
Analysis III - 203(d)

Winter Semester 2024

Session 5: October 10, 2024

Exercise 1 Consider a curve u in one-dimensional space with

u : [1, 2] → R, t 7→ t2 + t

Verify that the curve is simple, differentiable, and regular. Compute the curve integral
∫
u f dl,

where

f : R → R, x → 3x3

is the scalar field.

Solution 1 This is just a fancy way of describing integration by substitution from Analysis I. We
first verify that the curve is simple, differentiable, and regular.

� The curve is simple if it does not intersect itself. This means that u(t1) ̸= u(t2) for t1 ̸= t2.
In this case, the curve u(t) = t2 + t is a strictly increasing function on the interval [1, 2].
We conclude that the curve is simple.

� We see that the curve is differentiable because its only component is differentiable.

� The curve is regular because the derivative u̇(t) = 2t+ 1 is not zero over the interval (1, 2).

The curve integral of f over Γ is given by∫
u
f dl =

∫ 2

1
f(u(t)) |u̇(t)| dt =

∫ 2

1
3(u(t))3 |2t+ 1| dt =

∫ 2

1
3(t2 + t)3 |2t+ 1| dt.

We have |2t+ 1| = 2t+ 1 over the interval [1, 2]. Hence∫
u
f dl = 3

∫ 2

1
(t2 + t)3(2t+ 1) dt.

This integral can be computed using standard methods of integration. One straight-forward but
technical solution is to just expand the polynomial that we integrate. However, a simpler method
uses substitution:∫

u
f dl =

3

4

∫ 2

1
4(t2 + t)3(2t+ 1) dt =

3

4

∫ 2

1
∂t(t

2 + t)4 dt =
3

4
(t2 + t)4|t=2

t=1 =
3

4

(
64 − 24

)
. (1)

This simplifies to ∫
u
f dl =

3

4
· 24

(
34 − 1

)
=

3

4
· 16 · 80 = 3 · 320 = 960. (2)
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Exercise 2 (vector analysis in 1D) Let Ω ⊆ (a, b) be an open interval in one-dimensional
space.

� Explain why there cannot be a simple closed continuous curve in Ω.

� When Ω = (−10, 10), compute the integral of the scalar field

f(x) =
x√

1 + x2

along the curves

γ1 : [0, 1] → Ω, t 7→ (2t− 1),

γ2 : [−1, 1] → Ω, t 7→ (t),

γ3 : [0, 1] → Ω, t 7→ (1− 2t),

γ4 : [0, 1] → Ω, t 7→ (−1 + 2t5),

Compute the tangent vectors γ̇(t).

� Compute the integral of the vector field

F (x) =
(
xex

2
)

(3)

along the curve γ4. Find a potential for this vector field, and write down the general form
of all potentials.

Solution 2 This is content of Analysis 1 but repackaged in the manner of vector analysis.

� It is visually clear that any closed continuous curve in Ω would have to intersect itself.
Formally, one can use the intermediate value theorem.

� Before we compute all the line integrals, we note that the curves γ1, γ3, and γ4 map the
interval [0, 1] to the interval [−1, 1]. Hence, we can solve the corresponding line integrals
by a change of variables in the line integral for γ2. Furthermore, we note that γ3 is the
reparameterization of γ1 in the opposite direction. Hence, we conclude from Exercise 5 on
Exercise Sheet 4, that the corresponding line integrals must be equal. Let us now start the
computations with γ2: ∫

γ2

f dl =

∫ 1

−1
f(t) dt =

∫ 1

−1

t√
1 + t2

dt = 0, (4)

since the integrand is odd around t = 0. For γ1, we have∫
γ1

f dl =

∫ 1

0
f(γ1(t))|γ̇1(t)| dt = 2

∫ 1

0
f(2t− 1) dt =

∫ 1

−1
f(s) ds = 0 =

∫
γ2

f dl = 0. (5)
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As already pointed out previously, we must have
∫
γ3
f dl =

∫
γ1
f dl = 0. Finally, we find for

γ4 that γ̇4(t) = 10t4 ≥ 0 for t ∈ [0, 1] and thus∫
γ4

f dl =

∫ 1

0
f(γ4(t))γ̇4(t) dt =

∫ 1

−1
f(u) du =

∫
γ2

f dl = 0, (6)

where we have used the substitution u = γ4(t) = −1 + 2t5 with du = γ̇4(t) dt.

