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Exercise 1 The Fourier transform of

f(x) = e−5x2

is the function

f̂(α) =
1√
10

e−
α2

20 .

Find the Fourier transforms of

f ′, f ′′, f ′′′, f ′′′′, g(x) = f(2x), h(x) = f(x− 3).

Solution 1 To evaluate the Fourier transform of the derivative of a function we will use the
following identity from the lecture:

F
(
f (n)

)
(α) = (iα)nF(f)(α)

We then find

� F (f ′) (α) = iαF(f)(α) = iα√
10
e−

α2

20

� F (f ′′) (α) = −α2F(f)(α) = − α2
√
10
e−

α2

20

� F (f ′′′) (α) = −iα3F(f)(α) = −iα3
√
10

e−
α2

20

� F (f ′′′′) (α) = α4F(f)(α) = α4
√
10
e−

α2

20

For the Fourier transform of g(x) we use the following identity from the lecture: g(x) = e−ibxf(ax)
has the Fourier transform ĝ(α) = 1

|a| f̂
(
α+b
a

)
, consequently:

F(g(x))(α) = F(f(2x))(α)

=
1

2
F(f(x))

(α
2

)
=

1

2
√
10

e−
(α2 )

2

20
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=
1

2
√
10

e−
α2

80

For the Fourier transform of h(x) we use a change of variables:

F(h(x))(α) =
1√
2π

∫ +∞

−∞
e−5(x−3)2e−ıxα dx

=
1√
2π

∫ +∞

−∞
e−5x2

e−ı(x+3)α dx

=
1√
2π

∫ +∞

−∞
e−5x2

e−ıxαe−ı3α dx

=
e−ı3α

√
2π

∫ +∞

−∞
e−5x2

e−ıxα dx

= e−ı3αF(f(x))(α)

=
e−ı3α

√
10

e−
α2

20 .

=
1√
10

e−
α2

20
−ı3α.

Exercise 2 Find f : R → R such that

f̂(α) =
3

1 + α2
+

−1

1 + 4α2
+

sin(4α+ 3)

4α+ 3

Solution 2 Because of the linearity property we can treat the inverse of each term in seperately.
Therefore First,

F−1

(
sin(4α+ 3)

4ar + 3

)
(x) =

1
4
1
4

F−1

sin
(
α+3/4

1
4

)
α+ 3

4
1
4

 (x)

=
1

4
e−i 3

4
x

√
π

2
F−1

(√
2

π

sin(α)

α

)(x
4

)
=

{
1
4

√
π
2 e

−i 3
4
x if − 4 < x < 4

0 else

Second,

F−1

(
3

1 + α2

)
(x) = 3

√
π

2
F−1

(√
2

π

1

1 + a2

)
(x)

= 3

√
π

2
e−|x|

2



Lastly,

F−1

(
−1

1 + 4α2

)
(x) = −

√
π

2
F−1

(√
2

π

1

1 + (2α)2

)
(x)

= −
√

π

2

1
2
1
2

F−1

√ 2

π

1

1 +
(

α
1
2

)2
 (x |

= −
√

π

2

1

2
F−1

(√
2

π

1

1 + α2

)(x
2

)
= −1

2

√
π

2
e−|

x
2 |.

Altogether this gives

f(x) =

{
−1

2

√
π
2 e

−|x2 | + 3
√

π
2 e

−|x| + 1
4

√
π
2 e

−i 3
4
x −4 ≤ x ≤ 4

−1
2

√
π
2 e

−|x2 | + 3
√

π
2 e

−|x| else

Exercise 3 We consider the Poisson problem with Dirichlet boundary conditions over the interval
[0, L]:

−∆u(x) = x2, 0 < x < L,

u(0) = 1, u(L) = 2

� Solve this problem directly. The solution is a polynomial of order 4.

� Extend the right-hand side f(x) = x2 to an odd function with period 2L and compute its
Fourier coefficients.

� Using these coefficients, find the Fourier series of the solution uf , which solves

−∆uf (x) = x2, 0 < x < L,

uf (0) = 0, uf (L) = 0.

