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Exercise 1 Compute the line integral of the vector field F⃗ along the curve γ, where

F⃗ : R2 → R2, (x1, x2) 7→ (x2, 0), γ : [0, 2π] → R2, t 7→ (cos(t), sin(t))

Compute the line integral of the vector field G⃗ along the curve δ, where

G⃗ : R3 → R3, (x1, x2, x3) 7→ (2, 3,−1), δ : [0, 4] → R2, t 7→ (t2, cos(t), et)

Solution 1 ∫
Γ
F⃗ (x1, x2)dℓ =

∫ 2π

0
(F⃗ ◦ γ)(t) · γ̇(t)dt

=

∫ 2π

0

(
sin t
0

)
·
(
− sin(t)
cos(t)

)
dt

=

∫ 2π

0
− sin2(t)dt

=

∫ 2π

0
−1

2
+

1

2
cos(2t)dt =

[
−1

2
t+

1

4
sin(2t)

]2π
0

= −π

∫
Γ
G⃗(x1, x2, x3)dℓ =

∫ 4

0
(G⃗ ◦ δ)(t) · δ̇(t)dt

=

∫ 4

0

 2
3
−1

 ·

 2t
− sin(t)

et

 dt

=

∫ 4

0
4t− 3 sin(t)− etdt

=
[
2t2 + 3 cos(t)− et

]4
0

= 32 + 3 cos 4− e4 − (3− 1) = 30 + 3 cos 4− e4

Exercise 2 Compute the line integral of the vector field F⃗ along the curve γ, where

F⃗ : R2 → R2, (x1, x2) 7→ (ex1x2x2, e
x1x2x1)

and

γ : [0, 1] → R2, t 7→
(
arctan(cos(πt)2 − sin(πt)2), 1 + 2

√
1 + arctan(t)

)
1



Solution 2 The vector field is the gradient of ex1x2, and so we can use the formula for vector
fields that admit a potential. We find that∫

Γ
F⃗ dℓ =

∫
Γ
∇fdℓ = f(γ(1))− f(γ(0))

Now we only need to compute the function values of f . Explicitly,

γ(0) =
(
arctan(cos(π0)2 − sin(π0)2), 1 + 2

√
1 + arctan(0)

)
=
(
arctan(1), 1 +

2
√
1
)
= (π/4, 2)

γ(1) =
(
arctan(cos(π1)2 − sin(π1)2), 1 + 2

√
1 + arctan(1)

)
=
(
arctan(1), 1 + 2

√
1 + π/4

)
=
(
π/4, 1 + 2

√
1 + π/4

)
We then compute

f(γ(1))− f(γ(0)) = exp
(π
4
(1 + 2

√
1 + π/4)

)
− exp (π/2) .

Exercise 3 What is the length of the graph of the function g(x) = x
3
2 over the interval [0, 2]?

Simplify as much as reasonable.

Solution 3 We can express the graph as a curve

γ : [0, 2] → R2, t 7→ (t, t
3
2 )

As mentioned in the lecture, the integral of 1 along that curve gives the length. Hence we find:∫
Γ
1 dl =

∫ 2

0

∣∣∣∣(1, 32 t 1
2

)∣∣∣∣ dt = ∫ 2

0

√
1 +

9t

4
dt

We integrate the last expression. The integrand is a derivative, up to some numerical factor:∫ 2

0

√
1 +

9

4
t dt =

2

3
· 4
9

∫ 2

0

3

2
· 9
4

(
1 +

9

4
t

) 1
2

dt

=
2

3
· 4
9

∫ 2

0
∂t

(
1 +

9

4
t

) 3
2

dt

=
2

3
· 4
9

[(
1 +

9

4
t

) 3
2

]2
0

=
2

3
· 4
9

((
1 +

9

2

) 3
2

− 1

)

2



=
8

27

((
11

2

) 3
2

− 1

)
.

(You can compute the integral via Intégration par changement de variable, which is the same
calculation but in a different formalism.)

