Analysis III - 203(d)

Winter Semester 2024

Session 4: October 3, 2024

Exercise 1 Compute the line integral of the vector field \vec{F} along the curve γ , where

$$\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2, \quad (x_1, x_2) \mapsto (x_2, 0), \qquad \gamma: [0, 2\pi] \to \mathbb{R}^2, \quad t \mapsto (\cos(t), \sin(t))$$

Compute the line integral of the vector field \vec{G} along the curve δ , where

$$\vec{G}: \mathbb{R}^3 \to \mathbb{R}^3, \quad (x_1, x_2, x_3) \mapsto (2, 3, -1), \qquad \delta: [0, 4] \to \mathbb{R}^2, \quad t \mapsto (t^2, \cos(t), e^t)$$

Solution 1

$$\int_{\Gamma} \vec{F}(x_1, x_2) d\ell = \int_0^{2\pi} (\vec{F} \circ \gamma)(t) \cdot \dot{\gamma}(t) dt$$

$$= \int_0^{2\pi} \begin{pmatrix} \sin t \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix} dt$$

$$= \int_0^{2\pi} -\sin^2(t) dt$$

$$= \int_0^{2\pi} -\frac{1}{2} + \frac{1}{2} \cos(2t) dt = \left[-\frac{1}{2}t + \frac{1}{4} \sin(2t) \right]_0^{2\pi} = -\pi$$

$$\int_{\Gamma} \vec{G}(x_1, x_2, x_3) d\ell = \int_0^4 (\vec{G} \circ \delta)(t) \cdot \dot{\delta}(t) dt$$

$$= \int_0^4 \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 2t \\ -\sin(t) \\ e^t \end{pmatrix} dt$$

$$= \int_0^4 4t - 3\sin(t) - e^t dt$$

$$= \left[2t^2 + 3\cos(t) - e^t \right]_0^4$$

$$= 32 + 3\cos 4 - e^4 - (3 - 1) = 30 + 3\cos 4 - e^4$$

Exercise 2 Compute the line integral of the vector field \vec{F} along the curve γ , where

$$\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2, \quad (x_1, x_2) \mapsto (e^{x_1 x_2} x_2, e^{x_1 x_2} x_1)$$

and

$$\gamma: [0,1] \to \mathbb{R}^2, \quad t \mapsto \left(\arctan(\cos(\pi t)^2 - \sin(\pi t)^2), 1 + \sqrt[2]{1 + \arctan(t)}\right)$$

Solution 2 The vector field is the gradient of $e^{x_1x_2}$, and so we can use the formula for vector fields that admit a potential. We find that

$$\int_{\Gamma} \vec{F} d\ell = \int_{\Gamma} \nabla f d\ell = f(\gamma(1)) - f(\gamma(0))$$

Now we only need to compute the function values of f. Explicitly,

$$\gamma(0) = \left(\arctan(\cos(\pi 0)^2 - \sin(\pi 0)^2), 1 + \sqrt[2]{1 + \arctan(0)}\right)$$
$$= \left(\arctan(1), 1 + \sqrt[2]{1}\right) = (\pi/4, 2)$$

$$\gamma(1) = \left(\arctan(\cos(\pi 1)^2 - \sin(\pi 1)^2), 1 + \sqrt[2]{1 + \arctan(1)}\right)$$
$$= \left(\arctan(1), 1 + \sqrt[2]{1 + \pi/4}\right) = \left(\pi/4, 1 + \sqrt[2]{1 + \pi/4}\right)$$

We then compute

$$f(\gamma(1)) - f(\gamma(0)) = \exp\left(\frac{\pi}{4}(1 + \sqrt[2]{1 + \pi/4})\right) - \exp(\pi/2).$$

Exercise 3 What is the length of the graph of the function $g(x) = x^{\frac{3}{2}}$ over the interval [0,2]? Simplify as much as reasonable.

