangente, 29, 74	degré, 29
conductivité thermique, 217,	hyperbolique, 72, 75	demi-vie, 162
221, 225, 229	cote, 63	dénombrement, 8
cône, 45	Coulomb, 145	densité de probabilité, 104
configuration électronique,	couple, 5	dépendance linéaire, 49, 52
245	acide-base, 239	déphasage, 152
conique,	redox	déplacement, 129
conjunction, 3	biologique, 242	dérivée,
conjugué, 18	inorganique, 241	d'une fonction,
constante	courant électrique	seconde d'une fonction, 78
Boltzmann, 153, 163	unité, 125	vectorielle, 81
d'acidité, 236, 239	courbe	Descartes, 60
de dissociation, 236, 239	de Bézier, 98	désintégration radioactive,
de Faraday, 238	de Lissajous, 61	182
d'équilibre, 235	plane,	désoxyribonucléique, 276
des gaz parfaits, 235	sous forme paramétrique,	désoxyribonucléotides, 274,
d'Euler, 11	80	275
Faraday, 163	sous forme polaire, 80	désoxyribose, 264
gaz, 153, 163	courbure, 80	déterminant, 21
gravitation, 163	covariance, 110	développement en série,
Planck, 161, 163	Cramer, 22, 23	différence, 5
Rydberg, 161, 163	critère	différentielle d'une fonction,
Stefan-Boltzmann, 154,	de comparaison, 90	78
161, 163	de convergence	diffraction, 156
constantes physico-chimiques	d'une série à termes	dilatation, 153
inorganiques, 246	quelconques, 91	Dioclès, 62
organiques, 256	d'une série alternée, 91	dioptre plan, 157
continuité d'une fonction, 77	de la racine (Cauchy), 90	directrice d'une conique, 57,
contraposition, 4	de l'intégrale, 91	59
convection, 154	de parallélisme	disaccharide, 264
convergence	de deux droites, 55	discriminant, 16

disjonction, 3	ellipsoïde, 47	trigonométrique, 32
distance	émission énergétique, 161	vectorielle
de deux droites, 64	énergie, 133, 147	d'un plan, 65
de deux points, 33	cinétique, 133, 134,	d'une droite, 54, 64
d'un point	137–139, 160	équations paramétriques
•	cinétique moyenne, 153	d'un plan, 65
à un plan, 65 à une droite, 55, 64	de dissociation, 243	
		d'une courbe, 59–61, 80
focale, 158	de l'électron, 161	d'une droite, 54, 60, 64
d'une conique, 59	de liaison, 181, 243	équilibre chimique, 235
distributivité	d'ionisation, 243	équivalence, 3
d'une opération, 19	du photon, 161	ergocalciférol, 266
en logique, 4	électronvolt, 166	erreur
en théorie des ensembles, 5	interne, 154	absolue, 96
divisibilité d'un polynôme,	mécanique, 133, 134	relative, 96
17	ordre de grandeur, 170	espace vectoriel, 19
division de fonctions, 71	potentielle, 133–135, 137	espérance, 104
dodécaèdre, 44	totale, 160	ester, 257
dose absorbée, 162	unité, 166	estimateur, 111
double hélice d'ADN, 277	ensemble,	estimation
droite,	de définition d'une	du reste d'ordre n
ajustement par une, 99	fonction, 69	(Taylor), 93
de régression, 99	de nombres, 6	d'une erreur absolue, 96
d'Euler, 36	image d'une fonction, 69	d'une erreur relative, 96
équation	vide, 5	estradiol, 273
cartésienne, 54	ensembles disjoints, 5	et, 3
vectorielle, 54	enthalpie	éther, 256, 257
équations	de combustion, 256	Euclide, 38
paramétriques, 54, 60	de dissolution, 246	Euler, 11, 17, 36, 44, 101
pente, 54	de formation, 237, 246, 256	algorithme, 101
	de réaction, 237	constante, 11
	entropie, 246	droite, 36
e, 10	épicycloïde, 61	formule, 17
$E^0, 238$	épreuves répétées	théorème, 44
eau	indépendantes, 105	événement, 103
de mer, 242	équation	évolution stellaire, 206
$K_e, 239$	caractéristique, 26, 88	excentricité d'une conique,
pH, 239	cartésienne	57, 59
écart type, 104, 111	d'un cercle, 56	excès sphérique, 34
éclairement, 176	d'un plan, 65	exitance énergétique, 161
écliptique, 193	d'une conique, 58	exoplanète, 204
effet Doppler, 156, 160	d'une droite, 54, 64	expansion de l'Univers, 213
Einstein, 159	d'une sphère, 67	exponentielle,
électrolyse, 238	de Nernst, 238	extremum, 70
électron	différentielle,	
masse, 163	sans second membre, 88,	
électronégativité, 219, 223,	89	F, 238
227, 231	du deuxième degré, 16	facteur
électronvolt, 127, 166	en coordonnées polaires, 58	d'actualisation, 9
élément	générale d'une conique, 58	de capitalisation, 9
d'un ensemble, 5	homogène, 88	de pondération
neutre d'une opération, 19	linéaire, 22	radiation, 162, 183
ellipse, 41, 57, 59, 60	polaire d'une courbe, 80	tissu, 162, 183