How do you use the superposition principle to solve the full problem?

Solution 3 � According to the hint, u(x) must be of the form u(x) = ax4+ bx3+ cx2+dx+ e
for some coefficients a, b, c, d, e ∈ R. Inserting this ansatz into the Poisson equation and the
boundary conditions, we find the system of equations

u(0) = e = 1, (1)

u(L) = aL4 + bL3 + cL2 + dL+ e = 2, (2)
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−∆u(x) = −12ax2 − 6bx− 2c = x2. (3)

By matching the coefficients of the polynomials on the right- and left-hand side in (3), we
find

−12a = 1,

−6b = 0,

−2c = 0.

Hence, we have a = − 1
12 , b = 0, c = 0. Therefore, (2) simplifies to

− 1

12
L4 + dL+ 1 = 2,

from which we deduce that d = 1
12L

3 + 1
L . Thus, the solution to the Poisson problem is

u(x) = − 1

12
x4 +

(
1

12
L3 +

1

L

)
x+ 1.

� We define the odd extension of f(x) = x2 as the function f̃ with period 2L that satisfies

f̃(x) =

{
x2 if 0 ≤ x ≤ L,

−x2 if − L ≤ x < 0.

By construction, f̃ is an odd function with period 2L. Denote by ãn and b̃n the Fourier
coefficients of f̃ . We immediately have ãn = 0 for all n ∈ N because the function is odd.
Moreover, by some simple integration by parts

b̃n =
1

L

∫ L

−L
f̃(x) sin

(πn
L

x
)
dx =

2

L

∫ L

0
x2 sin

(πn
L

x
)
dx

= −2L2(2 + (−1)n((nπ)2 − 2))

(nπ)3
.

We conclude that

f̃(x) =
∑
n≥1

b̃n sin
(πn
L

x
)
=
∑
n≥1

−2L2(2 + (−1)n((nπ)2 − 2))

(nπ)3
sin
(πn
L

x
)
.

� To apply the superposition principle, we split the problem into two Poisson problems: on the
one hand,

−∆uf (x) = x2, 0 < x < L,

uf (0) = 0, uf (L) = 0,
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and on the other hand,

−∆ug(x) = 0, 0 < x < L,

ug(0) = 1, ug(L) = 2.

The full solution will be the sum of uf and ug.

We define

uf (x) = −
∞∑
n=1

b̃n
−π2n2/L2

sin (πnx/L) (4)

=
∞∑
n=1

b̃n
π2n2/L2

sin (πnx/L) . (5)

Differentation, distributed over the Fourier modes, now shows that

−∂xxu
f (x) = f(x). (6)

Additionally, uf satisfies the homogeneous Dirichlet boundary conditions.

We can find ug in a manner similar to the previous step. Since its second-derivative is zero,
ug must be a linear function over [0, L], having the form:

ug(x) = dx+ e. (7)

The boundary conditions now lead to ug(x) = 1
Lx+ 1

By the superposition principle, the solution to the original problem is

u(x) = uf (x) + ug(x). (8)

Exercise 4 Directly compute the solution of the problem

−∆u(x) = x2, 0 < x < L,

u(0) = 0, u(L) = 0,

using elementary analysis. Then find the Fourier coefficients of its odd extension to the interval
[−L,L]. Compare this with the function uf from the previous exercise.

Solution 4 As in the previous exercise, the solution must be of the form u(x) = ax4+bx3+cx2+
dx + e for some coefficients a, b, c, d, e ∈ R. Inserting this ansatz into the Poisson equation and
the boundary conditions, we find the system of equations

u(0) = e = 0, (9)

u(L) = aL4 + bL3 + cL2 + dL+ e = 0, (10)
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−∆u(x) = −12ax2 − 6bx− 2c = x2. (11)

By matching the coefficients of the polynomials on the right- and left-hand side in (11), we find

−12a = 1, −6b = 0, −2c = 0.

