Analysis III - 203(d)

Winter Semester 2024

Session 5: October 10, 2024

Exercise 1 Consider a curve u in one-dimensional space with

$$u:[1,2]\to\mathbb{R}, \qquad t\mapsto t^2+t$$

Verify that the curve is simple, differentiable, and regular. Compute the curve integral $\int_u f \ dl$, where

$$f: \mathbb{R} \to \mathbb{R}, \qquad x \to 3x^3$$

is the scalar field.

Solution 1 This is just a fancy way of describing integration by substitution from Analysis I. We first verify that the curve is simple, differentiable, and regular.

- The curve is simple if it does not intersect itself. This means that $u(t_1) \neq u(t_2)$ for $t_1 \neq t_2$. In this case, the curve $u(t) = t^2 + t$ is a strictly increasing function on the interval [1, 2]. We conclude that the curve is simple.
- We see that the curve is differentiable because its only component is differentiable.
- The curve is regular because the derivative $\dot{u}(t) = 2t + 1$ is not zero over the interval (1, 2).

The curve integral of f over Γ is given by

$$\int_{u} f \, dl = \int_{1}^{2} f(u(t)) \, |\dot{u}(t)| \, dt = \int_{1}^{2} 3(u(t))^{3} \, |2t+1| \, dt = \int_{1}^{2} 3(t^{2}+t)^{3} \, |2t+1| \, dt.$$

We have |2t+1| = 2t+1 over the interval [1, 2]. Hence

$$\int_{u} f \, dl = 3 \int_{1}^{2} (t^{2} + t)^{3} (2t + 1) \, dt.$$

This integral can be computed using standard methods of integration. One straight-forward but technical solution is to just expand the polynomial that we integrate. However, a simpler method uses substitution:

$$\int_{u} f \, dl = \frac{3}{4} \int_{1}^{2} 4(t^{2} + t)^{3} (2t + 1) \, dt = \frac{3}{4} \int_{1}^{2} \partial_{t} (t^{2} + t)^{4} \, dt = \frac{3}{4} (t^{2} + t)^{4} \Big|_{t=1}^{t=2} = \frac{3}{4} \left(6^{4} - 2^{4} \right). \tag{1}$$

This simplifies to

$$\int_{\mathcal{U}} f \, dl = \frac{3}{4} \cdot 2^4 \left(3^4 - 1 \right) = \frac{3}{4} \cdot 16 \cdot 80 = 3 \cdot 320 = 960. \tag{2}$$

Exercise 2 (vector analysis in 1D) Let $\Omega \subseteq (a,b)$ be an open interval in one-dimensional space.

- Explain why there cannot be a simple closed continuous curve in Ω .
- When $\Omega = (-10, 10)$, compute the integral of the scalar field

$$f(x) = \frac{x}{\sqrt{1+x^2}}$$

along the curves

$$\gamma_1: [0,1] \to \Omega, \quad t \mapsto (2t-1),$$

$$\gamma_2: [-1,1] \to \Omega, \quad t \mapsto (t),$$

$$\gamma_3: [0,1] \to \Omega, \quad t \mapsto (1-2t),$$

$$\gamma_4: [0,1] \to \Omega, \quad t \mapsto (-1+2t^5),$$

Compute the tangent vectors $\dot{\gamma}(t)$.

• Compute the integral of the vector field

$$F(x) = \left(xe^{x^2}\right) \tag{3}$$

along the curve γ_4 . Find a potential for this vector field, and write down the general form of all potentials.

Solution 2 This is content of Analysis 1 but repackaged in the manner of vector analysis.