factorielle, 7 factorisation d'un polynôme,	semi-développée, 258 topologique, 258	Guldin, 48
16	foyer d'une conique, 57, 59	1 1 4 956 957
Faraday, 151, 238	fraction molaire, 235	halogénure, 256, 257
Fermat, 62	Fraunhofer, 176	hauteur d'un triangle, 36
flux, 145, 151	fréquence, 130, 155, 177	$\Delta H_c^0, 256$
folique, 267	propre, 156	$\Delta_{diss}H^0$, 246
folium de Descartes, 60	frottement	Heisenberg, 161
fonction,	dynamique, 173	hélice d'ADN, 277
bornée, 70	statique, 173	hème, 271
concave, 70	frottements, 136	Hertzsprung-Russel, 205
continue, 77	fructose, 263	Hess, 237
convexe, 70	fusion	Heun, 101
croissante, 70	hélium, 206	hexaèdre, 44
de répartition, 104	hydrogène, 206	hexose, 263
de répartition de la loi		aldohexose, 263
normale (tables), 114		cétohexose, 263
décroissante, 70	galactose, 263	$\Delta_f H^0$, 246, 256
dérivable, 78	galaxies, 210	histidine, 270
exponentielle,	Galilée, 159	homothétie, 27
graphe, 69	Gauss, 108, 145	hormone sexuelle, 273
hyperbolique, 72	gaz	Horner, 17
impaire, 69	constante, 163	Hubble, 210, 213 hyaluronique, 265
logarithme,	gaz parfaits, 156, 235	hydrocarbure, 256
majorée, 70	volume molaire, 163	hyperbole, 57, 59, 60
minorée, 70	géométrie	hypocycloïde, 61
monotone, 70	analytique	hypoténuse, 38
organique, 257	de l'espace, 63	nypotenuse, 30
paire, 69	plane, 53	
périodique, 69	classique, 35	i, 17
primitive,	vectorielle, 49	icosaèdre, 44
réciproque, 71	Girard, 34	identité remarquable, 13
d'une fonction	D-glucosamine, 264	image, 7
hyperbolique, 72	glucose, 263, 265	par une fonction, 69
d'une fonction	D-glucuronique, 264	imine, 257
trigonométrique, 71	glutamate, 270	impédance, 151, 152
réelle d'une variable réelle,	glutamine, 270	implication, 3
69	glycérine, 273	impulsion d'une force, 133
trigonométrique, 29	glycérol, 273	inclusion, 5
zêta de Riemann, 92	glycine, 270	incompatibilité, 103
force de pesanteur, 135	glycogène, 265	indépendance, 104
formule	glycolipide, 273	indice de réfraction, 157, 174
brute, 258	grade, 29	inégalité de
de Bernoulli, 105	Grand Attracteur, 212	Bienaymé-Tchébychev,
de Girard, 34	grand cercle, 33	105
de Lewis, 258	Grandi, 62	inférence, 3
de MacLaurin, 93	graphe d'une fonction, 69	injection, 7
de Moivre, 18, 72	gravitation, 135, 192	intégrale de Riemann, 84
de Stirling, 7	groupe, 19	intégration,
de Taylor, 93	Groupe Local, 211	numérique, 100
d'Euler, 17	guanine, 274	par changement de
développée, 258	guanylate, 275	variable, 81, 85

