18.12.2024 Poisson Problem over 1R (cont.) 19.12.2024 Integral Equations

Application to the Poisson problem Poisson problem $-u''(x) + k^2 u(x) = f(x)$ we $\widetilde{f}[u](\alpha) = \frac{1}{\lfloor 2 + \alpha^2 \rfloor} \cdot \widetilde{f}[f](\alpha)$ We know from the FT tuble has the FT $\int_{\overline{11}}^{27} \frac{1}{L^2 + \lambda^2}$ $g(x) = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cdot \frac{1}{k} e^{-k|x|} \implies f(g)(a) = \frac{1}{k^2 + \kappa^2}$

$$f(u)(\alpha) = \frac{1}{k^2 + \alpha^2} f(f)(\alpha) = \left[f(g) \cdot f(f)(\alpha)\right]$$

Using the convolution theorem:

$$u(x) = \frac{1}{\sqrt{2\pi}} (g * f)(x)$$

Explicitly, with our particular choice of g:

$$u(x) = \frac{1}{2k} \left(e^{-k|\cdot|} * f(\cdot) \right) (x)$$

$$= \frac{1}{2k} \int_{-\infty}^{+\infty} f(y) e^{-k|x-y|} dy$$

This is a soneral solution formula for $-u''(x) + k^2 u(x) = f(x)$

over the real line. It is not necessarily the only solution but it will suffy

 $\lim_{x \to \pm \infty} u(x) = 0$

- . Major difficulty: community the convolution.
- . Similar techniques are possible for many other differential equations over IR.

IV Examples

(1) Cansidur the source term $f(x) = e^{-|x|}$

Using our solution formula, the differential equation $-u^{11}(x) + k^2 u(x) = f(x)$

hus the solution

 $u(x) = \frac{1}{2k} \int_{-\infty}^{+\infty} e^{-iy} e^{-k|x-y|} dy$

To compute the rutegral, we split it up and use case distinctions.

$$u(x) = \frac{1}{2k} \int_{0}^{\infty} e^{y} e^{-k|x-y|} dy + \int_{0}^{\infty} e^{-y} e^{-k|x-y|} dy$$

Because of |x-y| we make a case distincion.

Consider the case $\times > 0$.

$$u(x) = \frac{1}{2k} \int_{-\infty}^{\infty} e^{y} e^{-k(x-y)} dy + \frac{1}{2k} \int_{0}^{\infty} e^{-y} e^{-k(x-y)} dy$$

+
$$\frac{1}{2k} \int_{x}^{\infty} e^{-\gamma} e^{-k(\gamma-x)} d\gamma$$

$$= \frac{e^{-kx}}{2k} \int_{-\infty}^{\infty} e^{(k+1)y} dy + \frac{e^{-kx}}{2k} \int_{0}^{\infty} e^{(k-1)y} dy + \frac{e^{kx}}{2k} \int_{0}^{\infty} e^{(k+1)y} dy$$

$$= \frac{e^{-kx}}{2k} \int_{k+1}^{\infty} e^{-kx} \int_{k+1}^{\infty} e^{(k-1)y} dy + \frac{e^{kx}}{2k} \frac{e^{-(k+1)x}}{k+1}$$

$$= \frac{e^{-kx}}{2k} \int_{k+1}^{\infty} e^{(k-1)y} dy + \frac{e^{kx}}{2k} \frac{e^{-(k+1)x}}{k+1}$$

Still assuming $X \ge 0$, we make another case distinction. If k = 1, then

$$u(x) = \frac{e^{-x}}{4} + \frac{e^{-x}}{2} \cdot x + \frac{e^{-x}}{4}$$

$$= (1 + x) e^{-x}$$

We check the differential equation

$$u'(x) = \frac{e^{-x}}{2} - \frac{(1+x)e^{-x}}{2} = (-x)\frac{e^{-x}}{2}$$

$$u''(x) = -\frac{e^{-x}}{2} - (-x)\frac{e^{-x}}{2} = (x-1)\frac{e^{-x}}{2}$$

Plussing this in, we check easily

$$-u''(x) + u(x) = f(x), \qquad x \ge 0$$

(Exercise)

$$u(x) = \frac{e^{-kx}}{2k(k+1)} + \frac{e^{-kx}}{2k} \cdot \frac{e^{(k-1)x}-1}{k-1} + \frac{e^{-x}}{2k(k+1)}$$

We split the middle term

$$u(x) = \frac{e^{-kx}}{2k(k+1)} - \frac{e^{-kx}}{2k(k-1)} + \frac{e^{-x}}{2k(k-1)} + \frac{e^{-x}}{2k(k+1)}$$

$$= \frac{e^{-kx}(k-1)}{2k(k^2-1)} - \frac{e^{-kx}(k+1)}{2k(k^2-1)} + \frac{e^{-x}(k-1)}{2k(k^2-1)} + \frac{e^{-x}(k+1)}{2k(k^2-1)}$$

$$= -\frac{e^{-kx}}{k(k^2-1)} + \frac{e^{-x}}{(k^2-1)}$$

One checks that this sutisfies

$$-u''(x) + k^2u(x) = f(x), \quad x \ge 0$$

That completes the case $\times \geqslant 0$.

