
Analysis III - 203(d)

Winter Semester 2024

Session 12: December 5, 2024

Exercise 1 Consider the following functions with period T :

� A function f with period T = 1 such that

f(x) =

{
1 if 0 ≤ x < 0.5
0 if 0.5 ≤ x ≤ 1

� A function g with period T = 2π such that

g(x) =

{
x if 0 ≤ x < π
2π − x if π ≤ x ≤ 2π

� A function h with period T = 1 such that

h(x) = −x if 0 ≤ x < 1.

Find the Fourier coefficients of the Fourier series of these functions. You can use the Fourier
series seen in the lecture to get the coefficients.

Solution 1 � As seen in the lecture we know the Fourier coefficients of a square wave,

l(x) =

{
1, if 0 ≤ x < 0.5

−1, if 0.5 ≤ x < 1
,

are given by:

an = 0 for n ≥ 0, bn =

{
0, if n is even
4
nπ , if n is odd

We can express the function f(x) in terms of l(x) as follows:

f(x) =
1

2
+

1

2
l(x)

therefore the Fourier coefficients of f are given by:

an =

{
1, if n = 0

0, if n > 0
, bn =

{
0, if n is odd
2
nπ , if n is even
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� As seen in the lecture we know the Fourier coefficients of a triangle wave,

m(x) =

{
2x, if 0 ≤ x < 0.5

2(1− x), if 0.5 ≤ x < 1

are given by:

a0 = 1, an =

{
− 4

n2π2 , if n is odd

0, if n is even
, bn = 0 for n > 0

We can express the function g(x) in terms of m(x) as follows:

g(x) = πm(
x

2π
)

therefore the Fourier coefficients of g are given by:

a0 = π, an =

{
− 4

n2π
, if n is odd

0, if n is even
, bn = 0 for n > 0

� As seen in the lecture we know the Fourier coefficients of a sawtooth wave,

n(x) = x for 0 ≤ x < 1

are given by:

a0 = 1, an = 0 for n > 0, an = − 1

nπ
for n > 0,

We can express the function h(x) in terms of n(x) as follows:

h(x) = −n(x)

therefore the Fourier coefficients of h are given by:

a0 = −1, an = 0 for n > 0, an =
1

nπ
for n > 0,

Exercise 2 Explicitly write down the coefficients an and bn and the periods of the following
Fourier series:

f(x) =
∞∑
n=1

1

(2n+ 1)2
sin(2π(2n+ 1)x),

g(x) =
∞∑
n=1

(−1)n

(2n− 1)3
cos(2π(2n− 1)x),

h(x) =
π

3
+

∞∑
n=1

(−1)n+1

n2
cos(πnx).

Determine the Fourier coefficients of the derivatives of those functions.
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Solution 2 � We substitute m = 2n+ 1 to obtain

f(x) =
∞∑

m=3
m is odd

1

m2
sin(2πmx),

therefore the Fourier coefficients are given by

am = 0 for m ≥ 0, bm =

{
1
m2 , if m is odd and m ≥ 3

0, otherwise

and the period is T = 1. The derivative of f(x) is given by:

f ′(x) =
∞∑

m=3
m is odd

2π

m
sin(2πmx),

therefore the Fourier coefficients of the derivative of f(x) are given by

bm = 0 for m ≥ 0, am =

{
2π
m , if m is odd and m ≥ 3

0, otherwise

� We substitute m = 2n− 1 to obtain

g(x) =
∞∑

m=1
m is odd

(−1)
m+1

2

m3
cos(2πmx),

therefore the Fourier coefficients are given by

bm = 0 for m > 0, am =


(−1)

m+1
2

m3 , if m is odd and m ≥ 1

0, if m is even and m ≥ 1

0 if m = 0

and the period is T = 1. The derivative of g(x) is given by:

g′(x) =

∞∑
m=1

m is odd

−2π(−1)
m+1

2

m2
sin(2πmx),

therefore the Fourier coefficients of the derivative of g(x) are given by

am = 0 for m ≥ 0, bm =


−2π(−1)

m+1
2

m2 , if m is odd and m ≥ 1

0, if m is even and m ≥ 1

0 if m = 0
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� the Fourier coefficients are given by

bn = 0 for n > 0, an =

{
2π
3 , if n = 0

− (−1)n

n2 , if n > 1

and the period T = 2. The derivative of h(x) is given by:

h′(x) =
∞∑
n=1

−π(−1)n+1

n
sin(πnx),

therefore the Fourier coefficients of the derivative of h(x) are given by

an = 0 for n ≥ 0, bn = −π(−1)n+1

n
, for n > 0

Exercise 3 Let f(x) be a periodic function with period T , represented by its Fourier series:

f(x) =
a0
2

+
∞∑
n=1

(
an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

))
.