par linéarité, 81, 85	limite	magnétisme
par parties, 81, 85	de la dose, 184	unité, 166
par substitution, 81, 84, 85	d'une fonction, 76	magnitude, 191
intensité	linéarité de l'intégration, 81,	majorant, 70
du courant, 148	85	maltose, 264
lumineuse	lipide, 273	mannose, 263
unité, 125	Lissajous, 61	masse, 159
interactions fondamentales,	litre, 165	atomique, 165
181	logarithme,	unité, 127
intérêts	logique, 3	planètes, 200
composés, 9	loi	relativiste, 160
simples, 9	binomiale, 106, 109	unité, 125, 165
interférences, 155	de composition	volumique, 138, 167, 168,
interpolation, 98	externe, 19	216, 220, 224, 228, 246
intersection, 5	interne, 18	matière interstellaire, 209
de deux plans, 66	de De Morgan, 4, 5	matrice
intervalle, 6	de Faraday, 238	associée à une application
de confiance,	de Hess, 237	linéaire, 25
ionisation, 243	de Laplace-Gauss, 108, 109	carrée, 25
isoleucine, 270	de Poisson, 106, 109	de changement de base, 26
isotope	de probabilité	inverse, 25
naturel, 185	conjointe, 110	nulle, 24
radioactif, 187	continue,	opposée, 24
	discrète,	transposée, 24
	de Student, 112, 116	unité, 25
Joule, 148	du χ^2 de Pearson, 112, 115	maximum, 70
	exponentielle, 107, 109	MCU, 132
V 926 920	géométrique, 106, 109	médiane, 111
K_a , 236, 239	hypergéométrique, 106, 109	d'un triangle, 36
K_c , 235	normale, 109, 114	médiatrice d'un triangle, 36
kelvin, 125	centrée réduite, 105, 108,	méridien, 33
Kepler, 141, 192	109	mesure d'un angle, 29
khi-carré	de Laplace-Gauss, 108	météorites, 203
test, 113 kilogramme, 125	uniforme, 107, 109	méthionine, 270
Kirchhoff, 149	longitude, 33	méthode
K_p , 236	longueur, 159	de bissection, 97
K_s , 236, 246	d'onde, 155	de la sécante (regula falsi),
K_s , 250, 240	d'un arc, 33	97
	de cercle, 41	de la tangente (Newton),
lactose, 264	de courbe, 86, 87	97
Lagrange, 98	d'un segment, 53, 63	de Simpson, 101
Lambert, 191	unité, 125, 165	de variation de la
Lambert-Beer, 238	Longuezr d'onde de	constante, 88
lames à faces parallèles, 157	Compton, 163	des moindres carrés, 99
Laplace, 108, 150	Lorentz, 149, 159	des rectangles, 100
latitude, 33	losange, 39	des trapèzes, 100
lécithine, 273	luminosité, 191	d'intégration, 85
lemniscate de Bernoulli, 62	Lune, 198	du point fixe, 97
lentille, 158	lysine, 270	numérique
leucine, 270		de résolution d'une
L'Hospital, 77		équation, 97
limaçon de Pascal, 61	MacLaurin, 93	de résolution d'une