It remains to discuss the ause $\times \leq 0$ Instead of repeating the same computations, we take a short cut.

Recall that we study the proposed solution $u(x) = \frac{1}{2k} \int_{-\infty}^{+\infty} e^{-|y|} e^{-k|x-y|} dy$

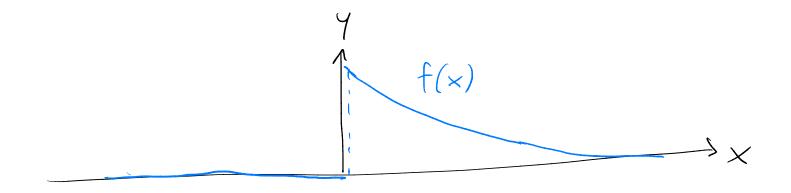
Suppose that x = -w for some positive w > 0. Then $u(x) = \frac{1}{2k} \int_{-\infty}^{\infty} e^{-|y|} e^{-k|-w-y|} dy$ $= \frac{1}{2k} \int_{-\infty}^{+\infty} e^{-|z|} e^{-k|-w+z|} dz$ = \frac{1}{7k}\int_{-\infty}^{+\infty}e^{-|2|}e^{-k|w-2|}dz

= u(w) = u(-x)

That means that u is an even function. Since u satisfies the differential equation for x>0, and so it must satisf the differential equation for x<0.

Lustly, we check that u(x) in this form is continuous at x=0, and so is its derivative.

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ e_{-x} & \text{if } x \ge 0 \end{cases}$$



The solution formula provides

$$u(x) = \frac{1}{2k} \int_0^\infty e^{-y} e^{-k|x-y|} dy$$

Here, the integral bounds slipplify because f(x) = 0 for negative x < 0.

To study this, we take a look at the case x < 0 first. Then |x-y| = y-x. for $y \ge 0$. Hence

$$u(x) = \frac{1}{2k} \int_0^{+\infty} e^{-y-k(y-x)} dy$$

$$= \frac{e^{kx}}{2k} \int_0^{+\infty} e^{-(k+1)y} dy = \frac{1}{2k} \frac{e^{kx}}{k+1}$$

We then check that for x < 0:

 $-u''(x) + k^2 u(x) = k^2 \frac{e^{kx}}{2k(k+1)} - k^2 \frac{e^{kx}}{2k(k+1)} = 0$

as desired. So the differential equation is satisfied for ×<0,

For x > 0, the integrand switches its form again at y = x and we need a case distinction for k=1 and $k \neq 1$.

Details ove not provided here. See exum veriew.

Integral Equations

We study integral equations of convolutional form $u(x) + \lambda \int_{-\infty}^{+\infty} K(x-y) u(y) dy = g(x)$

White differential equations involve derivatives, integral equations involve rategrals.

We will use Fourier trunsforms to solve them.

Here, $\chi > 0$ is a positive parameter, $\chi < 1$ is called the source term.

This equation can be written

$$u(x) + \lambda (K * u)(x) = g(x)$$

To find the unknown function u, we use the Fourier transform

$$\hat{u}(\alpha) + \sqrt{2\pi} \cdot \lambda \cdot \hat{k}(\alpha) \cdot \hat{u}(\alpha) = \hat{j}(\alpha)$$

We isolate û(a):

$$\left(\begin{array}{ccc} 1 & + & \sqrt{2\pi} \lambda \cdot \stackrel{?}{K}(\alpha) \end{array} \right) \hat{\mathcal{U}}(\alpha) & = & \hat{g}(\alpha)$$

$$\hat{u}(\alpha) = \left(1 + \sqrt{2\pi} \lambda \hat{K}(\alpha)\right)^{-1} \hat{g}(\alpha)$$

We can find u, if we are able to take the inverse Fourier transform

$$\hat{h}(\alpha) = \left(1 + \sqrt{2\pi} \lambda \hat{K}(\alpha)\right)^{-1}$$

we have

$$\hat{\mathcal{U}}(\alpha) = \hat{\mathcal{V}}(\alpha) \cdot \hat{\mathcal{G}}(\alpha)$$