As explained in the lecture,∫ x

x0

f(x)dx =
a0
2
(x− x0) +

∞∑
n=1

an

∫ x

x0

cos

(
2πnx

T

)
dx+ bn

∫ x

x0

sin

(
2πnx

T

)
dx.

Complete this discussion and find the Fourier series of a function g(x) such that∫ x

x0

f(x) = cx+ g(x)

for some c ∈ R.

Solution 3 We first compute ∫ x

x0

a0
2

dt =
a0
2
(x− x0).

We integrate the sign and cosine terms, using the fundamental theorem of calculus:∫ x

x0

cos

(
2πnt

T

)
dt =

T

2πn

(
sin

(
2πnx

T

)
− sin

(
2πnx0
T

))
.

∫ x

x0

sin

(
2πnt

T

)
dt = − T

2πn

(
cos

(
2πnx

T

)
− cos

(
2πnx0
T

))
.
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Combining all terms, the integral F (x) becomes:

F (x) =
a0
2
(x− x0) +

∞∑
n=1

an
T

2πn

(
sin

(
2πnx

T

)
− sin

(
2πnx0
T

))
− bn

T

2πn

(
cos

(
2πnx

T

)
− cos

(
2πnx0
T

))
.

We rewrite this once again and obtain

F (x) =
a0
2
x− a0x0

2
+

∞∑
n=1

(
(−an)

T

2πn
sin

(
2πnx0
T

)
+ bn

T

2πn
cos

(
2πnx0
T

))

+
∞∑
n=1

(−bn)
T

2πn
cos

(
2πnx

T

)
+ an

T

2πn
sin

(
2πnx

T

)
.

We thus obtain c = a0
2 and the Fourier coefficients of the function g:

A0

2
:= −a0x0

2
+

∞∑
n=1

(
(−an)

T

2πn
sin

(
2πnx0
T

)
+ bn

T

2πn
cos

(
2πnx0
T

))
An := (−bn)

T

2πn

Bn := an
T

2πn

This completes the discussion.

Exercise 4 Suppose that f : R → R and g : R → R are functions. Recall that a function is called
even if

f(−x) = f(x)

and odd if

f(−x) = −f(x)

� Show that if f and g are both odd or both even, then fg is even

� Show that if one of f and g is odd and the other is even, then fg is odd.

� Show that the only function that is both odd and even has constant value zero.

Solution 4 � If f and g are both even, then

f(−x)g(−x) = f(x)g(x),

and if both are odd, then

f(−x)g(−x) = (−1)2f(x)g(x) = f(x)g(x),

so fg must be an even function.
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� Suppose that f is even and that g is odd. Then

f(−x)g(−x) = f(x)g(−x) = −f(x)g(x),

showing that fg is an odd function. The same is true if we switch the role of f and g.

� Suppose that f is both odd and even. Then

f(x) = f(−x) = −f(x)

for each x ∈ R. But the only number that equals its negative is zero. So f(x) = 0 for each
x.

Exercise 5 Compute the Fourier transform of the function

f(x) =

{
x if 0 ≤ x < 1
0 otherwise

You can either directly use the complex exponential, or you can express it in terms of the sine and
cosine function.
(Interpretation: the function f(x) describes a localized signal: it is zero at x = 0, then it rises
linearly up to 1, and then it jumps back to zero and remains zero from there on. The signal is not
periodic.)

Solution 5 We write down the solution in two different ways, either using the complex exponential
directly, or writing it as a sum of sine and cosine.