équation différentielle,	neutron	sur les matrices, 23
101	masse, 163	sur les nombres complexes,
d'intégration, 100	Newton, 8, 13, 97, 98	18
mètre, 125	binôme, 8, 13, 98	ordonnée, 53, 63
micron, 165	méthode de, 97	ordonnée à l'origine d'une
milieu d'un segment, 53, 63	niacine, 266	droite, 54
minimum, 70	Nicomède, 62	orthocentre d'un triangle, 36
minorant, 70	nitrile, 257	orthonormée, base, 50
miroir, 158	nitro, 257	ou, 3
mode, 111	niveau	oxydation, 238
module, 17	de confiance, 112	oxydo-réduction, 241, 242
moindres carrés, 99	sonore, 177	
Moivre, 18, 72	nœud, 165	
mole, 125	nombre	panthothénique, 266
moment	π , 10	parabole, 57, 59, 60
cinétique, 132, 134,	de diagonales d'un	paraboloïde, 47
137–139	polygone, 40	parallaxe, 189
d'inertie, 140	d'onde, 155	parallèle, 33, 148
d'une force, 132	d'or, 10, 35	parallélépipède, 21, 42, 52
monosaccharide,	e, 10	parallélogramme, 39
cyclisation, 263	nombres	paramètre d'une conique, 57,
positions α et β , 263	complexes, 6	59
Morgan, 4, 5	décomposition en premiers,	parité d'une fonction, 69
mouvement	120	parsec, 165, 189
central, 141	entiers, 6	particule
circulaire uniforme, 132	irrationnels, 6	fondamentale, 179
harmonique, 141	naturels, 6	intermédiaire, 180
périodique, 130	premiers, 119	partie, 5
rectiligne uniforme, 131	rationnels, 6	imaginaire, 17
rectiligne uniformément	réels, 6	réelle, 17
accéléré, 132	nomenclature, 255	Pascal, 8, 61
uniforme, 131	non, 3	Pearson, 112
uniformément accéléré, 131	norme d'un vecteur, 50, 51	pendule, 142
moyenne, 15, 111	noyaux	de torsion, 135, 142
arithmétique, 15	rayon, 161	physique, 142
d'une fonction, 85	nucléosynthèse, 206	simple, 142
d'une variable aléatoire,	nucléotide, 275	pente d'une droite, 54
104, 105	nutriment, 260	pentose, 263, 264
géométrique, 15		aldopentose, 263
harmonique, 15		périhélie, 192
pondérée, 15	obélisque, 43	périmètre d'un cercle, 41
quadratique, 15	octaèdre, 44	période, 130, 141, 142, 155,
MRU, 131	cestradiol, 273	190, 192, 201–203
MRUA, 132	Ohm, 148	de nutation, 197
MUA, 131	onde	de précession, 197
multiplication de fonctions,	électromagnétique, 176	de rotation du Soleil, 208
71	sonore, vitesse, 177	d'une fonction, 69
	opération,	trigonométrique, 30
	en logique, 3	orbitale, 192, 197, 199
négation, 3	interne, 18	orbitale des planètes, 200
de l'inférence, 4	sur les ensembles, 5	sidérale, 194, 197, 198, 200
Nernst, 238	sur les fonctions, 71	synodique, 194, 198, 200

périodicité d'une fonction, 69 trigonométrique, 30	pouvoir énergétique, 169 oxydant, 241, 242	pyramide, 43 pyridoxine, 267 pyrimidine, 274
perméabilité, 150, 163	réducteur, 241, 242	Pythagore, 11, 38
permittivité, 145, 163	pression, 143	quadruplet, 11
relative, 178	atmosphérique, 171	théorème, 38
permutation	critique, 178	triplet, 11
avec répétitions, 9	de saturation, 171	- '
simple, 9	partielle, 235	
petit cercle, 33	sonore, 177	quadrilatère, 39
pH, 236	unité, 166	circonscrit, 39
boissons, 240	primitive d'une fonction,	inscrit, 39
en fonction de T , 239	principe	quadruplet
liquides divers, 240	de non-contradiction, 3	de Pythagore, 11
phénylalanine, 270	du tiers exclu, 3	quantificateur
phospholipide, 273	prisme, 42	d'existence, 4
pK_a , 236, 239	probabilité,	d'universalité, 4
plan,	conditionnelle, 103	quantité
bissecteur de deux plans,	conjointe, 110	chimique, 235
66	totale, 104	de matière
équation	produit	unité, 125
cartésienne, 65	cartésien, 5	de mouvement, 132, 134,
vectorielle, 65	de deux matrices, 24	137, 138
équations paramétriques,	de solubilité, 236, 246	
65	d'une matrice par un	
polaire, 66, 67	nombre, 23	racine, 13
tangent à une sphère, 66	ionique, 236, 239	d'un nombre complexe, 18
planètes, 192, 200	mixte, 52	radian, 29, 126
point	scalaire, 50	radioactivité
fixe	vectoriel, 52	unité, 166
d'une fonction, 97	progestérone, 273	radioprotection, 183
méthode du, 97	projection, 27	raies d'absorption, 176
triple, 172	de Fischer, 258	raison d'une suite
Poisson, 106	de Newman, 258	arithmétique, 89
polaire d'un point, 56	orthogonale	géométrique, 90
polyèdre, 42, 44	d'un point sur un plan,	raisonnement par l'absurde,
polygone, 40	65	4
convexe, 40	d'un point sur une	rang d'un terme d'une suite,
régulier, 40	droite, 55, 64	89
polynôme,	d'un vecteur sur un	rayon
ajustement par un, 100	autre, 51	atomique, 219, 223, 227,
de degré $n, 16$	proline, 270	231
de Lagrange, 98	propagation d'une erreur, 96	atomiques, 244
du deuxième degré, 16	proposition, 3	covalent, 219, 223, 227, 231
polysaccharide, 265	proton	de convergence d'une série
position, 129, 137	masse, 163	entière, 92
angulaire, 138	puissance, 13, 133, 148, 152	de courbure, 80
potentiel, 147	d'un point, 41, 56, 67	de Van der Waals, 219,
de première ionisation,	ordre de grandeur, 170	223, 227, 231
219, 223, 227, 231	unité, 166	du cercle
redox, 241, 242	pulsation, 130, 155	circonscrit à un
standard, 238	purine, 274	polygone, 40