Solution 3 We can express the graph as a curve

$$\gamma: [0,2] \to \mathbb{R}^2, \quad t \mapsto (t,t^{\frac{3}{2}})$$

As mentioned in the lecture, the integral of 1 along that curve gives the length. Hence we find:

$$\int_{\Gamma} 1 \, dl = \int_{0}^{2} \left| \left(1, \frac{3}{2} t^{\frac{1}{2}} \right) \right| \, dt = \int_{0}^{2} \sqrt{1 + \frac{9t}{4}} \, dt$$

We integrate the last expression. The integrand is a derivative, up to some numerical factor:

$$\int_{0}^{2} \sqrt{1 + \frac{9}{4}t} \, dt = \frac{2}{3} \cdot \frac{4}{9} \int_{0}^{2} \frac{3}{2} \cdot \frac{9}{4} \left(1 + \frac{9}{4}t \right)^{\frac{1}{2}} \, dt$$

$$= \frac{2}{3} \cdot \frac{4}{9} \int_{0}^{2} \partial_{t} \left(1 + \frac{9}{4}t \right)^{\frac{3}{2}} \, dt$$

$$= \frac{2}{3} \cdot \frac{4}{9} \left[\left(1 + \frac{9}{4}t \right)^{\frac{3}{2}} \right]_{0}^{2}$$

$$= \frac{2}{3} \cdot \frac{4}{9} \left(\left(1 + \frac{9}{2} \right)^{\frac{3}{2}} - 1 \right)$$

$$=\frac{8}{27}\left(\left(\frac{11}{2}\right)^{\frac{3}{2}}-1\right).$$

(You can compute the integral via Intégration par changement de variable, which is the same calculation but in a different formalism.)

Exercise 4 Take a look at the functions

$$f(x_1, x_2) = 1$$
, $g(x_1, x_2) = x_2$.

We have the following curves:

$$\alpha: [0,1] \to \mathbb{R}^2, \quad t \mapsto (t,t),$$

$$\beta: [0,2] \to \mathbb{R}^2, \quad t \mapsto \begin{cases} (t,0) & 0 \le t < 1, \\ (0,t-1) & 1 \le t \le 2, \end{cases}$$

$$\gamma: [0,1] \to \mathbb{R}^2, \quad t \mapsto (t^2,t).$$

Compute:

$$\int_A f \ d\ell, \quad \int_B f \ d\ell, \quad \int_A g \ d\ell, \quad \int_B g \ d\ell, \quad \int_\Gamma g \ d\ell.$$

Solution 4 We compute these integrals as follows:

$$\int_{A} f \, d\ell = \int_{0}^{1} \sqrt{2} \, dt = \left[\sqrt{2}t \right]_{0}^{1} = \sqrt{2}, \quad \int_{B} f \, d\ell = \int_{0}^{2} \, dt = [t]_{0}^{2} = 2$$

$$\int_{A} g \, d\ell = \int_{0}^{1} t \sqrt{2} \, dt = \left[\frac{\sqrt{2}}{2} t^{2} \right]_{0}^{1} = \frac{\sqrt{2}}{2}$$

$$\int_{B} g \, d\ell = \int_{0}^{1} (0) \, dt + \int_{1}^{2} (t - 1) \, dt = \int_{1}^{2} (t - 1) \, dt = \left[\frac{1}{2} (t - 1)^{2} \right]_{1}^{2} = \frac{1}{2}$$

For the interal of g over the third curve, we proceed as follows:

$$\int_{\Gamma} g \, d\ell = \int_{0}^{1} t \sqrt{4t^{2} + 1} \, dt$$

$$= \int_{0}^{1} t \left(4t^{2} + 1\right)^{\frac{1}{2}} \, dt$$

$$= \frac{2}{3} \cdot \frac{1}{8} \cdot \int_{0}^{1} \frac{3}{2} \cdot 8t \left(4t^{2} + 1\right)^{\frac{1}{2}} \, dt$$

$$= \frac{2}{3} \cdot \frac{1}{8} \cdot \int_{0}^{1} \partial_{t} \left(4t^{2} + 1\right)^{\frac{3}{2}} \, dt = \frac{2}{3} \cdot \frac{1}{8} \cdot \left(5^{\frac{3}{2}} - 1\right) = \frac{5^{\frac{3}{2}} - 1}{12}.$$

Note that the curves all have the same starting and end points, (0,0) and (1,1), but the curve integrals of the function may (generally) differ from curve to curve.