F(f)(α) =
1√
2π

∫ ∞

−∞
f(x)e−iαxdx

=
1√
2π

∫ 1

0
xe−iαxdx

=
1√
2π

[
x

−iα
e−iαx

]1
0

− 1√
2π

∫ 1

0

1

−iα
e−iαxdx

=
1√
2π

[
x

−iα
e−iαx

]1
0

+
1√
2π

∫ 1

0

1

iα
e−iαxdx

=
1√
2π

[
x

−iα
e−iαx

]1
0

+
1√
2π

[
1

α2
e−iαx

]1
0

=
1√
2π

1

−iα
e−iα +

1√
2π

(
1

α2
e−iα − 1

α2

)
=

1√
2π

(
i

α
e−iα +

1

α2
e−iα − 1

α2

)
=

1√
2π

(
i

α
cosα+

1

α
sinα+

1

α2
cosα− i

α2
sinα− 1

α2

)
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Next we do it in terms of sine and cosine functions.

F(f)(α) =
1√
2π

∫ ∞

−∞
f(x)e−iαxdx

=
1√
2π

∫ ∞

−∞
f(x)(cosαx− i sinαx)dx

=
1√
2π

∫ ∞

−∞
f(x) cosαxdx− i

1√
2π

∫ ∞

−∞
f(x) sinαxdx

We evaluate each integral seperately.∫ 1

0
x cos(αx)dx =

[x
α
sinαx

]1
0
−

∫ 1

0

1

α
sinαxdx

=
[x
α
sinαx

]1
0
+

[
1

α2
cosαx

]1
0

=
1

α
sinα+

1

α2
cosα− 1

α2

∫ 1

0
x sin(αx)dx =

[
−x

α
cos(αx)

]1
0
+

∫ 1

0

1

α
cos(α(x)dx

=
[
−x

α
cos(αx)

]1
0
+

[
1

α2
sinαx

]1
0

= − 1

α
cosα+

1

α2
sinα

All together we have:

F(f)(α) =
1√
2π

∫ ∞

−∞
f(x)e−iαxdx

=
1√
2π

(
1

α
sinα+

1

α2
cosα− 1

α2
+ i

1

α
cosα− i

1

α2
sinα

)
Exercise 6 Find the Fourier transform of

f(x) =

{
sin(x) if 0 ≤ x ≤ 2π
0 otherwise

Solution 6 We try to perform integration by parts

F(f(x))(α) =
1√
2π

∫ 2π

0
sinxe−iαxdx
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=
1√
2π

[
sinx

e−iαx

−iα

]2π
0

+
1√
2π

∫ 2π

0

cosx

iα
e−αixdx

=
1√
2π

∫ 2π

0

cosx

iα
e−αixdx

=
1√
2π

[cosx
a2

e−iαx
]2π
0

+
1√
2π

∫ 2π

0

sinx

α2
e−iαxdx

=
1√
2πα2

(
e−2πiα − 1

)
+

1

α2

1√
2π

∫ 2π

0
sinxe−iαxdx

It seems we have obtained the term that we started with. However,

1√
2π

∫ 2π

0
sinxe−iαxdx =

1√
2πα2

(
e−2πiα − 1

)
+

1

α2

1√
2π

∫ 2π

0
sinxe−iαxdx

can be rearranged to(
1− 1

α2

)
1√
2π

∫ 2π

0
sinxe−iαxdx =

1√
2πα2

(
e−2πiα − 1

)
.

It follows that

1√
2π

∫ 2π

0
sinxe−iαxdx =

(
1− 1

α2

)−1 1√
2πα2

(
e−2πiα − 1

)
=

(
α2 − 1

α2

)−1 (e−2πiα − 1
)

√
2πα2

=
α2

α2 − 1

(
e−2πiα − 1

)
α2

√
2π

=

(
e−2πiα − 1

)
√
2π (α2 − 1)

which is the desired Fourier transform.

Exercise 7 (Extra) We have introduced the Fourier transform

F(f)(α) :=
1√
2π

∫ ∞

−∞
f(x)e−iαxdx

Different authors define the Fourier transform alternatively by:

F2(f)(ξ) :=

∫ ∞

−∞
f(x)e−i2πξxdx, F3(f)(ω) :=

∫ ∞

−∞
f(x)e−iωxdx.

Express F2(f) and F3(f) in terms of F(f).
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Solution 7 Obviously,

F3(f)(ω) =
√
2πF(f)(ω).

For the other transformation, we write:

F2(f)(ξ) =

∫ ∞

−∞
f(x)e−i2πξxdx =

√
2π · 1√

2π

∫ ∞

−∞
f(x)e−i2πξxdx =

√
2π · F(f)(2πξ).
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