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Exercise 1

0 fzx<O
ReLU(z) = i
x if0<zx
0 if x <0
ReLU*(z) = ) fo where k € Ny
x if0 <z
—r —2 if —2<z<-—1
—22—-2z—-1 if —1<z<0
fle)y=q2?2 -2z +1 if0<z<1
2—x ifl<z<?2
0 otherwise
. T ife <0
j(x) = . :
1+z f0<zx

Here, employ the definition of distributional derivatives and check against the formula for piecewise
differentiable functions as obtained during lecture.

Solution 1 e For the ReLU function, we have for any ¢ € D(R),

(ReLU',¢) = —(ReLU,¢') = — /00 ReLU(z)¢(z)dz = — /000 x¢/ (x)dx = /000 ¢(x)dxr = (H, ¢),

where H is the Heaviside step function. Thus, we conclude that ReLU' = H in the sense of
distributions.

e Fork > 1, we find for any ¢ € D(R),
((ReLU%Y,¢) = —(ReLU*,¢') = — / b ReLU"(x)¢ (z)dx
=— /OO 2*¢ (z)dx = /OO kz*lo(x)dr = (kReLU* L, ¢).
0 0

Therefore, we conclude that (ReLU*) = kReLU*~! in the sense of distributions.



e For the function f, we have for any ¢ € D(R),

~1
(' 6) = —(f, ') = / (z +2)¢ (x)da

-2

0
z? 4 2z '(z)dx
+/_1( + 2z + 1)¢'(z)d

_ /1(3;2 — 2z + 1)¢/(z)dx
0
2
+/1 (v —2)¢' (v)dx
-1
—o(-1)- [ ola)da
0
+ ¢(0) — /1 2(x + 1)p(x)dx
1
+ ¢(0) —1—/0 2(x — 1)¢(z)dx
2
+ (1) — / o()da
-1 0
_ / (—1)6(x)dz + / (~2(z +1))p(x)de
-2

1 - 2
+ / 2(x — 1)¢(x)dx + / (=D o(x)dx + ¢(—1) 4+ 2¢(0) + ¢(1)
0 1
= (g+0_1+ 200 + 61, 9),
where the function g : R — R is defined as

1 if —2<z<-1
—2(x+1) if —1<x<0
g(z) = q2(x—1) if0<az <1
1 ifl<az<?2

0 otherwise

Hence, we conclude that f' = g+ 6_1 + 209 + 61. Note that this corresponds exactly to the
formula found during the lecture.

e For the function j, we have for any ¢ € D(R),

0 00
G 8) = (. d) = — / o (x)da / (1+ 2)¢ (2)dz



:/L¢@mx+ém¢mmx+dm

oo
— [ st@yiz + 900).
— 00
We conclude that 7' = 1+ §y. Note that we can also write j(x) = x + H(x), where H is the
heaviside function.
Exercise 2 Let f : R — R be a function with period 1 and
f(z) ==, 0<z<l.
Find the distributional derivative.

Solution 2 For a test function ¢ € D(R), we have
n+1
8y =—(fid)=-3 / (z — n)¢ (2)dz,

Here, we have used that the function looks like x — n over each interval (n,n — 1): over the
interval from n to n + 1, it looks like a linear function with slope 1 that equals 0 at x = n. Now,
use integration by parts:

-3/ e e = - Y [¢<n+ n- [

nez ne”L

n+1
:—Zgb(n-i-l)—i-z:/ ¢(z)dz

ne’l nez "

n+1
—-Y o+ Y [ ol

nez nez "

—=Y o+ [ o

neL

n+1

¢@m4

On a technical note, we notice that the sum only involves a finite number of terms and that the
integral is finite, too, because ¢ is smooth with compact support. Hence, we have the distributional
derivative equals the constant function 1 minus the Dirac comb.

fr=1-A,.

We observe that this accounts for the fact that f is a piecewise linear function with slope equal 1
on the intervals and with jumps —1 at each of the interval boundaries.

Exercise 3 Compute the Fourier coefficients of the function f that has period T' = 2w and satisfies
1 0<oe<m
)= {

0 m<ax<2r



Solution 3 We notice that the period T equals T = 2w. We have defined the first coefficient to
be just the average:
ap 1 [*7 1" 1

o _ = de=— | de=-.
5 ~ap ), J@Wdr=gn | dr=g

For the other coefficients, we use the formulas from the lecture:

2 [ 2
an f(zx) cos< 77;1:) dz

:%0

2 [T 2rnx d
= — cos T
27T 0 T

207 T . [2mnx\]*"
= — |—sin
2 | 21 T

=0

B 2 T . 2mnm in(0)
27w 271n St T St

2 27 . .
i — (sin (n7) — sin(0))

=0

because sin equals zero at integer multiples of w. For the sine mode coefficients, we calculate
stmilarly:

9 2

by, = o /. f(z)sin(nx) dx

1 s
= / sin(nz) dx
0

™

| [_ cos(nx)]x:ﬂ

n

1 ]0 ifn iseven
2 ifn is odd

Thus we find

7:0'5, alzagzﬂ-zo, (1)

and either b, = 0 if n is even and b, = % if n is odd.