circonscrit à un triangle,	d'une équation	solubilité, 235, 246
36	différentielle, 101	gaz, 254
inscrit dans un polygone,	résonance, 152	sels et hydroxydes, 254
40	ressort, 135	solution tampon, 237
ioniques, 244	rétinol, 266	sommation, 14
rayon de Bohr, 163	riboflavine, 266	somme
rayonnement, 154	ribonucléique, 276	de deux matrices, 23
cosmologique, 213	ribonucléotides, 275	des angles d'un polygone,
réaction, 138	ribose, 263, 264	40
réactions	Riemann, 84, 92	d'une série convergente, 90
chimie organique, 259	rosace, 62	sous-ensemble, 5
réciproque, 7	rose de Grandi, 62	soustraction de fonctions, 71
rectangle, 39	rotation, 27	spectre, 161
rectangles, méthode des, 100	Runge-Kutta, 101	sphère, 46, 66
redox, 241, 242		équation cartésienne, 67
réduction, 238		sphingolipide, 273
de la biconditionnelle, 4	S, 235	spirales, 62
de l'inférence, 4	$S^0, 246$	statistique,
référentiel, 5	saccharose, 264	Stefan-Boltzmann, 191
réflexivité d'une relation, 6	Sarrus, 22	Steiner, 141
réfraction, indice, 174	satellite, 141, 202	stéradian, 126
règle	scalaire, 19	stéréoisomère, 263
de Cramer, 22, 23	schéma de Horner, 17	Stirling, 7
de dérivation, 78	sécante, méthode de la, 97	structure algébrique, 18
de Sarrus, 22	seconde, 125	Student, 112
régression linéaire, 99	secteur	test, 112
relation,	circulaire, 41	substitution, 81, 84, 85
antisymétrique, 6	sphérique, 46	sucre,
connexe, 6	section d'or, 35	suite,
de Viète, 16, 17	segment	convergente, 89
d'équivalence, 6	circulaire, 41	Superamas Local, 212
d'ordre, 6	sphérique, 47	surface
d'ordre total, 6	séquence principale, 204	aire, 86, 87
réciproque, 7	série,	centre de gravité, 86, 87
réflexive, 6	à termes positifs, 90	surjection, 7
symétrique, 6	alternée, 91	syllogisme, 4
transitive, 6	convergente, 92	symétrie, 27
rendement, 133, 169	de MacLaurin, 93	d'une relation, 6
rente, 10	de Taylor, 93	symétrique, 55, 64, 65
répartition naturelle des	divergente, 91	d'une opération, 19
éléments, 242	entière, 92	synodique
représentation	harmonique, 91	période, 194, 198, 200
de Cram, 258	alternée, 92	système d'équations
de Haworth, 258	sérine, 270	linéaires, 22
molécules organiques, 258	si , alors , 3	
représentation graphique	sidéral	
d'une fonction, 69	jour, 190	table de vérité, 3
résistance, 148	période, 194, 197, 198, 200	tangente, 29, 74
résistivité, 148, 178, 217,	Simpson, 101	à la courbe représentative
221, 225, 229	sinus, 29, 74	d'une fonction, 78
résolution numérique	hyperbolique, 72, 75	de pente m
d'une équation, 97	Soleil, 194	à un cercle, 56