Hence, we have a = − 1
12 , b = 0, and c = 0. Therefore, (10) simplifies to

− 1

12
L4 + dL = 0,

from which we deduce that d = 1
12L

3. Thus, the solution to the Poisson problem is

u(x) = − 1

12
x4 +

1

12
L3x.

To check that this solution is equal to the one found in the previous exercise, we compute the
Fourier coefficients of the odd extension ũ of u to the interval [−L,L] defined by

ũ(x) =

{
u(x) if 0 ≤ x ≤ L,

−u(−x) if − L ≤ x < 0.

By definition, ũ is an odd function, and therefore the Fourier series takes the form

ũ(x) =
∑
n≥1

ũn sin
(πn
L

x
)
,

where ũn is the Fourier coefficient of the n-th cosine mode. We compute

ũn =
2

L

∫ L

0
u(x) sin

(πn
L

x
)
dx

=
2

L

∫ L

0

(
− 1

12
x4 +

1

12
L3x

)
sin
(πn
L

x
)
dx

= −2L4(2 + (−1)n)((nπ)2 − 2)

(nπ)5
.

Note that we have ũn =
(

L
πn

)2
b̃n, where b̃n is as in the previous exercise.

Exercise 5 We solve the Poisson problem with homogeneous Dirichlet boundary conditions over
[0, 1]:

−∆u(x) =

{
x if 0 < x ≤ 0.5
0 if 0.5 < x ≤ 1

, 0 < x < 1,

u(0) = 0, u(1) = 0
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� Extend the right-hand side f(x) to an odd function with period 2 and compute its Fourier
coefficients.

� Using these coefficients, find the solution u. Verify that the boundary condition u(0) =
u(1) = 0 is satisfied.

Solution 5 � We define the odd extension of f(x) as

f̃(x) =

{
f(x) if 0 ≤ x < 1,

−f(−x) if − 1 < x < 0.

As in the previous exercises, we find that

f̃(x) =
∑
n≥1

f̃n sin(πnx),

using that f̃ is odd. The Fourier coefficients of the sine modes are

f̃n = 2

∫ 1

0
f(x) sin(πnx)dx = 2

∫ 1
2

0
x sin(πnx)dx =

−πn cos(πn2 ) + 2 sin(πn2 )

(πn)2
.

One can check that

f̃n =

{
2

(πn)2
(−1)n, if n is odd,

− 1
πn(−1)

n
2 , if n is even.

� We define the solution in terms of its Fourier series:

u(x) = −
∞∑
n=1

f̃n
−π2n2

sin (πnx) =

∞∑
n=1

f̃n
π2n2

sin (πnx) . (12)

Clearly, u satisfies the homogeneous Dirichlet boundary conditions, and differentiation pro-
vides the desired differential equation

−u′′(x) = f(x). (13)

This shows that u solves the Poisson problem. Note that u is not in the form of a Fourier
series over the interval [0, L] but in the form of the Fourier series of its odd extension over
[−L,L]. The boundary conditions are satisfied because u is a Fourier sine series.

Exercise 6 Consider the following Fourier sine series for two functions u, f : R → R with period
T :

u(x) =
∞∑
n=1

bun sin

(
2πn

T
x

)
, f(x) =

∞∑
n=1

bfn sin

(
2πn

T
x

)
.

Express the Fourier coefficients of f by the Fourier coefficients of u, and vice-versa, express the
Fourier coefficients of u by the Fourier coefficients of f , if u and f are related by the following
differential equations:
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(a) −u′′(x) = f(x).

(b) u′′′′(x) = f(x).

(c) −u′′(x) + 25u(x) = f(x).

(d) u′′′′(x)− u′′(x) = f(x).

(e) −u′′(x) + γ · u′′(x) = f(x).

In the last item, γ ∈ R is a constant. For which values of γ can you always find a solution?

Solution 6 � We have

−u′′(x) = −
∞∑
n=1

bun

(
2πn

T

)2

sin

(
2πn

T
x

)
.

Matching coefficients leads to the relationships

bun

(
2πn

T

)2

= bfn, bun =

(
2πn

T

)−2

bfn.

� We have

u′′′′(x) =
∞∑
n=1

bun

(
2πn

T

)4

sin

(
2πn

T
x

)
.