� The general form of a potential for F is f(x) = 1
2e

x2
+C, where C is an arbitrary constant.

We set C = −1/2 such that f(0) = 0. For the curve integral of F along γ4, we thus find
that ∫

γ4

Fdl = f(γ4(1))− f(γ4(0)) = f(1)− f(−1) =
1

2
(e− e(−1)2) = 0. (7)

Exercise 3 We review notions of potentials and conservative vector fields. Let Ω ⊆ Rn be open.
Suppose we have a vector field F = (F1, . . . , Fn) ∈ C1(Ω,Rn). Recall that we have introduced the
condition

∂iFj = ∂jFi, 1 ≤ i, j ≤ n. (8)

� Suppose that n = 2. Show that F satisfies (8) if and only if it is curl-free: curlF = 0.

� Suppose that n = 3. Show that F satisfies (8) if and only if it is curl-free: curlF = 0.

� Suppose that n = 1. Show that F satisfies (8).

� Suppose that F admits a potential f ∈ C1(Ω,R), so that ∇f = F . Show that if γ : [a, b] → Ω
is a simple regular curve, then ∫

γ
F dl = f(γ(b))− f(γ(a)). (9)

Show that if γ is closed, then ∫
γ
F dl = 0. (10)

Solution 3 � We recall that the curl of a vector field F = (F1, F2) is given by

curlF = (∂1F2 − ∂2F1) . (11)

Hence, it is clear that curlF = 0 if and only if F satisfies (8).
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� We recall that the curl of a vector field F = (F1, F2, F3) is given by

curlF =

∂2F3 − ∂3F2

∂3F1 − ∂1F3

∂1F2 − ∂2F1

 . (12)

Hence, it is clear that curlF = 0 if and only if F satisfies (8). Also, recall Exercise 6
from Exercise Sheet 3. On the one hand, we noticed there that the curl of a vector field is
given by the off-diagonal entries of the anti-symmetric part of the Jacobian matrix. On the
other hand, condition (8) is equivalent to the statement that the Jacobian matrix of F is
symmetric. We therefore conclude that the curl vanishes if and only if the Jacobian matrix
is symmetric.

� For n = 1, we have F = (F1) and the condition (8) is trivially satisfied.

� We have ∇f = F . Hence, we can write the line integral as∫
γ
F dl =

∫ b

a
F (γ(t)) · γ̇(t) dt (13)

=

∫ b

a
∇f(γ(t)) · γ̇(t) dt =

∫ b

a

d

dt
f(γ(t)) dt = f(γ(b))− f(γ(a)). (14)

If γ is closed, then γ(a) = γ(b) and we find that the line integral vanishes.

Exercise 4 We introduce the following curves:

γ : [0, 1] → R3, t 7→
(
3, t2, 4t

)
,

δ : [1,∞) → R2, t 7→
(
5, e−t

)
For each curve

� compute the tangent vector

� compute the speed of the curve

� find the unit tangent vector

� for δ, find the unit normal along the curve that is the 90 degree clockwise rotation of unit
tangent

� argue why it is a regular curve

� and compute the length of the curve.