à une conique, 59	fondamental du calcul	moyenne d'une fonction, 85
en un point	intégral, 84	propre, 26
à un cercle, 56	thiamine, 266	valine, 270
à une conique, 59	thiol, 257	Van der Waals, 153
hyperbolique, 72, 75	thréonine, 270	variable aléatoire, 104
méthode de la, 97	thymidylate, 275	centrée réduite, 105
tas de sable, 43	thymine, 274	continue, 104
taux d'intérêts, 9	tocophérol, 266	discrète, 104
Taylor, 93	tore, 47	variables aléatoires
Tchébychev, 105	transformation linéaire, 26	indépendantes, 104
température	transitivité d'une relation, 6	variance, 104, 105, 111
corps noir, 161	trapèze, 39	variation de la constante, 88
critique, 178	trapèzes, méthode des, 100	vecteur, 19
de fusion, 217, 221, 225,	travail d'une force, 133	défini par deux points, 53,
229, 246, 256	triangle,	63
d'ébullition, 217, 221, 225,	de Pascal, 8	directeur d'une droite, 54
229, 246, 256	équilatéral, 38	normal
effective, 191	quelconque, 32	à un plan, 65
unité, 125, 166	rectangle, 32, 38	à une droite, 54
temps, 129, 159, 190	sphérique	norme, 50 , 51
unité, 125	quelconque, 33	propre, 26
tension, 146	rectangle, 34	vergence, 158
terme d'une suite, 89	triglycéride, 273	Viète, 16, 17
Terre, 196	trigonométrie	viscosité, 168
test	plane, 29	unité, 166
de Student, 112	sphérique, 33	vitamine, 266, 268
d'hypothèse, 112	triplet, 5	hydrosoluble, 266
du χ -carré, 113	de Pythagore, 11	liposoluble, 266
du khi-carré, 113	tronc	vitesse, 130, 137, 155–157
testostérone, 273	de cône, 46	angulaire, 138
tétraèdre, 44, 63	de cylindre, 46	de libération, 141
Thalès, 35	de pyramide régulière, 43	unité, 165
théorème	tryptophane, 270	Voie Lactée, 208
central limite, 110	tyrosine, 270	volume
de Bayes, 104		d'un corps, 86, 87
de Guldin, 48		d'un corps de révolution,
de la hauteur, 38	union, 5	48
de la moyenne, 85	unité astronomique, 189	d'un corps rond, 45
de la probabilité totale,	unités	d'un parallélépipède, 21, 52
104	diverses, 165	d'un polyèdre, 42
de la valeur intermédiaire,	système international, 125	d'un tétraèdre, 63
77	univers, 5, 103	unité, 165
de L'Hospital, 77	uracile, 274	
de Pythagore, 38 de Thalès, 35	uridylate, 275	101
,		Wien, 161
des accroissements finis, 79 des cotangentes, 34	valeur	
des cotangentes, 54 d'Euclide, 38	absolue, 14	zéro
d'Euler, 44	énergétique, 260	d'un polynôme, 16
du cosinus, 32, 34	exacte d'une fonction	d'une fonction, 69
du cosmus, 32, 34 du sinus, 32, 34	trigonométrique, 30	zwitterion, 270
GG 511105, 52, 54	origonomourique, oo	27700011011, 210

