Examen du cours MATH-213 Géométrie différentielle

Examen blanc pour l'entrainement

L'examen contiendra un certain nombre de questions à choix multiple. Pour chaque QCM, il n'y a qu'une réponse correcte. On compte +5 points pour une réponse correcte et -2 points pour une réponse fausse. Si vous ne savez pas répondre il faut l'indiquer (il ne vaut pas la peine de répondre au hasard).

QCM - 1 Calculer la torsion de la courbe

$$\alpha(u) = (e^u, e^{-u}, \sqrt{2}u).$$

Votre réponse :

$$\Box \ \tau(u) = \frac{\sqrt{2}}{4\cosh(u)^2}$$

$$\Box \tau(u) = -\frac{\sqrt{2}}{4\cosh(u)^2}$$

$$\Box \ \tau(u) = \frac{1}{2\sqrt{2}\cosh(u)^2}$$

$$\Box \tau(u) = -\frac{1}{2\sqrt{2}\cosh(u)^2}$$

 \square ne sais pas.

QCM - 2 Soit $\psi: \Omega \to S \subset \mathbb{R}^3$ une paramétrisation régulière d'une surface S de classe C^2 . On note $\mathbf{G} = (g_{ij})$ et $\mathbf{H} = (h_{ij})$ le tenseur métrique et la deuxième forme fondamentale. A quelle condition les lignes de coordonnées de S se coupent orthogonalement ?

(On rappelle que les lignes de coordonnées sont les courbes sur S définies par $u\mapsto \psi(u,v_0)$ et $v\mapsto \psi(u_0,v)$).

 $Votre\ r\'eponse$:

- \Box Il faut que $g_{1,2} = g_{2,1}$.
- \square Il faut que $h_{1,2} = 0$.
- \square Il faut que $g_{1,2} = 0$.
- \Box Il faut que $g_{1,2} = h_{1,2}$.
- \square Ne sais pas.

L'examen contiendra aussi des questions Vrai/Faux. On compte +2 points par réponse correcte et -1 par réponse fausse.

Exemple de question V/F.

Si γ est une géodésique d'une surface $S \subset \mathbb{R}^3$, alors sa courbure normale est nulle.

 \square VRAI

□ FAUX

Et l'examen contiendra des problèmes ouverts :

Problème 1.

On considère la courbe de $\gamma: \mathbb{R} \to \mathbb{R}^3$ définie par

$$\gamma(t) = (\cos(t) + t\sin(t), \sin(t) - t\cos(t), t^2).$$

- (a) Trouver le ou les points singuliers de cette courbe.
- (b) Calculer l'abscisse curviligne s = s(t) de cette courbe depuis le point initial $\gamma(0)$.

Pour les questions qui suivent on se restreint à t > 0.

- (c) Quels sont les points biréguliers de γ ?
- (d) Calculer le repère de Frenet $\{\mathbf{T}_{\gamma}(t), \mathbf{N}_{\gamma}(t), \mathbf{B}_{\gamma}(t)\}.$
- (e) Calculer la courbure et la torsion de γ .
- (f) Vérifier la troisième équation de Serret-Frenet pour cette courbe.

Problème 2

- (a) Rappeler à quelle conditions sur une courbe $\alpha: I \to \mathbb{R}^n$ on peut définir le cercle osculateur en un point donné $\alpha(s)$.
- (b) Rappeler la définition du cercle osculateur. Préciser dans quel plan ce cercle est contenu.
- (c) Comment trouve-t-on le centre c(s) et le rayon $\rho(s)$ du cercle osculateur en un point donné $\alpha(s)$ de la courbe?
- (d) Prouver le résultat suivant : $Si \ \alpha : I \to \mathbb{R}^2$ est une courbe plane C^2 dont la courbure est positive et monotone croissante, alors les cercles osculateurs C(s) à la courbe α sont emboîtés dans le sens suivant : $Si \ s_1 < s_2$, alors $C(s_2)$ est contenu dans le disque bordé par $C(s_1)$.

(Pour la question (d) on supposera que la courbe α est paramétrée naturellement).