Solution 4 � We compute the tangent vectors:

γ̇(t) =

 0
2t
4

 , δ̇(t) =

(
0

−e−t

)
. (15)
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� The speed of the curve is given by the norm of the tangent vector:

|γ̇(t)| =
√
4t2 + 16 = 2

√
t2 + 4, |δ̇(t)| = e−t. (16)

� The unit tangent vector is given by

t̂γ(t) =
γ̇(t)

|γ̇(t)|
=

1√
t2 + 4

0
t
2

 , (17)

t̂δ(t) =
δ̇(t)

|δ̇(t)|
=

(
0
−1

)
. (18)

Note that the unit tangent vector of δ is constant!

� The unit normal vector is given by the 90 degree clockwise rotation of the unit tangent vector.
The corresponding rotation matrix is

R =

(
0 1
−1 0

)
. (19)

Hence, we find

n̂δ(t) = Rt̂δ(t) =

(
−1
0

)
. (20)

� The curves are regular because their tangent vectors never vanish.

� The length of the curves is given by the integral of the speed: For γ, we find∫ 1

0
|γ̇(t)|dt = 2

∫ 1

0

√
t2 + 4dt = 4

∫ 1

0

√
(t/2)2 + 1dt (21)

= 8

∫ 1/2

0

√
u2 + 1du = 4(

√
2 + sinh−1(1/2)), (22)

(23)

where we have used the substitution u = t/2 with du = dt/2. The last integral can be found
with trigonometric substitution.

For δ, we find ∫ ∞

1
|δ̇(t)|dt =

∫ ∞

1
e−tdt = e−1. (24)

Note that the curve is parametrized for t ∈ [1,∞), but still has a finite length!
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Exercise 5 We consider the vector field

F : R2 → R2, (x, y) 7→
(
x3, y3

)
We want to find a potential over the domain Ω = R2. Fix a constant of integration at (0, 0) and
define a potential via the integral of the vector field F along a simple regular curve going from
(0, 0) to (x, y).

Solution 5 The most simple among the simple regular curves from (0, 0) to (x, y) is the straight
line:

γ : [0, 1] → R2, t 7→ (tx, ty) .

We compute that γ̇(t) = (x, y). We fix some constant of integration f(0, 0) = C for our yet-to-be-
found potential f ∈ C1(R2,R). For any (x, y) ∈ R2, we now compute

f(x, y)− f(0, 0) =

∫ 1

0

(
t3x3, t3y3

)
· (x, y) dt =

(
x4 + y4

) ∫ 1

0
t3 dt =

1

4

(
x4 + y4

)
. (25)

Therefore,

f(x, y) =
1

4

(
x4 + y4

)
+ C. (26)

Indeed, one easily verifies that ∇f = F .

Exercise 6 The closed curve

γ(t) = (sin(t)(1 + 0.5 sin(2t)), cos(t)(1 + 0.5 sin(2t)))

encircles a domain Ω in counterclockwise direction. Find the tangent γ̇(t), the unit tangent τ(t)
and the outward pointing unit normal n⃗(t). Only simplify as much as reasonable.

Solution 6 We calculate:

γ̇(t) = (cos(t)(1 + 0.5 sin(2t)) + sin(t) cos(2t),− sin(t)(1 + 0.5 sin(2t)) + cos(t) cos(2t))

With that:

|γ̇(t)|2 = cos(t)2(1 + 0.5 sin(2t))2 + sin(t)2 cos(2t)2 + 2 cos(t)(1 + 0.5 sin(2t)) sin(t) cos(2t)

+ sin(t)2(1 + 0.5 sin(2t))2 + cos(t)2 cos(2t)2 − 2 sin(t)(1 + 0.5 sin(2t)) cos(t) cos(2t)

= (1 + 0.5 sin(2t))2 + cos(2t)2 + 2 cos(t)(1 + 0.5 sin(2t)) sin(t) cos(2t)

− 2 sin(t)(1 + 0.5 sin(2t)) cos(t) cos(2t)

= (1 + 0.5 sin(2t))2 + cos(2t)2.
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Hence

|γ̇(t)| =
√

(1 + 0.5 sin(2t))2 + cos(2t)2.

