Examen du cours MATH-213 22 janvier 2024 15h15-18h15

3.7		
Nom.		
Nom:		
110111		
	-	
Prénom:		
Pronom:		
I ICHOIII.		
	_	

- Posez votre carte d'étudiant sur la table.
- Ce cahier fait 14 pages. Vérifier que votre cahier est complet.
- Les feuilles de brouillon sont pour vos calculs, elles ne seront pas corrigées.
- Ne pas dégrafer le cahier !
- L'examen contient 15 questions, le total est de 100 points.
- Ne pas écrire au crayon, ni au stylo rouge.
- Documents autorisés: Un formulaire est distribué, aucun autre document n'est admis!
- Appareil électronique : Aucun, sauf autorisation de l'EPFL

- Pour les questions à choix multiple il n'y a qu'une réponse correcte. On compte +5 points pour une réponse correcte et -2 points pour une réponse fausse. Si vous ne savez pas répondre il faut l'indiquer (il ne vaut pas la peine de répondre au hasard).
- Pour les questions VRAI/FAUX, on compte on compte +2 points par réponse correcte et -1 pour chaque réponse qui n'est pas correcte.
- A la fin de l'examen, vous laisserez votre copie sur la table, ainsi que toutes les feuilles de brouillons.

10	11	12	13	14	15	Total	Note

Bon travail et bonne chance!

1 Questions à choix multiples

Pour chaque exercice de cette partie, il n'y a qu'une réponse correcte. Indiquez votre réponse en cochant la case correspondante. On compte +5 points pour une bonne réponse et -2 points pour une réponse fausse. Si vous ne savez pas répondre il faut cocher Ne sait pas, qui sera compté comme 0 point. Vous pouvez faire vos calculs sur les feuilles de brouillon (elles ne seront pas corrigées).

Exercice 1. [5 points.] Calculer la longueur ℓ de la courbe plane

$$\gamma(t) = \left(\frac{4}{3}t^{\frac{3}{2}}, t - \frac{1}{2}t^2\right), \qquad 0 \le t \le 2.$$

Réponse :

- \square $\ell = 5$
- $\square \ \ell = \frac{5}{2}$
- \square $\ell=3$
- \square $\ell=4$
- \square Ne sais pas.

Exercice 2. [5 points.] Soit $\Omega \subset \mathbb{R}^2$ un domaine du plan et $\psi : \Omega \to S \subset \mathbb{R}^3$ une paramétrisation régulière d'une surface de classe C^1 . Laquelle parmi les matrices suivantes, peut représenter le tenseur métrique de S en $u = (u_1, u_2) \in \Omega$?

- $\Box \ \mathbf{G} = \left(\begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right)$
- $\Box \ \mathbf{G} = \left(\begin{array}{cc} 2 & 1 \\ 1 & -1 \end{array} \right)$
- $\Box \quad \mathbf{G} = \left(\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array} \right)$
- $\Box \ \mathbf{G} = \left(\begin{array}{cc} 2 & -1 \\ 1 & 1 \end{array} \right)$
- \square Ne sais pas.

Exercice 3. [5 points.] Soit $\Omega \subset \mathbb{R}^2$ un domaine du plan et $\psi : \Omega \to \mathbb{R}^3$ une paramétrisation régulière d'une surface de classe C^2 . On suppose qu'en un point $u = (u_1, u_2) \in \Omega$, les dérivées de ψ sont données par

$$\mathbf{b}_1 = \frac{\partial \psi}{\partial u_1} = (2, 1, 0), \quad \mathbf{b}_2 = \frac{\partial \psi}{\partial u_2} = (1, 0, 0),$$

et

$$\mathbf{b}_{11} = \frac{\partial^2 \psi}{\partial u_1^2} = (2, 2, 1), \quad \mathbf{b}_{12} = \frac{\partial^2 \psi}{\partial u_1 \partial u_2} = (0, 1, 2), \quad \mathbf{b}_{22} = \frac{\partial^2 \psi}{\partial u_1^2} = (-1, 7, 1).$$

Calculer la matrice de la seconde forme fondamentale correspondant à la co-orientation définie par $\nu = \frac{\mathbf{b}_1 \times \mathbf{b}_2}{\|\mathbf{b}_1 \times \mathbf{b}_2\|\|}$.