- It is visually clear that any closed continuous curve in Ω would have to intersect itself. Formally, one can use the intermediate value theorem.
- Before we compute all the line integrals, we note that the curves γ_1, γ_3 , and γ_4 map the interval [0,1] to the interval [-1,1]. Hence, we can solve the corresponding line integrals by a change of variables in the line integral for γ_2 . Furthermore, we note that γ_3 is the reparameterization of γ_1 in the opposite direction. Hence, we conclude from Exercise 5 on Exercise Sheet 4, that the corresponding line integrals must be equal. Let us now start the computations with γ_2 :

$$\int_{\gamma_2} f \, dl = \int_{-1}^1 f(t) \, dt = \int_{-1}^1 \frac{t}{\sqrt{1+t^2}} \, dt = 0, \tag{4}$$

since the integrand is odd around t = 0. For γ_1 , we have

$$\int_{\gamma_1} f \ dl = \int_0^1 f(\gamma_1(t)) |\dot{\gamma}_1(t)| \ dt = 2 \int_0^1 f(2t - 1) \ dt = \int_{-1}^1 f(s) \ ds = 0 = \int_{\gamma_2} f \ dl = 0.$$
 (5)

As already pointed out previously, we must have $\int_{\gamma_3} f \ dl = \int_{\gamma_1} f \ dl = 0$. Finally, we find for γ_4 that $\dot{\gamma}_4(t) = 10t^4 \ge 0$ for $t \in [0,1]$ and thus

$$\int_{\gamma_4} f \ dl = \int_0^1 f(\gamma_4(t))\dot{\gamma}_4(t) \ dt = \int_{-1}^1 f(u) \ du = \int_{\gamma_2} f \ dl = 0, \tag{6}$$

where we have used the substitution $u = \gamma_4(t) = -1 + 2t^5$ with $du = \dot{\gamma}_4(t) dt$.

• The general form of a potential for F is $f(x) = \frac{1}{2}e^{x^2} + C$, where C is an arbitrary constant. We set C = -1/2 such that f(0) = 0. For the curve integral of F along γ_4 , we thus find that

$$\int_{\gamma_4} Fdl = f(\gamma_4(1)) - f(\gamma_4(0)) = f(1) - f(-1) = \frac{1}{2} (e - e^{(-1)^2}) = 0.$$
 (7)

Exercise 3 We review notions of potentials and conservative vector fields. Let $\Omega \subseteq \mathbb{R}^n$ be open. Suppose we have a vector field $F = (F_1, \dots, F_n) \in C^1(\Omega, \mathbb{R}^n)$. Recall that we have introduced the condition

$$\partial_i F_i = \partial_j F_i, \qquad 1 \le i, j \le n.$$
 (8)

- Suppose that n=2. Show that F satisfies (8) if and only if it is curl-free: $\operatorname{curl} F=0$.
- Suppose that n = 3. Show that F satisfies (8) if and only if it is curl-free: $\operatorname{curl} F = 0$.
- Suppose that n = 1. Show that F satisfies (8).
- Suppose that F admits a potential $f \in C^1(\Omega, \mathbb{R})$, so that $\nabla f = F$. Show that if $\gamma : [a, b] \to \Omega$ is a simple regular curve, then

$$\int_{\gamma} F \ dl = f(\gamma(b)) - f(\gamma(a)). \tag{9}$$

Show that if γ is closed, then

$$\int_{\gamma} F \, dl = 0. \tag{10}$$

Solution 3 • We recall that the curl of a vector field $F = (F_1, F_2)$ is given by

$$\operatorname{curl} F = (\partial_1 F_2 - \partial_2 F_1). \tag{11}$$

Hence, it is clear that $\operatorname{curl} F = 0$ if and only if F satisfies (8).

• We recall that the curl of a vector field $F = (F_1, F_2, F_3)$ is given by

$$\operatorname{curl} F = \begin{pmatrix} \partial_2 F_3 - \partial_3 F_2 \\ \partial_3 F_1 - \partial_1 F_3 \\ \partial_1 F_2 - \partial_2 F_1 \end{pmatrix}. \tag{12}$$

Hence, it is clear that $\operatorname{curl} F = 0$ if and only if F satisfies (8). Also, recall Exercise 6 from Exercise Sheet 3. On the one hand, we noticed there that the curl of a vector field is given by the off-diagonal entries of the anti-symmetric part of the Jacobian matrix. On the other hand, condition (8) is equivalent to the statement that the Jacobian matrix of F is symmetric. We therefore conclude that the curl vanishes if and only if the Jacobian matrix is symmetric.