Problème 3

- (a) Soient U un ouvert de \mathbb{R}^m et $f:U\to\mathbb{R}^n$ une application. Rappeler ce que signifie la différentiabilité (au sens de Frechet) de f en un point $p\in U$. Qu'appelle-t-on la différentielle de f en p?
- (b) Que signifie la condition "f est de classe C^k sur U"?
- (c) Qu'est ce que le Jacobien $J_f(p)$ de f en p. A quelle condition est-il défini?
- (d) Définir le rang de f en p.
- (e) A quelle condition dit-on que f est une submersion?
- (f) Énoncer soigneusement le théorème du rang constant.
- (g) Prouver que si f est de classe C^1 et si le rang de f est égale à r en p, alors le rang de f est plus grand ou égale à r dans un voisinage de p (cette propriété s'énonce en disant que la fonction $p \mapsto \operatorname{rang}(p)$ est semi-continue inférieurement).

Problème 4.

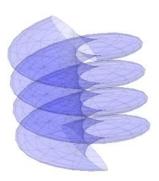
- (a) Définir l'application de Gauss d'une surface régulière orientable $S \subset \mathbb{R}^3$ de classe C^1 .
- (b) Supposons que la surface S est de classe C^2 . Prouver que la différentielle de l'application de Gauss de S en un point p définit un endomorphisme du plan tangent T_pS .
- (c) Comment s'appelle l'endomorphisme défini en (b) ?
- (d) Prouver que cet endomorphisme est auto-adjoint.
- (e) Expliquer pourquoi les valeurs propres de cet endomorphisme sont réelles. Comment appellet-on ces valeurs propres ?
- (f) Comment appelle-t-on la trace et le déterminant de cet endomorphisme?

Problème 5.

La sphère-helicoïde est la surface de \mathbb{R}^3 paramétrée par

$$\psi(u, v) = (\cos(v)\sin(u), \cos(v)\cos(u), u + \sin(v)).$$

Cette surface ressemble à ceci :



- (a) Calculer le tenseur métrique de cette surface paramétrée.
- (b) Que vaut l'élément d'aire dA?
- (c) Calculer la deuxième forme fondamentale de cette surface en un point $\psi(u,v)$.
- (d) Calculer la courbure de Gauss de cette surface en un point quelconque $p = \psi(u, v)$.

Problème 6.

Soit $\psi:\Omega\to\mathbb{R}^3$ une paramétrisation régulière de classe C^2 d'une surface $S\subset\mathbb{R}^3$ que l'on suppose coorientée. Pour $(u,v)\in\Omega$, on note $\nu(u,v)$ le vecteur unitaire normal à S en $\psi(u,v)$ correspondant à la coorientation choisie, puis on définit une application $f:\Omega\times\mathbb{R}\to\mathbb{R}^3$ par

$$f(u, v, t) = \psi(u, v) + t \cdot \boldsymbol{\nu}(u, v).$$

On dit que le point $q \in \mathbb{R}^3$ est un point focal de S associé au point $p = \psi(u, v) \in S$ (pour $(u, v) \in \Omega$) s'il existe $t \in \mathbb{R}$ tel que f(u, v, t) = q et la différentielle df est singulière en (u, v, t).

(a) Montrer que la différentielle de f au point (u, v, t) est l'application linéaire qui envoie le vecteur $\xi = \xi_1 \mathbf{e}_1 + \xi_2 \mathbf{e}_2 + \xi_3 \mathbf{e}_3$ sur

$$df_{(u,v,t)}(\xi) = \xi_1 (\mathbf{b_1} + tL(\mathbf{b_1})) + \xi_2 (\mathbf{b_2} + tL(\mathbf{b_2})) + \xi_3 \nu(u,v),$$

où $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ est la base canonique de \mathbb{R}^3 , $\{\mathbf{b}_1, \mathbf{b}_2\}$ est la base du plan tangent à la surface adaptée à la paramétrisation ψ et L est l'application de Weingarten.

- (b) Démontrer que les points focaux de S sont les points q = f(u, v, t) tels que 1/t est courbure principale de S en $\psi(u, v)$.
- (c) En déduire que pour tout point point $p \in S$ il y a au plus un nombre fini de points focaux associés. Quel est ce nombre maximal?
- (d) Trouver les points focaux à la surface d'équation

$$z = \frac{1}{2}(ax^2 + by^2)$$

associés au point p = (0, 0, 0).

Remarque : La proportion de QCM, Vrai-Faux et Problèmes ouverts de cet examen blanc ne correspond pas à la proportion de l'examen du 22 janvier.