- $\Box \ \mathbf{H} = \left(\begin{array}{cc} 1 & -2 \\ -2 & 5 \end{array} \right)$
- $\square \quad \mathbf{H} = \left(\begin{array}{cc} -1 & -2 \\ -2 & -1 \end{array} \right)$
- $\Box \ \mathbf{H} = \left(\begin{array}{cc} 5 & 2 \\ 2 & 1 \end{array} \right)$
- $\Box \ \mathbf{H} = \left(\begin{array}{cc} 2 & -1 \\ 1 & 1 \end{array} \right)$
- \square Ne sais pas.

Exercice 4. [5 points.] On considère la même surface paramétrée que dans l'exercice précédent. Calculer les courbures principales k_1, k_2 au même point $u = (u_1, u_2)$.

- $\Box k_1 = 1 \sqrt{12} \text{ et } k_2 = 1 + \sqrt{12}.$
- $\Box k_1 = -1 \sqrt{12} \text{ et } k_2 = -1 + \sqrt{12}.$
- $\Box k_1 = -1 \text{ et } k_2 = 3.$
- $\Box k_1 = -3 \text{ et } k_1 = 2.$
- \square Ne sais pas.

Exercice 5. [5 points.] Soient $S \subset \mathbb{R}^3$ une surface de classe C^2 et $\alpha, \beta: I \to S$ deux courbes, également de classe C^2 , tracées sur S. Supposons que α et β ont un contact d'ordre 1 en $t_0 \in I$. Que peut-on dire de leurs courbures normale et géodésique? \square En t_0 , les deux courbes ont même courbures normale et géodésique. \square En t_0 , les deux courbes ont la même courbure géodésique mais en général pas la même courbure normale. \square En t_0 , les deux courbes ont la même courbure normale mais en général pas la même courbure géodésique. □ Les deux courbes n'ont généralement ni la même courbure normale, ni la même courbure géodésique. \square Ne sais pas **Exercice 6.** [5 points.] Que vaut la torsion τ de la courbe γ définie par $\gamma(t) = (t + \log(t), t - \log(t), 2t - 1) \quad (0 < t < \infty)$? $\Box \ \tau = -1.$ $\Box \ \ \tau = 0.$ $\Box \ \ \tau = \frac{1}{t}.$ $\Box \quad \tau = -\frac{1}{t}.$ \square Ne sais pas **Exercice 7.** [5 points.] Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 telle que f(0) = 0 et f'(0) = 2. Sachant que le centre du cercle osculateur au graphe de f en (0,0) est le point c=(-2,1), quelle

- $\Box f''(0) = 5.$
- $\Box f''(0) = 1.$
- $\Box f''(0) = -5.$
- $\Box f''(0) = -1.$
- $\hfill\square$ Ne sais pas

2 Vrai ou Faux?

Pour chaque question dans cette partie , marquer (sans faire de ratures) la VRAI si l'affirmation est **toujours vraie** ou dans la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire, si elle est parfois fausse). On compte +2 points par réponse correcte et -1 point pour chaque réponse qui n'est pas correcte.