Applying the inverse Fourier transform,

$$u(x) = \frac{1}{\sqrt{2\pi}} (h * g)(x)$$

Indeed

$$\hat{u}(x) = \frac{1}{\sqrt{2\pi}} (h * g)(\alpha)$$

$$= \frac{\sqrt{2\pi}}{\sqrt{2\pi}} \int_{\alpha}^{\alpha} (\alpha) \cdot \hat{g}(\alpha) = \hat{h}(\alpha) \hat{g}(\alpha)$$

Example We want the solution $u: |R \rightarrow R|$ of the integral equation $u(x) + 3 \int_{-1}^{+\infty} e^{-|T|} u(x - T) dT = e^{-|x|}$

Here,

$$\lambda = 3$$
, $K(x) = e^{-|x|}$, $g(x) = e^{-|x|}$

The relevant Fourier transforms are

$$\hat{|}(\alpha) = \hat{g}(\alpha) = \frac{1}{\sqrt{2\pi}} \frac{2}{1 + \alpha^2}$$

The convolution equation reads:

$$u(x) + 3((x+u)(x) = g(x)$$

FT:

$$\hat{u}(\alpha) + 3\sqrt{2\pi}(\hat{\tau}(\alpha) \cdot \hat{u}(\alpha)) = \hat{g}(\alpha)$$

We isolute û(x):

$$\hat{u}(\alpha) = \frac{1}{1 + 3\sqrt{2\pi} \, \mathcal{L}(\alpha)} \, \hat{g}(\alpha)$$

We simplify the last expression:

$$\frac{\hat{g}(\alpha)}{1+3\sqrt{2\pi}} = \frac{1}{1+\alpha^2}$$

$$\frac{1}{1+3\sqrt{2\pi}} \frac{2}{1+\alpha^2}$$

$$\frac{1}{1+\alpha^2}$$

$$= \frac{2}{\sqrt{2\pi}} \frac{1}{1+\alpha^2}$$

$$=\frac{2}{\sqrt{2\pi}}\frac{1}{1+\alpha^2+6}$$

$$=\frac{2}{\sqrt{2\pi}}\frac{1}{7+\alpha^2}$$

One checks that the last expression equals the FT of

$$u(x) = \frac{1}{17} e^{-\sqrt{7} \cdot |x|}$$

That solves the convolutional integral equation.

Remarks on convolutional tutegral equations:

- applications in physics, engineering, signal processing
- Typically, the shreve Fourier transform, possibly trusting the convolution theorem, is the most complicated
- If the denominator 1 + 252# 12(a) is zero for some frequency &, then the theory still applies in some circumstances but becomes more complicated

Review

Lines, surfaces, domains

- Pavametnizations of lines and sufaces

Lines: tangent vector

Domains in 2D: I tangent and outward pointing unit normal unit

Surfaces in 3D: unit tugent and normal along surface

Domains in 3D: outward pointing unit normal

- Line integrals of scalars of fall and vectors of the
- Surface integrals of scalers & f d6 and vectors & F d6
- The line/surface integrals depend on the parameterization: +
- If a surface has a boundary, the parametrization of the surface gives a parametrization of the boundy line: ±
- _ Integral theorems:
- 2D: Gouss & Green: $\iint div \vec{F} = \iint \vec{F} \cdot \vec{n}$, $\iint corl \vec{F} = \iint \vec{F} \cdot \vec{J}$
 - 3D: Gauss/divergence: \(\langle \frac{1}{2} \div \tilde{\tilde{F}} = \langle \frac{1}{2} \div \tilde{\tilde{F}} = \langle \frac{1}{2} \div \tilde{\tilde{F}} \d

Relevant différential operators: gradient, divergence, Laplacian, corl 20/30 existence of scalar potential for some vector field? - Potentials: $grad f = \overrightarrow{F} ?$ $corl \vec{F} = 0$ hecessary: and domain is simply-connected 11 1111 sufficient: or the integral of F along any line around a single hale equals zero.

IF a potentiel exists THEN you can compute via a like integral

Distribution theory

- . D is the rector space of smooth functions with compact support
- . D' is the space of distributions
- · A distribution is a linear function T: D -> IR sutisfying:

y (a,b) ∈ IR: 3 C>0, k∈ INo: Y φ∈ D, supp(φ) ∈ (a,b): |f(φ)| ≤ C \(\frac{\times}{\times}\) max 13 φ(x)|

. Examples: Dirac delta, Dirac comb, $T_f(\varphi) := f(\varphi) := \int f(x) \, \varphi(x) \, dx, \quad f \, (locally) \, integrable$

• Distributional derivative: $(\partial_x T)(\varphi) = -T(\partial_x \varphi)$

· important special case: distributional derivative of piecewise differentiable functions: piecewise derivatives + Dina Delta at jumps

Fourier sevies:

stundard form
$$Ff(x) = \frac{\alpha_0}{2} + \sum_{n \ge 1} \alpha_n \cos(\frac{2\pi n}{x}) + b_n \sin(\frac{2\pi n}{x})$$

couplex form
$$Ff(x) = \sum_{n \in \mathbb{Z}} c_n e^{-\frac{2\pi n}{T} \times i}$$

When f is even/odd, then the Fourier series is only a cosine/sine series, and coefficient formula simplifies (see exercise)

- when does the Fourier series converge?