8 (g)	He He	Ne 20,18	u	A ^{29,95}	uo	K 83,80	6	Rn * [222,02]	UU.0
(4p He:1p)	Helium	10	18 1		Argon	36 +2	54 Xe +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4	9 29	118 UUU [294]
	(3p 1c)	6 7	Fluo 17	2 55.45 25.45	+7 Chlore	35 Brome	53 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	* 85 At 1 [209,99]	* 117 WWS 1294]
	16 (2p 2c)	∞ 7 7 7	Oxygène 16	32.08 32.08	Soufre	34 S &	52 Te +4 127,60 +6 Tellure 2,4	84 PC +4 [208,9	116 * LV [293]
	(1p 3c)	7 5. S 14,01	15 Azote 2.7	15 P		33 AS +3 74.92 Arsenic 2.3	51 Sb -3 +5 121,76 Antimoine	83 +5 208,98 Bismuth	115 * UUP [289,19]
nts	4 (36)	_ 5,5			Silicium	32 Ge +4 72,63 Germanium	50 Sn +2 Sn +4 118,71 Etain 2,2	2 Pb	1 ←
Tableau périodique des éléments	2 (36) 3 (36) 4	2,0				31 Ga +2 Gallium Sallium	49 L + 2 + 3 + 114,82 L 1,8 Indium	31 T T T T T T T T T T T T T T T T T T T	# 113 # 5.17] [284,18]
<u>é</u>				12	IIB	30 Zn 12 65,38 Zinc 7,8	2 Cd	80 Hg +1 Hg +2 200,59 Mercure	11 0 12 12 13
es (7	I B	29 Cu +2 63,55 Cuivre	47 Ag +1 107,87 Argent	79 Au +3 196,97	∓ 28 21 1
Ö			:	9	VIII B	28 -2 E E E E E E E E E E E E E E E E E E E	4 1.4	78 Pt +2 Pt +4 195,08 Platine	110 * [281,16]
da			•	ဂ	VIII B	27 Cobalt	45 Rh 43 102,91 Rhodium	77	* 109 * S
po		l'élémen	ataires ns	∞	VIII B	26 Fe 55.85	44 +3 +4 101,07 +8 101,07 Ruthénium	76 +2 +3 +6 190,23 +8 0smium	108 ************************************
)ér		Symbole de l'élément Masse atonique Electronégativité (")		7	VIIB	25 +3 +4 +6 +6 54.94 +7 Manganèse	43 ** +7 [97,91] Technétium	75 Re +3 Re +4 186,21 +7 1,9 Rhénium	107 = ***********************************
an I	L	55,85 Fer 1,8	(2c) : deux électrons célibataires (3p) : trois paires d'électrons	9	VI B	24 Crowe Chrowe	42 MO +2 MO +4 95,96 +6 1,8 Molybdeine	> 3,84 1,7	106 * Sgj [271,13]
<u> </u>	mique 26	xydation +2 t en gras) +3 Nom	ļ	2	ΛB	23 V +3 V +4 50,94 +5 50,94 Vanadium	41 Nb +5 92,91 Niobium	73 Ta +5 180,95 Tantale	105 * 106 S
<u>a</u>	Numéro atomique	aux nombres d'oxydation (le plus fréquent est en gras) Nom	ı	4	IV B	22 T +2 4 47,87 Titane	40 Zr +4 91,22 Zirconium	72 Hf +4 178,49 178,49 1,3	104 **
	ž	Principaus (le l		,					
		±	,	က	III B	21 Scandium Scandium	39 +3 88,91 Yttrium	57 La +3 138,91 Lanthane	89 Ac
	7 (S) Y	4 Be	Béryllium	² Mg	1,4 Magnésium	20 Ca +2 40,08 Calcium	38 Sr +2 ST,62 Strontium	56 Ba +2 137,33 Baryum	88 Ra +2 [226,03]
~ (30)	+1 +101 = 2,2 Hydrogène		Lithium 11		Sodium	19 K +1 39,10 0,7 Potassium	37 Rb +1 85,47 Rb Rubidium	55 CS 132,91 Cosium 0.6	87 F * 1 +1 [223,02]

2

က

4

2

9

Ununseptium

Livermorium

[289,19] Ununpentium

[289,19] Flerovium

[284,18] Ununtrium

Copernicium

Roentgenium

Darmstadtium

Meitnerium

Hassium

Bohrium [270]

Seaborgium

Dubnium

Rutherfordium

[227,03] 1,1 Actinium

[223,02] 0,7 Francium

/

LF [262,11]

103 ç

-(102 NO)

+3 [258,10] Mendélévium

ę. [257,10]

ç

+3 [252,08]

+4 [251,08]

[247,07]

Berkélium

Curium

+5 [243,06] 1,3 Américium

Fm Fermium

9

66 7**?**

98 54.4

Cm. [247,07]

96 554

95 54 54 54

94 ** +4 PUI

[237,05]

Uranium

Protactinium

Thorium

Eléments entificiels

231,04

‡Φ

232,04

Gaz rares et inertes

transition Métaux e

Métaux

174.97

+2 +3 168,93 1,2 Ę

167,26

162,50 1,2 Dysprosium

+4 158,93 1,2 Terbium

157,25 1,1 Gadolinium

+3 151,96 1,1 Europium Ш

+2 +50,36 Samarium

51 Pm +3 [144,91] + Prométhium

144,24

140,91

140,12 Ce

4

86 5.4

Néodyme

1,1 Praséodyme

Cérium

90 4

ш

운 164,93 1,2 Holmium

89 ç

99 ဗ္

9 **5**4

g

ę.

_ ç

Sm

6

8 ç

23

Thulium

ç

es masses atomiques actualisées (2014) sont tirées du site http://www.webelements.com. L'astérisque (*) signifie élément radioactif (instable).