se coupent orth	$\subset \mathbb{R}^3$ une surface par	ant $p = \psi(u)$. Alors l	suppose que les lignes de coord matrice $\mathbf{G}(u)$ de la première	
	□ VRAI	□ FAUX	☐ Ne sais pas	
		atrice $\mathbf{L}(u)$ de l'appl e matrice symétrique.	ication de Weingarten d'une s	surface
	□ VRAI	□ FAUX	\square Ne sais pas	
Question 10. [Si deux surfaces courbure moyen	de \mathbb{R}^3 de classe C^2	sont intrinsèquement □ FAUX	isométriques, alors elles ont la □ Ne sais pas	même
	[2 points.] La cour où cette courbe est l		ourbe plane de classe C^2 n'est	définie
	□ VRAI	□ FAUX	□ Ne sais pas	
		st une géodésique d'u tant que courbe de R [:]	une surface $S \subset \mathbb{R}^3$, alors sa S (au signe près).	torsion
	□ VRAI	□ FAUX	□ Ne sais pas	

3 Questions ouvertes

Répondre dans l'espace dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse.

Problème 13. [22 points.]

On considère la surface $S \subset \mathbb{R}^3$ définie par l'équation y = z(x - z).

- (a) Prouver qu'il s'agit d'une surface régulière (i.e. une sous-variété) de classe C^{∞} de \mathbb{R}^3 .
- (b) Définir ce qu'est une surface réglée.
- (c) Prouver que S est une surface réglée.
- (d) Montrer que l'application $\psi: \mathbb{R}^2 \to \mathbb{R}^3$ définie par $\psi(u,v)=(u+v,uv,v)$ est une paramétrisation régulière globale de S.
- (e) Calculer le tenseur métrique associé à cette paramétrisation.
- (f) Calculer la deuxième forme fondamentale associée à cette paramétrisation.
- (g) Que vaut la courbure de Gauss de cette surface.

Vos réponses:

Problème 13, suite

Problème 13, suite

Problème 14. [15 points.]

Une courbe régulière $\gamma: I \to S$ tracée sur une surface régulière coorientée $S \subset \mathbb{R}^3$ de classe C^2 s'appelle une ligne asymptotique¹ si elle est de classe C^2 et son vecteur de courbure est tangent à la surface pour tout $t \in I$.

Prouver que les affirmations suivantes sont équivalentes:

- (a) La courbe γ est une ligne asymptotique de S.
- (b) La courbure normale k_n de γ est identiquement nulle.
- (c) $h(\dot{\gamma}(t), \dot{\gamma}(t)) = 0$ pour tout $t \in I$, où h est la seconde forme fondamentale de S.
- (d) En tout point de la courbe, le vecteur binormal de γ est égale, au signe près, au vecteur de coorientation de la surface.
- (e) Le plan osculateur à γ coïncide avec le plan tangent en S en chaque point de γ .

(Pour les points (d) et (e) on suppose que la courbe est birégulière).

Vos réponses :

¹La terminologie est justifiée par le fait que le vecteur vitesse d'une ligne de courbure est en direction d'une asymptote de l'indicatrice de Dupin, qui est l'ensemble des vecteurs $v \in T_pS$ tels que |h(v,v)| = 1 (mais ceci n'influence pas l'exercice).

Problème 14, suite

Problème 14, suite

Problème 15. [18 points.]

Répondre aux questions suivantes, en donnant des définitions précises et en justifiant soigneusement vos affirmations.

- (a) Définir la notion de sous-variété différentiable de dimension m dans \mathbb{R}^n .
- (b) Définir ce qu'est l'espace tangent T_pM à une sous-variété différentiable $M \subset \mathbb{R}^n$.
- (c) Démontrer que T_pM est un sous-espace vectoriel de \mathbb{R}^n . Quel est sa dimension ?
- (d) Démontrer que si M est une hypersurface définie par une équation régulière f=0, i.e. $M=\{x\in\mathbb{R}^n\mid f(x)=0\}$, alors

$$T_p M = \left\{ v = (v_1, \dots, v_n) \in \mathbb{R}^n \mid \sum_{i=1}^n v_i \frac{\partial f}{\partial x_i}(p) = 0 \right\}.$$

Vos réponses :

Problème 15, suite

Problème 15, suite