 If yes, to what? - Dirichlet theorem:
- Parseval theorem

Background: orthogonality properties of sine/cosine modes

Fourier transform

Inverse FT
$$f'[\hat{f}](x) = \frac{1}{\sqrt{2\pi}} \int \hat{f}(\alpha) e^{i\alpha x} d\alpha$$

Linearity

. Interaction with derivatives

$$\mathfrak{F}[f,](\alpha) = i\alpha \, \mathfrak{F}[t](\alpha)$$

Interaction with convolution:

$$\mathcal{F}[f * g] = \int_{2\pi} \mathcal{F}[f] * \mathcal{F}[g]$$

$$\mathcal{F}[f * g] = \int_{2\pi} \mathcal{F}[f] * \mathcal{F}[g]$$

. Reminder: the convolution of $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$, $(f * g)(x) = \int f(x-y) g(y) dy = \int f(y) g(x-y) dy$ is linear in f and g, is associative and commutative.

Applications:

- Poisson problem $-u''(x) + k^2 u(x) = f(x)$ over an interval a < x < b using Fourier series
 - Divichlet boundary conditions: u(a) = ga, u(b) = gbsplit problem into $-u'' + k^2u = 0$ u(a) = ga, u(b) = gb u(a) = ga, u(b) = gbhomogeneous source term

 homogeneous BC

Take odd extension of f, develop Fourier series, relate Fourier coefficients of f with Fourier coefficients of u

- Neumann BC: u'(a) = 0, u'(b) = 0 use cosine series periodic BC: u(a) = u(b) use full Fourier series
- Extension to general differential equations

 Express the right-hand side as a Fourier series such that the BC are automatically satisfied (sine, cosine, full)

• Poisson problem $-u''(x) + k^2 u(x) = f(x)$ ever IR using Fourier transform

$$\Rightarrow -(i\alpha)^2 \hat{u}(\alpha) + k^2 \hat{u}(\alpha) = \hat{f}(\alpha) \qquad (FT \text{ equation})$$

$$\Rightarrow \hat{u}(\alpha) = (k^2 + \alpha^2)^{-1} \cdot \hat{f}(\alpha) \quad \text{(isolute } \hat{u}\text{)}$$

$$\Rightarrow u(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \left[(k^2 + \alpha^2)^{-1} \right] \times f(\alpha) \quad (inverse FT)$$

Knoming how to compute convolutions

. Convolutional integral equation: $u + \lambda(k * u) = g$

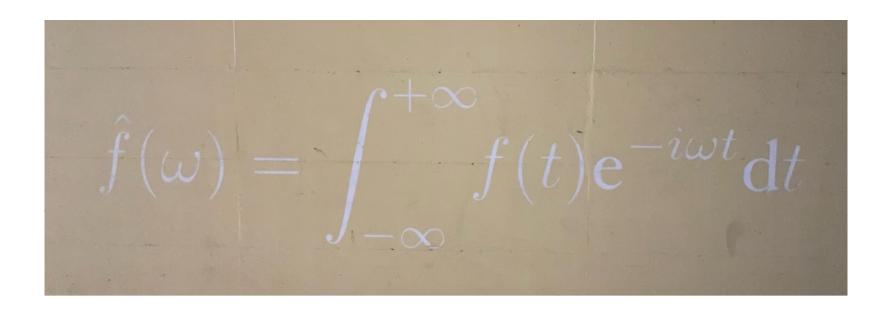
$$\Rightarrow \hat{u} + \hat{\lambda} \hat{k} * \hat{u} = \hat{g}$$
 (FT equation)

$$\Rightarrow \hat{u} = (1 + \lambda \hat{\kappa})^{-1} \cdot \hat{g} \qquad (isolate \hat{u})$$

$$\Rightarrow \hat{u} = \mathcal{F}^{-1}\left[(1+\lambda\hat{k})^{-1}\hat{g}\right] = \mathcal{F}^{-1}\left[(1+\lambda\hat{k})^{-1}\right] * \mathcal{G}$$
 (inverse FT)

Knowing how to find inverse FT or how to compute convolutions

There are many different conventions for the definition of the Fourier transform, without any overwhelming consensus.



Good Luck for your Exam