Analysis IIT - 203(d)

Winter Semester 2024

Session 4: October 3, 2024

Exercise 1 Compute the line integral of the vector field F along the curve v, where
F:R? 5 R% (21,22) — (22,0), v :[0,27] — R?, t > (cos(t),sin(t))
Compute the line integral of the vector field G along the curve §, where
G:R> =R (x1,20,23) — (2,3,—1), §:[0,4] = R?, t s (£, cos(t),e)

Solution 1

/F Fla, wo)dl = /O T F o) (t) - A0t
L6 (e
= /0 27r—sin2(t)dt
27

27
1 1 1 1
= /0 —5t5 cos(2t)dt = [—2t + 1 sin(2t)]0 =7

— 4 — .
[ Gorasaae = [ (Gos)o)- it
I 0
2 2t

4
:/ 3 || —sin(?) | dt
0

-1 et

4
= / 4t — 3sin(t) — e'dt
0
= [2t2 + 3 cos(t) — et]g
=324 3cosd—e' —(3—1)=30+3cos4d —e!
Exercise 2 Compute the line integral of the vector field F along the curve v, where
F:R?2 5 R (21,22) — (€572, ™1%221)

and

7:10,1] = R?, t— (arctan(cos(ﬁt)Q —sin(nt)?),14+ Y1+ arctan(t))
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Solution 2 The vector field is the gradient of e***2, and so we can use the formula for vector
fields that admit a potential. We find that

[ Fae= [ via= 1) = 160)
Now we only need to compute the function values of f. Explicitly,

~(0) = <arctan(cos(7r0) —sin(70)?),1 + m)
= <arctan(1), 1+ %) = (m/4,2)

v(1) = <arctan(cos(7rl) —sin(71)?),1 4+ /1 + arctan(1 >
<arctan(1), 1+ /14 77/4) = <7T/4, 1+ /1+ 77/4)
We then compute

FO() = FO0)) = exp (F(1+ YT+ 7/2)) = exp (n/2).

Exercise 3 What is the length of the graph of the function g(z) = 22 over the interval [0,2]¢
Simplify as much as reasonable.

Solution 3 We can express the graph as a curve
vi[0,2] = R, tis (4,13)

As mentioned in the lecture, the integral of 1 along that curve gives the length. Hence we find:

2 2
31 9t
1, -t2 dt = 1+ —dt
(YQ‘ Av+4

We integrate the last expression. The integrand is a derivative, up to some numerical factor:

1dl=

1
/ 2 39 9\ 2
1 Y
/ +tdt 39/024<+4t> dt
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8§ ([11\2
:27 ((2) . ) .
(You can compute the integral via Intégration par changement de variable, which is the same
calculation but in a different formalism.)
Exercise 4 Tuake a look at the functions
flx1,29) =1, g(x1,22) = 2.

We have the following curves:

a:[0,1] =R tes (t1),
(t,0) 0<t<1,
0,6—1) 1<t<2,
v:[0,1] = R% e (12)1).

/fdﬁ, /fdﬂ, /gdﬁ, /gdﬁ, /gdﬁ.
A B A B r

Solution 4 We compute these integrals as follows:

/Afdez/olx/ﬁdt:[\@t];:\/i /dee:/j dt = [ = 2

1
/Agdez/olt\/idt: [\ft?]o:‘f

/Bgdﬁz/ol(())dth/j(t—l)dt:/IQ(t_l)dt: [;(t_1)2ﬁ:;

For the interal of g over the third curve, we proceed as follows:

1
/gdﬁz/t\/4t2+1dt
r O1 1
:/t(4t2+1)2 dt
0
1 ('3 2, %
-8'/0 5S4 +1)7 dt
1

1 3 2 1 /.3 55 — 1
2o o (42 12dt:—-7-<5’—1): .
8 /0 (47 +1) 3 8 \”” 12

Note that the curves all have the same starting and end points, (0,0) and (1,1), but the curve
integrals of the function may (generally) differ from curve to curve.

B:[0,2] — R tr—>{

Compute:




Exercise 5 We want to verify that the curve integrals do not depend on the direction of the
parameterization. Consider the curve parameterizations

1
T+ [07 1] - R27 t— (ta 1+ §t2)7 (1)
1
10 B s (1-s 14 (1 8)°), (2)

e Given the scalar field

1 1
flayy) =2y — 52%) = 2y — Sa°,
2 2
show that
/ fFdl = / fdi (3)
Y+ =
e Compute the tangent and unit tangent vectors of each curve, and show that 4 (t) = —5_(1—
t). Show that the curve integrals along v+ and ~v— of the vector field

are the negative of each other.