Exercise 5 We want to verify that the curve integrals do not depend on the direction of the parameterization. Consider the curve parameterizations

$$\gamma_{+}: [0,1] \to \mathbb{R}^{2}, \quad t \mapsto (t, 1 + \frac{1}{2}t^{2}),$$
(1)

$$\gamma_{-}: [0,1] \to \mathbb{R}^{2}, \quad s \mapsto (1-s, 1 + \frac{1}{2}(1-s)^{2}),$$
(2)

• Given the scalar field

$$f(x,y) = x(y - \frac{1}{2}x^2) = xy - \frac{1}{2}x^3,$$

show that

$$\int_{\gamma_{+}} f \, dl = \int_{\gamma_{-}} f \, dl \tag{3}$$

• Compute the tangent and unit tangent vectors of each curve, and show that $\dot{\gamma}_{+}(t) = -\dot{\gamma}_{-}(1-t)$. Show that the curve integrals along γ_{+} and γ_{-} of the vector field

$$F(x,y) = (-y,x) \tag{4}$$

are the negative of each other.

Solution 5 • We compute the first integral directly:

$$\int_{\gamma_{+}} f \, dl = \int_{0}^{1} f(t, 1 + \frac{1}{2}t^{2}) |\dot{\gamma}_{+}(t)| dt$$

$$= \int_{0}^{1} t \sqrt{1 + t^{2}} dt$$

$$= \frac{1}{2} \int_{0}^{1} 2t \sqrt{1 + t^{2}} dt.$$

We substitute $u = 1 + t^2$, so that du = 2dt. Thus

$$\frac{1}{2} \int_0^1 2t \sqrt{1 + t^2} dt = \frac{1}{2} \int_1^2 \sqrt{u} \ du = \frac{1}{2} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_1^2 = \frac{1}{3} \left(2\sqrt{2} - 1 \right).$$

The second integral can be computed directly as well, or with a change of variables. For the latter, we use

$$\int_{\gamma_{-}} f \, dl = \int_{0}^{1} f(1-s, 1 + \frac{1}{2}(1-s)^{2}) |\dot{\gamma}_{-}(s)| ds$$
$$= -\int_{1}^{0} f(t, 1 + \frac{1}{2}t^{2}) |\dot{\gamma}_{-}(1-t)| dt$$

$$= \int_0^1 t\sqrt{1 + (1 - (1 - t))^2} dt = \int_0^1 t\sqrt{1 + t^2} dt$$
$$= \int_{\gamma_+}^1 f dl,$$

where we used the substitution t = 1 - s with dt = -ds.

• Given the two parameterizations as stated above,

$$\gamma_{+}: [0,1] \to \mathbb{R}^{2}, \quad t \mapsto (t, 1 + \frac{1}{2}t^{2}),$$
(5)

$$\gamma_{-}: [0,1] \to \mathbb{R}^{2}, \quad s \mapsto (1-s, 1 + \frac{1}{2}(1-s)^{2}),$$
(6)

We compute the tangent vectors:

$$\dot{\gamma}_{+}(t) = \begin{pmatrix} 1 \\ t \end{pmatrix}, \qquad \dot{\gamma}_{-}(s) = \begin{pmatrix} -1 \\ s-1 \end{pmatrix}.$$

Their norms are

$$|\dot{\gamma}_{+}(t)| = \sqrt{1+t^2}$$

 $|\dot{\gamma}_{-}(s)| = \sqrt{1+(s-1)^2}$

It is intuitive that $\dot{\gamma}_{+}(t) = -\dot{\gamma}_{-}(1-t)$, as we check easily:

$$\dot{\gamma}_{-}(1-t) = -\begin{pmatrix} -1\\1-t-1 \end{pmatrix} = \begin{pmatrix} 1\\t \end{pmatrix} = \dot{\gamma}_{+}(t).$$