- For n = 1, we have $F = (F_1)$ and the condition (8) is trivially satisfied.
- We have $\nabla f = F$. Hence, we can write the line integral as

$$\int_{\gamma} F \ dl = \int_{a}^{b} F(\gamma(t)) \cdot \dot{\gamma}(t) \ dt \tag{13}$$

$$= \int_{a}^{b} \nabla f(\gamma(t)) \cdot \dot{\gamma}(t) dt = \int_{a}^{b} \frac{d}{dt} f(\gamma(t)) dt = f(\gamma(b)) - f(\gamma(a)). \tag{14}$$

If γ is closed, then $\gamma(a) = \gamma(b)$ and we find that the line integral vanishes.

Exercise 4 We introduce the following curves:

$$\gamma: [0,1] \to \mathbb{R}^3, \qquad t \mapsto (3, t^2, 4t),$$

 $\delta: [1, \infty) \to \mathbb{R}^2, \qquad t \mapsto (5, e^{-t})$

For each curve

- compute the tangent vector
- compute the speed of the curve
- find the unit tangent vector
- for δ , find the unit normal along the curve that is the 90 degree clockwise rotation of unit tangent
- argue why it is a regular curve
- and compute the length of the curve.

Solution 4 • We compute the tangent vectors:

$$\dot{\gamma}(t) = \begin{pmatrix} 0 \\ 2t \\ 4 \end{pmatrix}, \quad \dot{\delta}(t) = \begin{pmatrix} 0 \\ -e^{-t} \end{pmatrix}. \tag{15}$$

• The speed of the curve is given by the norm of the tangent vector:

$$|\dot{\gamma}(t)| = \sqrt{4t^2 + 16} = 2\sqrt{t^2 + 4}, \quad |\dot{\delta}(t)| = e^{-t}.$$
 (16)

• The unit tangent vector is given by

$$\hat{t}_{\gamma}(t) = \frac{\dot{\gamma}(t)}{|\dot{\gamma}(t)|} = \frac{1}{\sqrt{t^2 + 4}} \begin{pmatrix} 0 \\ t \\ 2 \end{pmatrix}, \tag{17}$$

$$\hat{t}_{\delta}(t) = \frac{\dot{\delta}(t)}{|\dot{\delta}(t)|} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}. \tag{18}$$

Note that the unit tangent vector of δ is constant!

• The unit normal vector is given by the 90 degree clockwise rotation of the unit tangent vector.

The corresponding rotation matrix is

$$R = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \tag{19}$$

Hence, we find

$$\hat{n}_{\delta}(t) = R\hat{t}_{\delta}(t) = \begin{pmatrix} -1\\0 \end{pmatrix}. \tag{20}$$

- The curves are regular because their tangent vectors never vanish.
- The length of the curves is given by the integral of the speed: For γ , we find

$$\int_0^1 |\dot{\gamma}(t)| dt = 2 \int_0^1 \sqrt{t^2 + 4} dt = 4 \int_0^1 \sqrt{(t/2)^2 + 1} dt$$
 (21)

$$=8\int_0^{1/2} \sqrt{u^2 + 1} du = 4(\sqrt{2} + \sinh^{-1}(1/2)), \tag{22}$$

(23)

where we have used the substitution u = t/2 with du = dt/2. The last integral can be found with trigonometric substitution.

For δ , we find

$$\int_{1}^{\infty} |\dot{\delta}(t)| dt = \int_{1}^{\infty} e^{-t} dt = e^{-1}.$$
 (24)

Note that the curve is parametrized for $t \in [1, \infty)$, but still has a finite length!

Exercise 5 We consider the vector field

$$F: \mathbb{R}^2 \to \mathbb{R}^2, \quad (x,y) \mapsto (x^3, y^3)$$

We want to find a potential over the domain $\Omega = \mathbb{R}^2$. Fix a constant of integration at (0,0) and define a potential via the integral of the vector field F along a simple regular curve going from (0,0) to (x,y).