Classification et étiquetage des produits chimiques

Pictogrammes du Système Général Harmonisé (SGH). Le Système Général Harmonisé est appliqué selon le règlement européen CLP (Classification, Labelling and Packaging) en utilisant les pictogrammes suivants :

	SGH01 – Explosifs . Peuvent exploser au contact d'une flamme, d'une étincelle, sous l'effet de l'électricité statique, de la chaleur ou d'un choc.	Acide picrique.		
	SGH02 – Gaz, liquides et solides inflammables . Peuvent s'enflammer au contact d'une flamme, d'une étincelle, sous l'effet de l'électricité statique, de la chaleur, au contact de l'air ou de l'eau.	Diéthyléther, acétone, la plupart des hydrocarbures légers, sodium, hydrogène.		
	SGH03 – Gaz, liquides et solides comburants . Peuvent provoquer ou aggraver un incendie	Chlorate de sodium, acide nitrique, nitrate d'argent, fluor, peroxyde d'hydro- gène.		
	SGH04 – Gaz sous pression dans un récipient, peut exploser ou provoquer des blessures liées au froid.	Butane, azote liquide ou en bonbonne.		
	SGH05 – Substances ou mélanges corrosifs pour les métaux. Peuvent provoquer des irritations cutanées, et des lésions oculaires graves.	Tous les acides forts concentrés, hydroxyde de sodium, ammoniaque, hypochlorite de sodium.		
	SGH06 – Toxicité aiguë . Peuvent, même à faible dose, provoquer de graves intoxications ou entraîner la mort.	Chlore, brome, la plupart des produits portant le pictogramme SGH08.		
	SGH07 – Peuvent être irritants , provoquer des allergies, de l'eczéma, une somnolence, ou causer à forte dose une intoxication.	Acides et bases suffisamment dilués, iode, carbonate de sodium, sulfate de cuivre (II).		
	SGH08 – Peuvent entraîner de graves effets sur la santé . Produits cancérogènes, mutagènes ou toxiques pour la reproduction (CMT). Peuvent provoquer une insuffisance respiratoire.	Phénol, benzène, chloro- forme, composés du mer- cure, du plomb, chromates, chlorure de cobalt (II).		
¥2>	SGH09 – Toxiques pour les organismes aquatiques (poissons, algues, crustacés).	Permanganate de potassium, sulfate de cuivre (II), iode.		

Ces pictogrammes sont accompagnés :

- d'un avertissement DANGER (pour les plus dangereux) ou ATTENTION;
- d'une mention de danger, exemple : H221 Gaz inflammable;
- d'une mention de prudence, exemple : P321 Manipuler sous gaz inerte.

Constantes physiques (valeurs 2010)

Vitesse de la lumière dans le vide $c = 2.99792458 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$

Constante de gravitation universelle $G = 6.6738 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$

Constante de Planck $h = 6.62606957 \cdot 10^{-34} \text{ J} \cdot \text{s}$

Constante de Boltzmann $k = 1.3806488 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}$

Charge élémentaire $e = 1,60217657 \cdot 10^{-19} \text{ C}$

Masse au repos de l'électron $m_0 = 9.10938291 \cdot 10^{-31} \text{ kg}$

Masse au repos du proton $m_p = 1,67262178 \cdot 10^{-27} \text{ kg}$

Masse au repos du neutron $m_n = 1,67492735 \cdot 10^{-27} \text{ kg}$

Nombre d'Avogadro $N_A = 6,02214129 \cdot 10^{23} \text{ mol}^{-1}$

Volume molaire normal des gaz parfaits $V_0 = 22,413968 \cdot 10^{-3} \; \mathrm{m^3 \cdot mol}^-$

Constante des gaz parfaits $R = 8.3144621 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

Température normale (0 °C) $T_0 = 273, 15 \text{ K}$

Pression normale $p_0 = 1,01325 \cdot 10^5 \text{ Pa}$ Constante de Faraday $F = 9,64853365 \cdot 10^4 \,\mathrm{C \cdot mol^{-1}}$

Permittivité électrique du vide $\varepsilon_0 = 8.85418782 \cdot 10^{-12} \,\mathrm{A \cdot s \cdot V^{-1} \cdot m^{-1}}$

Perméabilité magnétique du vide $\mu_0 = 1,25663706 \cdot 10^{-6} \text{ V} \cdot \text{s} \cdot \text{A}^{-1} \cdot \text{m}^{-1}$

Constante de Stefan-Boltzmann $\sigma = 5,670373 \cdot 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$

Constante de Rydberg $R_{\infty} = 1,09737316 \cdot 10^7 \,\mathrm{m}^{-1}$

Rayon de Bohr $a_0 = 5,29177211 \cdot 10^{-11} \text{ m}$

Longueur d'onde de Compton $\lambda_C = 2,42631024 \cdot 10^{-12} \text{ m}$