Exercise 4 Take a look at the functions

f(x1, x2) = 1, g(x1, x2) = x2.

We have the following curves:

α : [0, 1] → R2, t 7→ (t, t),

β : [0, 2] → R2, t 7→

{
(t, 0) 0 ≤ t < 1,

(0, t− 1) 1 ≤ t ≤ 2,

γ : [0, 1] → R2, t 7→ (t2, t).

Compute: ∫
A
f dℓ,

∫
B
f dℓ,

∫
A
g dℓ,

∫
B
g dℓ,

∫
Γ
g dℓ.

Solution 4 We compute these integrals as follows:∫
A
f dℓ =

∫ 1

0

√
2 dt =

[√
2t
]1
0
=

√
2,

∫
B
f dℓ =

∫ 2

0
dt = [t]20 = 2

∫
A
g dℓ =

∫ 1

0
t
√
2 dt =

[√
2

2
t2

]1
0

=

√
2

2

∫
B
g dℓ =

∫ 1

0
(0) dt+

∫ 2

1
(t− 1) dt =

∫ 2

1
(t− 1) dt =

[
1

2
(t− 1)2

]2
1

=
1

2

For the interal of g over the third curve, we proceed as follows:∫
Γ
g dℓ =

∫ 1

0
t
√

4t2 + 1 dt

=

∫ 1

0
t
(
4t2 + 1

) 1
2 dt

=
2

3
· 1
8
·
∫ 1

0

3

2
· 8t
(
4t2 + 1

) 1
2 dt

=
2

3
· 1
8
·
∫ 1

0
∂t
(
4t2 + 1

) 3
2 dt =

2

3
· 1
8
·
(
5

3
2 − 1

)
=

5
3
2 − 1

12
.

Note that the curves all have the same starting and end points, (0, 0) and (1, 1), but the curve
integrals of the function may (generally) differ from curve to curve.
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Exercise 5 We want to verify that the curve integrals do not depend on the direction of the
parameterization. Consider the curve parameterizations

γ+ : [0, 1] → R2, t 7→ (t, 1 +
1

2
t2), (1)

γ− : [0, 1] → R2, s 7→ (1− s, 1 +
1

2
(1− s)2), (2)

� Given the scalar field

f(x, y) = x(y − 1

2
x2) = xy − 1

2
x3,

show that ∫
γ+

f dl =

∫
γ−

f dl (3)

� Compute the tangent and unit tangent vectors of each curve, and show that γ̇+(t) = −γ̇−(1−
t). Show that the curve integrals along γ+ and γ− of the vector field

F (x, y) = (−y, x) (4)

are the negative of each other.

Solution 5 � We compute the first integral directly:∫
γ+

f dl =

∫ 1

0
f(t, 1 +

1

2
t2)|γ̇+(t)|dt

=

∫ 1

0
t
√
1 + t2dt

=
1

2

∫ 1

0
2t
√

1 + t2dt.

We substitute u = 1 + t2, so that du = 2dt. Thus

1

2

∫ 1

0
2t
√

1 + t2dt =
1

2

∫ 2

1

√
u du =

1

2

[
2

3
u

3
2

]2
1

=
1

3

(
2
√
2− 1

)
.

The second integral can be computed directly as well, or with a change of variables. For the
latter, we use ∫

γ−

f dl =

∫ 1

0
f(1− s, 1 +

1

2
(1− s)2)|γ̇−(s)|ds

= −
∫ 0

1
f(t, 1 +

1

2
t2)|γ̇−(1− t)|dt
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=

∫ 1

0
t
√

1 + (1− (1− t))2dt =

∫ 1

0
t
√
1 + t2dt

=

∫
γ+

fdl,

where we used the substitution t = 1− s with dt = −ds.