Solution 5 The most simple among the simple regular curves from (0,0) to (x,y) is the straight line:

$$\gamma: [0,1] \to \mathbb{R}^2, \qquad t \mapsto (tx, ty).$$

We compute that $\dot{\gamma}(t) = (x, y)$. We fix some constant of integration f(0, 0) = C for our yet-to-be-found potential $f \in C^1(\mathbb{R}^2, \mathbb{R})$. For any $(x, y) \in \mathbb{R}^2$, we now compute

$$f(x,y) - f(0,0) = \int_0^1 (t^3 x^3, t^3 y^3) \cdot (x,y) dt = (x^4 + y^4) \int_0^1 t^3 dt = \frac{1}{4} (x^4 + y^4).$$
 (25)

Therefore,

$$f(x,y) = \frac{1}{4} (x^4 + y^4) + C.$$
 (26)

Indeed, one easily verifies that $\nabla f = F$.

Exercise 6 The closed curve

$$\gamma(t) = (\sin(t)(1+0.5\sin(2t)), \cos(t)(1+0.5\sin(2t)))$$

encircles a domain Ω in counterclockwise direction. Find the tangent $\dot{\gamma}(t)$, the unit tangent $\tau(t)$ and the outward pointing unit normal $\vec{n}(t)$. Only simplify as much as reasonable.

Solution 6 We calculate:

$$\dot{\gamma}(t) = (\cos(t)(1+0.5\sin(2t)) + \sin(t)\cos(2t), -\sin(t)(1+0.5\sin(2t)) + \cos(t)\cos(2t))$$

With that:

$$|\dot{\gamma}(t)|^2 = \cos(t)^2 (1 + 0.5\sin(2t))^2 + \sin(t)^2 \cos(2t)^2 + 2\cos(t)(1 + 0.5\sin(2t))\sin(t)\cos(2t)$$

$$+ \sin(t)^2 (1 + 0.5\sin(2t))^2 + \cos(t)^2 \cos(2t)^2 - 2\sin(t)(1 + 0.5\sin(2t))\cos(t)\cos(2t)$$

$$= (1 + 0.5\sin(2t))^2 + \cos(2t)^2 + 2\cos(t)(1 + 0.5\sin(2t))\sin(t)\cos(2t)$$

$$- 2\sin(t)(1 + 0.5\sin(2t))\cos(t)\cos(2t)$$

$$= (1 + 0.5\sin(2t))^2 + \cos(2t)^2.$$

Hence

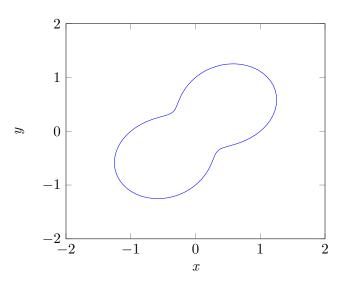
$$|\dot{\gamma}(t)| = \sqrt{(1 + 0.5\sin(2t))^2 + \cos(2t)^2}$$

We want to compute the tangent vector:

$$\tau(t) = \left(\frac{\cos(t)(1+0.5\sin(2t)) + \sin(t)\cos(2t)}{\sqrt{(1+0.5\sin(2t))^2 + \cos(2t)^2}}, \frac{-\sin(t)(1+0.5\sin(2t)) + \cos(t)\cos(2t)}{\sqrt{(1+0.5\sin(2t))^2 + \cos(2t)^2}}\right)$$

Accordingly, the normal vector is:

$$\vec{n}(t) = \left(\frac{-\sin(t)(1+0.5\sin(2t)) + \cos(t)\cos(2t)}{\sqrt{(1+0.5\sin(2t))^2 + \cos(2t)^2}}, -\frac{\cos(t)(1+0.5\sin(2t)) + \sin(t)\cos(2t)}{\sqrt{(1+0.5\sin(2t))^2 + \cos(2t)^2}}\right)$$



Exercise 7 We work over the quadratic domain

$$\Omega := \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid -1 < x_1 < 1, \ -1 < x_2 < 1 \right\}.$$

