Aide-mémoire officiel pour Maths 213

• **Produit scalaire** Un espace vectoriel euclidien est un espace vectoriel réel de dimension finie muni d'un produit scalaire (i.e. une forme bilinéaire symétrique définie positive) qu'on note $\langle \ , \ \rangle$. Dans une base orthornormée il est donné par $\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=1}^{n} a_i b_i$. A partir de la norme le produit scalaire s'exprime

$$\langle \mathbf{a}, \mathbf{b} \rangle = \frac{1}{4} \left(\|\mathbf{a} + \mathbf{b}\|^2 - \|\mathbf{a} - \mathbf{b}\|^2 \right).$$

On a aussi

$\langle \mathbf{a}, \mathbf{a} \rangle = \ \mathbf{a}\ ^2$	$ \langle \mathbf{a}, \mathbf{b} \rangle \le \ \mathbf{a}\ \ \mathbf{b}\ $
	$\operatorname{proj}_{\mathbf{a}}(\mathbf{b}) = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\ \mathbf{a}\ ^2} \mathbf{a}$
$\langle \mathbf{a}, \mathbf{b} \rangle = \frac{1}{2} \left(\ \mathbf{a} + \mathbf{b}\ ^2 - \ \mathbf{a}\ ^2 - \ \mathbf{b}\ ^2 \right)$	$\langle \mathbf{a}, \mathbf{b} \rangle = rac{1}{2} \left(\ \mathbf{a}\ ^2 + \ \mathbf{b}\ ^2 - \ \mathbf{a} - \mathbf{b}\ ^2 ight)$

- Produits vectoriel et mixte dans \mathbb{R}^3 .
- 1.) Dans une base orthonormée d'orientation positive on a

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} \mathbf{e}_1 - \begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \end{vmatrix} \mathbf{e}_2 + \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \mathbf{e}_3$$

- 2.) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \langle \mathbf{a}, \mathbf{c} \rangle \mathbf{b} \langle \mathbf{b}, \mathbf{c} \rangle \mathbf{a}$
- 3.) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \langle \mathbf{a}, \mathbf{c} \rangle \mathbf{b} \langle \mathbf{a}, \mathbf{b} \rangle \mathbf{c}$
- 4.) $\langle \mathbf{a} \times \mathbf{b}, \mathbf{c} \times \mathbf{d} \rangle = \langle \mathbf{a}, \mathbf{c} \rangle \langle \mathbf{b}, \mathbf{d} \rangle \langle \mathbf{a}, \mathbf{d} \rangle \langle \mathbf{b}, \mathbf{c} \rangle$
- 5.) $\langle \mathbf{a} \times \mathbf{b}, \mathbf{c} \times \mathbf{d} \rangle = \langle (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}, \mathbf{d} \rangle$.
- 6.) Le produit mixte de trois vecteurs $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{V}^3$ est défini par $[\mathbf{a}, \mathbf{b}, \mathbf{c}] = \langle \mathbf{a} \times \mathbf{b}, \mathbf{c} \rangle = \langle \mathbf{a}, \mathbf{b} \times \mathbf{c} \rangle$ il est trilinéaire et est donné par le déterminant 3×3 formé par la matrice dont les colonnes sont les coefficients des 3 vecteurs.
- 7.) on a $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = [\mathbf{a}, \mathbf{b}, \mathbf{d}]\mathbf{c} [\mathbf{a}, \mathbf{b}, \mathbf{c}]\mathbf{d}$.
- Produits extérieur dans le plan. Dans le plan orienté \mathbb{R}^2 , le produit extérieur de deux vecteurs est

$$\mathbf{a} \wedge \mathbf{b} = \langle \mathbf{J}(\mathbf{a}), \mathbf{b} \rangle$$

où J est l'opérateur de rotation d'angle $\pi/2$ dans le sens positif.

• Courbes. Le vecteur vitesse d'une courbe γ de \mathbb{R}^n se note $\dot{\gamma}$ La vitesse est $V = V_{\gamma}(u) = ||\dot{\gamma}(u)||$ et l'abscisse curviligne depuis le point initial $\gamma(u_0)$ est

$$s(u) = \int_{u_0}^{u} V_{\gamma}(\tau) d\tau.$$

La formule de l'accélération est

$$\ddot{\gamma}(u) = \dot{V}\mathbf{T} + V^2\mathbf{K}$$

où $\mathbf{T} = \frac{1}{V}\dot{\gamma}$ et $\mathbf{K} = \frac{1}{V}\dot{\mathbf{T}}$ est le vecteur de courbure. La courbure de γ est la fonction scalaire $\kappa(u) = \|\mathbf{K}(u)\|$.

• Repère de Frenet. Si $\gamma(u) \in \mathbb{R}^3$ est C^3 et birégulière, le repère mobile de Frenet est le repère repère orthonormé direct d'origine $\gamma(u)$ et de base

$$\mathbf{T} = \frac{1}{V}\dot{\gamma}, \qquad \mathbf{N} = \frac{\dot{\mathbf{T}}}{\|\dot{\mathbf{T}}\|} = \frac{1}{\kappa}\mathbf{K}, \qquad \mathbf{B} = \frac{\dot{\gamma} \times \ddot{\gamma}}{\|\dot{\gamma} \times \ddot{\gamma}\|}.$$