� Given the two parameterizations as stated above,

γ+ : [0, 1] → R2, t 7→ (t, 1 +
1

2
t2), (5)

γ− : [0, 1] → R2, s 7→ (1− s, 1 +
1

2
(1− s)2), (6)

We compute the tangent vectors:

γ̇+(t) =

(
1
t

)
, γ̇−(s) =

(
−1
s− 1

)
.

Their norms are

|γ̇+(t)| =
√
1 + t2,

|γ̇−(s)| =
√
1 + (s− 1)2.

It is intuitive that γ̇+(t) = −γ̇−(1− t), as we check easily:

γ̇−(1− t) = −
(

−1
1− t− 1

)
=

(
1
t

)
= γ̇+(t).

Finally, for the curve integral we find again, using the change of variables s = 1− t, hence
ds = −dt, the following identity:∫

γ+

F dl =

∫ 1

0
F (γ+(t)) · γ̇+(t) dt

= −
∫ 1

0
F (γ−(1− t)) · γ̇−(1− t) dt

=

∫ 0

1
F (γ−(s)) · γ̇−(s) ds.

We switch the bounds of integration into normal order and find∫ 0

1
F (γ−(s)) · γ̇−(s) ds = −

∫ 1

0
F (γ−(s)) · γ̇−(s) ds = −

∫
γ−

F dl.

Exercise 6 Consider the open cube

Ω = (0, 1)2 =
{
(x, y) ∈ R2 : 0 < x, y < 1

}
.
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� Show that Ω is convex.

� Let z ∈ Ω. Show that Ω is star-shaped with respect to z.

� Show that Ω is simply-connected.

For the last part, show that any two continuous curves with the same endpoints are homotopic
relative to endpoints.

Solution 6

Graphically, it is clear that each segment between points of Ω is also contained in Ω. But we prove
this formally.
Suppose that a = (a1, a2), b = (b1, b2) ∈ Ω and t ∈ [0, 1]. We want to show that ta+ (1− t)b ∈ Ω.
We compute that

ta+ (1− t)b = (ta1 + (1− t)b1, ta2 + (1− t)b2) .

This point is in Ω if each coordinate is in the interval (0, 1). We show that for the first coordinate,
because the argument for the second coordinate is almost the same. Clearly,

ta1 + (1− t)b1 > tmin(a1, b1) + (1− t)min(a1, b1) = min(a1, b1) > 0,

ta2 + (1− t)b2 < tmax(a2, b2) + (1− t)max(a2, b2) = max(a2, b2) < 1.

We conclude that Ω is convex.

As already observed, the segment between any two points z, a ∈ Ω is already contained in Ω. If we
fix any point z ∈ Ω, then Ω is star-shaped. Note that we do not use any property except that Ω is
convex. Indeed, every convex domain is also star-shaped (with respect to any point inside).

Given two continuous curves γ0, γ1 : [a, b] → Ω with γ0(a) = γ1(a) =: ga and γ0(b) = γ1(b) =: gb,
we define

γ : [a, b]× [0, 1] → R2

by setting

γ(t, s) = (1− s) · γ0(t) + s · γ1(t).

For any t ∈ [a, b] we have γ0(t), γ1(t) ∈ Ω, and since Ω is convex, we have (1−s)·γ0(t)+s·γ1(t) ∈ Ω
for all s ∈ [0, 1]. Hence γ defines a function

γ : [a, b]× [0, 1] → Ω

Furthermore, γ is obviously continuous in both variables.
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We verify the remaing conditions. For all t ∈ [a, b] we have

γ(t, 0) = (1− 0) · γ0(t) + 0 · γ1(t) = γ0(t) (7)

and

γ(t, 1) = (1− 1) · γ0(t) + 1 · γ1(t) = γ1(t). (8)

Additionally, for all s ∈ [0, 1], we have

γ(a, s) = (1− s) · γ0(a) + s · γ1(a) = (1− s) · ga + s · ga = ga (9)

and

γ(b, s) = (1− s) · γ0(b) + s · γ1(b) = (1− s) · gb + s · gb = gb. (10)

This shows that γ satisfies the required axioms.
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