Exercise 4 Compute the Fourier coefficients of the following functions, which have period T =1
and have the given values over the interval [0,1):

f(z) = 2
g(@) = (1 - )

h(z) = |sin(27z)|

Solution 4 e To compute the Fourier coefficients of f(z) = x*

period of 1, use the formulas from the lecture:

1
CLO:/Olf(av)dac:/0131326lac: [fL:;

For other coefficients, we apply integration by parts twice, and we use that sin vanishes at
multiples of 7:

over the interval [0,1) with a

2 1
ap = / 22 cos(2mna)dx
T Jo

2 [ osin(2mnz) ™™ 2/ 2z sin(2mnx)
=— |zt ———— - = | —————dx
T 2tn |, T Jo 2mn
2 [ ,sin(2mnz)]*=" 4 /1 sin( 27mat
T 2mn w0 TI'Jo 2t
2 [ ,sin(2rnz)]™=" 4 [ —cos(2mna)]*=" 4 / — cos(2mnx) d
=— |zt ———— - = |le———— = x
T | 2rn |,y T 42n? =0 T 472n?
2] ,sin(2mrna) ] = 4 [ —cos(2mnz) v=1 é —sin(2rnx) "
ST 2mn |, T Tz | T | e 20
1
T m2n?
9 [l
by, = / 22 sin(2mnz)dx
T Jo
2 2 =2 L ogcos(2
_2 xQCOS( mnx)|” n / x cos( an)dx
T 2mn w0 I'Jo 2mn
2 2 =yt 2
_2 332COS( mnx)|” n / x cos( ﬂnx)dx
T 2mn w0 TI'Jo 2mn



2 ,cos(2mnx) ] N 4 [ sin(2rnaz)]*™=' 4 /1 sin(27rnx)d

T — lza—=——+ - = | —=—"dz

T 27n oo T dm2n? | o T Jo 4nn?

2 ,cos(2mnx) ] = N 4 [ sin(2mna)]™" N 4 [cos(2mnaz)]*=!

2| 2ty |y il el St

T 27n weo T dm2n? | T | 8mnd |,
21 401 411

T2mn  T8mn3 T8mn3  mn

e We notice that the function g(x) = (1 —x)x can be written g(x) = x — f(x) over the interval

[0,1). In other words, g is the difference of the sawtooth function (which equals x over [0, 1)
and repeats with period T = 1), and the periodic function f(x) seen earlier.

We will only need to determine the Fourier coefficients of g(x) = x since we already computed
the Fourier coefficients of f(x). We calculate the average

g 1 1 291 1
%o _ / g(z)dxr = / rdx = Rl —.
2~ J 0 2|, 2

We calculate

2 1
/ x cos(2mnx)dx
T T
2 [ sin(2mnz)] ™" 2/ sin(2mnz)
— lz———= = | ———dx
T 2mn - T 2mn
_2 sm (2mnx) "™ g cos(2mna) ] =
T|" 2 T 47r n2 0
2 1
=Ty (sm(27m) - sm(O)) —|— T 47r2n2 (cos(27m) —cos(0))
=0
Lastly,
9l
b) = / x sin(27nx)dx
T Jo
2 2 =t 2 rleos(2
_2 {_xcos( wna:)] N / cos( mm)dx
T 2mn —0 TI'Jo 2mn
2 cos(2mnz) x:1+ 2 [sin(2mnz)]™"
= |-y R I S
T 2rn |, T | 4nn? | __,
211
T 21mn ™



0_7r2n2 m2n?
@ 1 1 1
2 2 3 6

e Note that h(x) is an even function. We first check that the sine modes are have coefficients
equal zero.

2 T
by, = / | sin(27zx)| sin(27wnz)dx
T 0
1
= 2/ | sin(27zx)| sin(27nz)dx
0

1 1
=2 /2 sin(27x) sin(27nx)dx — 2/ sin(27x) sin(2wnz)dx.
0 1

2

One possibility to proceed is via substitution in the second integral, setting x = y + % We
then find

1
2

1
/ sin(27z) sin(2mnz)dz

= /2 sin(2m(x 4+ 0.5)) sin(27n(x + 0.5))dz
0

-,

In the last step, we have used the symmetry properties of the sine function. Hence

N|=
=

sin(27x + 7) sin(2mna + mn)de = (—1)" /2 sin(27x) sin(2mrnx + mn)dx.
0

by =2 (1—(-1)"*h) /02 sin(2mz) sin(2mnx)dz.

If n is odd, then the last expression is already zero. Otherwise, if n is even, we want to show
that last integral is zero. We use the sum formula:

sin(27x) sin(27nx) = %cos(?w(n —1x) — %COS(27T(7’L + 1)x).

With that observation, we find

b, = ;/02 cos(2m(n — 1)x) — cos(2m(n + 1)z) dz
. 1 [Sin(Qﬂ(n —1)x) B sin(2m(n + 1)) z=3
2 2r(n —1) 2r(n+1)  |,_o



For x = 0, the two sine terms are already zero, and for r = %, the two sine terms are
evaluated at integer multiples of m and hence equal zero, too. We conclude that b, = 0.

Next, we calculate the average

1
a 2

o 1 [t 2 3. 2 -1 2
— == | sin 27z |dx = — sin2rxdr = — | =— cos2mz| = —.
2 T 0 T 0 T | 27 0 m

The coefficients a,, for the cosine modes with n > 1 are:
1
4 2
an = / sin 27z cos(2mnz)dx
T Jo
4/;1'2(1 ) + 2 sin 27 (n + 1)ad
= — —sin27(1 —n)x + = sin27(n xdx
T /)y 2 2

4/51'2( 1)z + - sin27(n + 1)ad
= — ——=S1mmzm{n — T — S1n Z2Zm(n xraxr
TJ), 2 2

_ [eos2nln = 1)a]"7F [ cos2n(n+ D]
B [ m(n—1) Lo " [ m(n+1) 0
(_1)71—1 B 1 B (_1)n+1 N 1
mn—1) #wn-1) =wn+1) =(n+1)
1= 1 (=

") T At )
14+ (=" n 1+ (=1)"

"m=1) T A1)

Therefore, when n > 1:

2

0, if n is odd,
n = 2 e
= ey B e if n is even,