La torsion est $\tau = \frac{1}{V} \langle \mathbf{B}, \dot{\mathbf{N}} \rangle$ et on a les équations de Serret-Frenet :

$$\frac{1}{V}\dot{\mathbf{T}} = \kappa\mathbf{N}, \qquad \frac{1}{V}\dot{\mathbf{N}} = -\kappa\mathbf{T} + \tau\mathbf{B}, \qquad \frac{1}{V}\dot{\mathbf{B}} = -\tau\mathbf{N}$$

On a aussi

$$\kappa = \frac{\|\dot{\gamma} \times \ddot{\gamma}\|}{V^3}, \qquad \tau = \frac{[\dot{\gamma}, \ddot{\gamma}, \dddot{\gamma}]}{\|\dot{\gamma} \times \ddot{\gamma}\|^2} = \frac{[\dot{\gamma}, \ddot{\gamma}, \dddot{\gamma}]}{\kappa^2 V^6}$$

Le vecteur de Darboux est le champ de vecteurs le long de γ défini par

$$\mathbf{D} = \tau \mathbf{T} + \kappa \mathbf{B}$$

• Surfaces paramétrée. Si $\psi:\Omega\to\mathbb{R}^3$ est une surface paramétrée, le repère mobile adapté est

$$\mathbf{b}_1 = \frac{\overrightarrow{\partial \psi}}{\partial u_1}(u_1, u_2), \quad \mathbf{b}_2 = \frac{\overrightarrow{\partial \psi}}{\partial u_2}(u_1, u_2), \quad \boldsymbol{\nu} = \frac{\mathbf{b}_1 \times \mathbf{b}_2}{\|\mathbf{b}_1 \times \mathbf{b}_2\|}$$

 $\mathbf{b}_1, \mathbf{b}_2$ engendrent le plan tangent à la surface au point $p = \psi(u_1, u_2)$ et $\boldsymbol{\nu}$ est vecteur normal. Si f(x, y, z) = 0 est une équation pour la surface alors on a aussi

$$u = \pm \frac{\overrightarrow{\nabla f}}{\|\overrightarrow{\nabla f}\|}.$$

Le tenseur métrique $G = (g_{i,})$ est la matrice de Gram de $\{\mathbf{b}_1, \mathbf{b}_2\}$, i.e. $g_{ij} = \langle \mathbf{b}_i, \mathbf{b}_j \rangle$. L'élément d'aire infinitésimale est

$$dA = \sqrt{g_{11}g_{22} - g_{12}^2} \cdot du_1 du_2 = \|\mathbf{b}_1 \times \mathbf{b}_2\| du_1 du_2$$

et l'élément de longueur infinitésimale est

$$ds = \sqrt{g_{11} \, du_1^2 + 2 \, g_{12} \, du_1 \, du_2 + g_{22} \, du_2^2}$$

• Repère de Darboux, courbures normales et géodésiques. Si γ est tracée sur la surface S, on note $\mu = \nu \times \mathbf{T}$. Le repère de Darboux est $\{\nu, \mathbf{T}_{\gamma}, \mu\}$. La courbure normale, la courbure géodésique et la torsion géodésique de γ sont définis par

$$k_n(u) = \langle \mathbf{K}_{\gamma}(u), \boldsymbol{\nu}(u) \rangle, \qquad k_g(u) = \langle \mathbf{K}_{\gamma}(u), \boldsymbol{\mu}(u) \rangle \qquad \text{et} \qquad \tau_g(u) = \frac{1}{V_{\gamma}(u)} \langle \dot{\boldsymbol{\nu}}(u), \boldsymbol{\mu}(u) \rangle.$$

Les équations de Darboux sont :

$$\frac{1}{V}\dot{\mathbf{T}} = k_g \boldsymbol{\mu} + k_n \boldsymbol{\nu}, \qquad \frac{1}{V}\dot{\boldsymbol{\nu}} = -k_n \mathbf{T} + \tau_g \boldsymbol{\mu}, \qquad \frac{1}{V} \ \dot{\boldsymbol{\mu}} = -k_g \mathbf{T} - \tau_g \boldsymbol{\nu}.$$

• Application de Weingarten et deuxième forme fondamentale. L'application de Weingarten L_p en un point d'une surface S est l'endomorphisme de T_pS défini par $L_p = d\nu_p$.

La deuxième forme fondamentale est la forme bilinéaire sur T_pS définie par $h_p(\xi,\eta) = -\langle L_p(\xi),\eta\rangle$. Les coefficients de h_p dans la base adaptée $\{\mathbf{b}_1,\mathbf{b}_2\}$ se calculent par :

$$h_{ij} = h(\mathbf{b}_i, \mathbf{b}_j) = \langle \boldsymbol{\nu}, \mathbf{b}_{ij} \rangle,$$

οù

$$\mathbf{b}_{ij} = \frac{\partial \mathbf{b}_j}{\partial u_i} = \frac{\partial^2 \psi}{\partial u_i \partial u_j}$$

Les coefficients de la matrice de l'application de Weingarten dans la même base sont définis par

$$L(\mathbf{b}_i) = \frac{\partial \boldsymbol{\nu}}{\partial u_i} = \ell_{1i} \mathbf{b}_1 + \ell_{2i} \mathbf{b}_2.$$

Pour calculer cette matrice il est commode d'utiliser la relation $\mathbf{H} = -\mathbf{GL}$, qui implique

$$\mathbf{L} = -\mathbf{G}^{-1}\mathbf{H}.$$

Les courbures principales, de Gauss et moyenne de S en p sont les valeurs propres, le déterminant et la demi trace de $-L_p$. Le point p est ombilique si les deux courbures principales coïncident en ce point.