Finally, for the curve integral we find again, using the change of variables s = 1 - t, hence ds = -dt, the following identity:

$$\int_{\gamma_{+}} F \, dl = \int_{0}^{1} F(\gamma_{+}(t)) \cdot \dot{\gamma}_{+}(t) \, dt$$

$$= -\int_{0}^{1} F(\gamma_{-}(1-t)) \cdot \dot{\gamma}_{-}(1-t) \, dt$$

$$= \int_{1}^{0} F(\gamma_{-}(s)) \cdot \dot{\gamma}_{-}(s) \, ds.$$

We switch the bounds of integration into normal order and find

$$\int_{1}^{0} F(\gamma_{-}(s)) \cdot \dot{\gamma}_{-}(s) \ ds = -\int_{0}^{1} F(\gamma_{-}(s)) \cdot \dot{\gamma}_{-}(s) \ ds = -\int_{\gamma_{-}}^{\gamma_{-}} F \ dl.$$

Exercise 6 Consider the open cube

$$\Omega = (0,1)^2 = \{(x,y) \in \mathbb{R}^2 : 0 < x, y < 1\}.$$

- Show that Ω is convex.
- Let $z \in \Omega$. Show that Ω is star-shaped with respect to z.
- Show that Ω is simply-connected.

For the last part, show that any two continuous curves with the same endpoints are homotopic relative to endpoints.

Solution 6

Graphically, it is clear that each segment between points of Ω is also contained in Ω . But we prove this formally.

Suppose that $a = (a_1, a_2), b = (b_1, b_2) \in \Omega$ and $t \in [0, 1]$. We want to show that $ta + (1 - t)b \in \Omega$. We compute that

$$ta + (1-t)b = (ta_1 + (1-t)b_1, ta_2 + (1-t)b_2).$$

This point is in Ω if each coordinate is in the interval (0,1). We show that for the first coordinate, because the argument for the second coordinate is almost the same. Clearly,

$$ta_1 + (1-t)b_1 > t\min(a_1, b_1) + (1-t)\min(a_1, b_1) = \min(a_1, b_1) > 0,$$

$$ta_2 + (1-t)b_2 < t \max(a_2, b_2) + (1-t) \max(a_2, b_2) = \max(a_2, b_2) < 1.$$

We conclude that Ω is convex.

As already observed, the segment between any two points $z, a \in \Omega$ is already contained in Ω . If we fix any point $z \in \Omega$, then Ω is star-shaped. Note that we do not use any property except that Ω is convex. Indeed, every convex domain is also star-shaped (with respect to any point inside).

Given two continuous curves $\gamma_0, \gamma_1 : [a, b] \to \Omega$ with $\gamma_0(a) = \gamma_1(a) =: g_a$ and $\gamma_0(b) = \gamma_1(b) =: g_b$, we define

$$\gamma: [a,b] \times [0,1] \to \mathbb{R}^2$$

by setting

$$\gamma(t,s) = (1-s) \cdot \gamma_0(t) + s \cdot \gamma_1(t).$$

For any $t \in [a, b]$ we have $\gamma_0(t), \gamma_1(t) \in \Omega$, and since Ω is convex, we have $(1-s) \cdot \gamma_0(t) + s \cdot \gamma_1(t) \in \Omega$ for all $s \in [0, 1]$. Hence γ defines a function

$$\gamma: [a,b] \times [0,1] \to \Omega$$

Furthermore, γ is obviously continuous in both variables.

We verify the remaing conditions. For all $t \in [a,b]$ we have

$$\gamma(t,0) = (1-0) \cdot \gamma_0(t) + 0 \cdot \gamma_1(t) = \gamma_0(t) \tag{7}$$

and

$$\gamma(t,1) = (1-1) \cdot \gamma_0(t) + 1 \cdot \gamma_1(t) = \gamma_1(t). \tag{8}$$

Additionally, for all $s \in [0, 1]$, we have

$$\gamma(a,s) = (1-s) \cdot \gamma_0(a) + s \cdot \gamma_1(a) = (1-s) \cdot g_a + s \cdot g_a = g_a$$
 (9)

and

$$\gamma(b,s) = (1-s) \cdot \gamma_0(b) + s \cdot \gamma_1(b) = (1-s) \cdot g_b + s \cdot g_b = g_b.$$
 (10)

This shows that γ satisfies the required axioms.