We want to compute the tangent vector:

τ(t) =

(
cos(t)(1 + 0.5 sin(2t)) + sin(t) cos(2t)√

(1 + 0.5 sin(2t))2 + cos(2t)2
,
− sin(t)(1 + 0.5 sin(2t)) + cos(t) cos(2t)√

(1 + 0.5 sin(2t))2 + cos(2t)2

)

Accordingly, the normal vector is:

n⃗(t) =

(
− sin(t)(1 + 0.5 sin(2t)) + cos(t) cos(2t)√

(1 + 0.5 sin(2t))2 + cos(2t)2
,−cos(t)(1 + 0.5 sin(2t)) + sin(t) cos(2t)√

(1 + 0.5 sin(2t))2 + cos(2t)2

)

−2 −1 0 1 2
−2

−1

0

1

2

x

y

Exercise 7 We work over the quadratic domain

Ω :=
{
(x1, x2) ∈ R2

∣∣ −1 < x1 < 1, −1 < x2 < 1
}
.

Compute the integral
∫∫

Ω divF⃗ dx1dx2, where

F⃗ (x1, x2) =
(
sin(x1)x2,

(
x21 + x2

)5)
Solution 7 We make use of the Divergence theorem to express the volume integral as a curve
integral.∫ ∫

Ω
∇ · F⃗ dx1 dx2 =

∫
∂Ω

F⃗ · n⃗ dℓ,
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=

∫ 1

−1
F⃗ (x1,−1) ·

(
0
−1

)
dx1 +

∫ 1

−1
F⃗ (x1, 1) ·

(
0
1

)
dx1,

+

∫ 1

−1
F⃗ (−1, x2) ·

(
−1
0

)
dx2 +

∫ 1

−1
F⃗ (1, x2) ·

(
1
0

)
dx2, s

=

∫ 1

−1
(1− x21)

5 dx1 +

∫ 1

−1
(x21 + 1)5 dx1 +

∫ 1

−1
sin(1)x2 dx2 +

∫ 1

−1
− sin(−1)x2 dx2,

Since x2 is an odd function, so the last two integrals are 0. To evaluate the first two integrals, we
can either compute the quintic powers manually, which is a lot of work, or we utilize the binomial
theorem:

(x+ y)n =
n∑

k=0

(
n
k

)
xn−kyk

With that, we can simplify the calculation as follows:∫ ∫
Ω
∇ · F⃗ dx1 dx2 =

∫
∂Ω

F⃗ · n⃗ dℓ,

=

∫ 1

−1
(1− x21)

5 dx1 +

∫ 1

−1
(x21 + 1)5 dx1

=
5∑

k=0

(
5

k

)
(−1)k

∫ 1

−1
(x)2k dx1 +

5∑
k=0

(
5

k

)∫ 1

−1
(x)2k dx1

=
5∑

k=0

(
5

k

)
(−1)k

[
x2k+1

2k + 1

]1
−1

+
5∑

k=0

(
5

k

)[
x2k+1

2k + 1

]1
−1

=

5∑
k=0

(
5

k

)(
(−1)k + 1

)[ x2k+1

2k + 1

]1
−1

For k = 1, 3, 5, we get
(
(−1)k + 1

)
= 0. So we only need the terms with k = 0, 2, 4. Thus

5∑
k=0

(
5

k

)(
(−1)k + 1

)[ x2k+1

2k + 1

]1
−1

= 2

(
5

0

)[
x0+1

0 + 1

]1
−1

+ 2

(
5

2

)[
x4+1

4 + 1

]1
−1

+ 2

(
5

4

)[
x8+1

8 + 1

]1
−1

= 2

(
5

0

)[
x1

1

]1
−1

+ 2

(
5

2

)[
x5

5

]1
−1

+ 2

(
5

4

)[
x9

9

]1
−1

= 4

(
5

0

)
+

4

5

(
5

2

)
+

4

9

(
5

4

)
=

128

9
.
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