Compute the integral $\iint_{\Omega} \operatorname{div} \vec{F} \ dx_1 dx_2$, where

$$\vec{F}(x_1, x_2) = \left(\sin(x_1)x_2, \left(x_1^2 + x_2\right)^5\right)$$

Solution 7 We make use of the Divergence theorem to express the volume integral as a curve integral.

$$\int \int_{\Omega} \nabla \cdot \vec{F} \, dx_1 \, dx_2 = \int_{\partial \Omega} \vec{F} \cdot \vec{n} \, d\ell,$$

$$= \int_{-1}^{1} \vec{F}(x_{1}, -1) \cdot \begin{pmatrix} 0 \\ -1 \end{pmatrix} dx_{1} + \int_{-1}^{1} \vec{F}(x_{1}, 1) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} dx_{1},$$

$$+ \int_{-1}^{1} \vec{F}(-1, x_{2}) \cdot \begin{pmatrix} -1 \\ 0 \end{pmatrix} dx_{2} + \int_{-1}^{1} \vec{F}(1, x_{2}) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} dx_{2}, s$$

$$= \int_{-1}^{1} (1 - x_{1}^{2})^{5} dx_{1} + \int_{-1}^{1} (x_{1}^{2} + 1)^{5} dx_{1} + \int_{-1}^{1} \sin(1)x_{2} dx_{2} + \int_{-1}^{1} -\sin(-1)x_{2} dx_{2},$$

Since x_2 is an odd function, so the last two integrals are 0. To evaluate the first two integrals, we can either compute the quintic powers manually, which is a lot of work, or we utilize the binomial theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

With that, we can simplify the calculation as follows:

$$\int \int_{\Omega} \nabla \cdot \vec{F} \, dx_1 \, dx_2 = \int_{\partial \Omega} \vec{F} \cdot \vec{n} \, d\ell,$$

$$= \int_{-1}^{1} (1 - x_1^2)^5 \, dx_1 + \int_{-1}^{1} (x_1^2 + 1)^5 \, dx_1$$

$$= \sum_{k=0}^{5} {5 \choose k} (-1)^k \int_{-1}^{1} (x)^{2k} \, dx_1 + \sum_{k=0}^{5} {5 \choose k} \int_{-1}^{1} (x)^{2k} \, dx_1$$

$$= \sum_{k=0}^{5} {5 \choose k} (-1)^k \left[\frac{x^{2k+1}}{2k+1} \right]_{-1}^{1} + \sum_{k=0}^{5} {5 \choose k} \left[\frac{x^{2k+1}}{2k+1} \right]_{-1}^{1}$$

$$= \sum_{k=0}^{5} {5 \choose k} \left((-1)^k + 1 \right) \left[\frac{x^{2k+1}}{2k+1} \right]_{-1}^{1}$$

For k = 1, 3, 5, we get $((-1)^k + 1) = 0$. So we only need the terms with k = 0, 2, 4. Thus

$$\begin{split} &\sum_{k=0}^{5} \binom{5}{k} \left((-1)^k + 1 \right) \left[\frac{x^{2k+1}}{2k+1} \right]_{-1}^1 \\ &= 2 \binom{5}{0} \left[\frac{x^{0+1}}{0+1} \right]_{-1}^1 + 2 \binom{5}{2} \left[\frac{x^{4+1}}{4+1} \right]_{-1}^1 + 2 \binom{5}{4} \left[\frac{x^{8+1}}{8+1} \right]_{-1}^1 \\ &= 2 \binom{5}{0} \left[\frac{x^1}{1} \right]_{-1}^1 + 2 \binom{5}{2} \left[\frac{x^5}{5} \right]_{-1}^1 + 2 \binom{5}{4} \left[\frac{x^9}{9} \right]_{-1}^1 \\ &= 4 \binom{5}{0} + \frac{4}{5} \binom{5}{2} + \frac{4}{9} \binom{5}{4} \\ &= \frac{128}{9}. \end{split}$$