Matching coefficients leads to the relationships

bun

(
2πn

T

)4

= bfn, bun =

(
2πn

T

)−4

bfn.

�

−u′′(x) + 25u =
∞∑
n=1

bun

(
−
(
2πn

T

)2

+ 25

)
sin

(
2πn

T
x

)
.

Matching coefficients leads to the relationships

bun

(
−
(
2πn

T

)2

+ 25

)
= bfn, bun =

(
−
(
2πn

T

)2

+ 25

)−1

bfn.

�

u′′′′(x)− u′′(x) =

∞∑
n=1

bun

((
2πn

T

)4

−
(
2πn

T

)2
)
sin

(
2πn

T
x

)
.

Matching coefficients leads to the relationships

bun

((
2πn

T

)4

−
(
2πn

T

)2
)

= bfn, bun =

((
2πn

T

)4

−
(
2πn

T

)2
)−1

bfn.
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�

u′′′′(x)− γ · u′′(x) =
∞∑
n=1

bun

((
2πn

T

)4

− γ ·
(
2πn

T

)2
)
sin

(
2πn

T
x

)
.

Matching coefficients leads to the relationships

bun

((
2πn

T

)4

− γ ·
(
2πn

T

)2
)

= bfn, bun =

((
2πn

T

)4

− γ ·
(
2πn

T

)2
)−1

bfn.

Remark: the second-order equation −u′′ = f , the Poisson problem, appears in many applications.
The fourth-order equation u′′′′ = f appears in the mathematical theory of elasticity, for example,
when modeling the bending of a one-dimensional stick under external force.

Exercise 7 Recall the definition of the Fourier transform:

F[f ](α) =
1√
2π

∫ +∞

−∞
f(t)e−itα dt (14)

Let a, b, c ∈ R be real parameters with a ̸= 0. Compute the Fourier transforms of the following:

g(t) = f(at), (15)

h(t) = e−itbf(t), (16)

m(t) = f(t− c). (17)

Hint: you have the first two in the lecture and in textbook. You can compute them using results
from the lecture or via some standard integral manipulations.

Solution 7 We write f̂(α) = F[f ](α) for the Fourier transform of α. To compute the Fourier
transforms of the given functions g(t), h(t), and m(t), we proceed as follows:

� Let ĝ(α) = F[g](α). By definition,

ĝ(α) =
1√
2π

∫ +∞

−∞
g(t)e−itα dt =

1√
2π

∫ +∞

−∞
f(at)e−itα dt.

We perform a substitution u = at, so du = |a| dt and t = u
a . This gives

ĝ(α) =
1√
2π

∫ +∞

−∞
f(u)e−iu

a
αdu

a
=

1√
2π

· 1
a

∫ +∞

−∞
f(u)e−iα

a
u du.

Recognizing the integral as the Fourier transform of f(t), we find:

ĝ(α) =
1

|a|
f̂
(α
a

)
,
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� Let ĥ(α) = F[h](α). Using definitions.

ĥ(α) =
1√
2π

∫ +∞

−∞
h(t)e−itα dt

=
1√
2π

∫ +∞

−∞
e−ibtf(t)e−itα dt =

1√
2π

∫ +∞

−∞
f(t)e−it(α+b) dt.

We recognizing the integral as the Fourier transform of f(t). Thus,

ĥ(α) = f̂(α+ b).

� Let m̂(α) = F[m](α). By definition,

m̂(α) =
1√
2π

∫ +∞

−∞
m(t)e−itα dt =

1√
2π

∫ +∞

−∞
f(t− c)e−itα dt.

We substitute u = t− c, so du = dt and t = u+ c. This gives

m̂(α) =
1√
2π

∫ +∞

−∞
f(u)e−i(u+c)α du =

1√
2π

∫ +∞

−∞
f(u)e−iuαe−icα du.

We pull out the factor out e−icα,

m̂(α) = e−icα · 1√
2π

∫ +∞

−∞
f(u)e−iuα du,

and recognize the last integral as the Fourier transform of f(t). In summary,

m̂(α) = e−icαf̂(α).
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