Solution 5 o We compute the first integral directly:
! 1
[ ra= [ seas @k
T+ 0 2
1
= / tV' 1+ t2dt

0

1 1
= / 2t/ 1 + t2dt.
0

2

We substitute u = 1 + t2, so that du = 2dt. Thus

1! 1 /2 172 512 1
/ 2t\/1—|—t2dt:/ Vudu =~ Zud :7<2\/§—1).
2/, 213 ], 3

2 Jo

The second integral can be computed directly as well, or with a change of variables. For the
latter, we use

1
/fdl—/o f(1—s,1+%(1—3)2)\1_(3)\613
= [rers doka - o
1
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:/ t/1+ (1= (1—1t))2dt = /t\/1+t2dt

0 0
fdi,
T+
where we used the substitution t =1 — s with dt = —ds.

e Given the two parameterizations as stated above,
1
+:[0,1] = R?, te (t,1+§t2) (5)
0,1 = R? s+ (1—s,14 = (1—5)) (6)

We compute the tangent vectors:

Their norms are

(0] = V1+1t2,
- ()l = V1+ (s —1)%

It is intuitive that 44 (t) = —y—(1 —t), as we check easily:

S — <1 b 1) . (1) 4 ).

Finally, for the curve integral we find again, using the change of variables s =1 —t, hence
ds = —dt, the following identity:

1
/ Fdl = / Flyp (1)) - 44 (1) dt
/F (1—1))-4_(1—t) dt

- / F(y-(s)) -4 (s) ds.

We switch the bounds of integration into normal order and find

0 1
[ P (e ds = = [ PG-(9) - 4-(s) ds = - / P

Exercise 6 Consider the open cube

Q:(O,l)zz{(x,y)ER2:0<x,y<1}.
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e Show that € is convex.
o Let z € Q). Show that Q is star-shaped with respect to z.
e Show that Q) is simply-connected.

For the last part, show that any two continuous curves with the same endpoints are homotopic
relative to endpoints.

Solution 6

Graphically, it is clear that each segment between points of 2 is also contained in 2. But we prove
this formally.

Suppose that a = (a1,a2),b = (b1,b2) € Q and t € [0,1]. We want to show that ta + (1 —t)b € Q.
We compute that

ta+ (1 —t)b= (ta; + (1 — t)by,taz + (1 — t)b2) .

This point is in Q if each coordinate is in the interval (0,1). We show that for the first coordinate,
because the argument for the second coordinate is almost the same. Clearly,

ta; + (1 —t)by > tmin(aq, b1) + (1 — t) min(ay, by) = min(a, by) > 0,

tas + (1 — t)by < t max(ag,be) + (1 — t) max(az, by) = max(az, b)) < 1.

We conclude that ) is convez.

As already observed, the segment between any two points z,a € §2 is already contained in ). If we
fix any point z € Q), then Q is star-shaped. Note that we do not use any property except that € is
convex. Indeed, every convex domain is also star-shaped (with respect to any point inside).

Given two continuous curves yo, 71 : [a,b] = Q with vo(a) = y1(a) =: go and vo(b) = v1(b) =: g,
we define

7 : [a,b] x [0,1] — R?
by setting
Y(t,s) = (1 —=s) () + 5 7(t).

For anyt € [a, b] we have y(t),v1(t) € Q, and since 2 is convex, we have (1—s)-vo(t)+s-71(t) € Q
for all s € [0,1]. Hence v defines a function

vt [a,b] x [0,1] — Q2

Furthermore, v is obviously continuous in both variables.



We wverify the remaing conditions. For all t € [a,b] we have
Y(t,0) = (1 =0) - 70(t) + 0 - 71 (t) = y0(t)
and
Y(t,1) = (1= 1) -0(t) + 171 (t) = n(0).
Additionally, for all s € [0,1], we have
Y(a,s) = (1=s) -y(a)+s-7(a)=(1-5)ga+s ga=0a
and
Y(b,5) = (1= 5)-70(0) +s-71(b) =(1—5) g+ 59 =g

This shows that v satisfies the required axioms.



