
Analysis III - 203(d)

Winter Semester 2024

Session 3: September 26, 2024

Exercise 1 Consider the scalar field f(x1, x2) = x1x2.

� Describe its level sets for the values −2,−1, 0, 1, 2.

� Draw the gradient at a few points, such as

(1, 0) , (0, 1) , (1, 1) , (−1,−1) ,
(√

2,
√
2
)
,
(√

2,−
√
2
)

(1)

� Recall the hyperbolic sine and hyperbolic cosine functions sinh(t) and cosh(t). Sketch the
curve

γ : (−∞,∞) → R2, t 7→ ( cosh(t), sinh(t) ) (2)

and compute its tangent vector γ̇.

Solution 1 The tangent vector γ̇ is given by

γ̇(t) =

(
sinh(t)
cosh(t)

)
.

x The figure in total has got the following shape:

Exercise 2 Consider the curves

γ : [−1, 1] → R2, t 7→ (t3, t2)

δ : [−1, 1] → R2, t 7→ (cos(t), sin(2t))

Draw them. Are they simple, closed, differentiable, or regular? What are their tangents?
Show that γ is the graph of a function in the first coordinate.

Solution 2 For the first curve the tangent is given by γ̇(t) = (3t2, 2t). Moreover the curve is
simple (it does not intersect itself) and differentiable. However, it is not regular since γ̇ = 0⃗ at
t = 0.

For the second curve we have the tangent is given by δ̇(t) = (−sin(t), 2cos(2t)). Moreover the
curve is simple (it does not intersect itself), differentiable and regular (since δ̇ ̸= 0⃗).

1



x

y

-3 -2 -1 1 2 3

-2

-1

1

2

1

2

−1

−2

γ

(a)

(b)

(c)

(d)

Figure 1: The dotted arrows show the gradients at the points (0, 1) (a), (1, 0) (b), (1, 1) (c), and
(−1,−1) (d). The solid black line is the curve γ.

For the first curve γ, we can define another coordinate s(t) := t3, such that s([−1, 1]) = [−1, 1].
Then, the curve can be expressed in s as γ(s) = (s,

3
√
s2), and thus is a graph in the first coordinate.

Note here, that we cannot apply the same method to the second variable. Indeed, defining s̃(t) := t2

would not work, as s̃([−1, 1]) = [0, 1]. Therefore, the corresponding change of variables would not
be bijective.

Exercise 3 Compute the line integral of

f : R2 → R, (x1, x2) 7→ 1 + x21 + x22

along the two curves γ and δ, given by

γ : [0, π] → R2, t 7→ (− cos(t), sin(t))

δ : [−1, 1] → R2, t 7→ (t, 0)

Compare the results. What are the endpoints of the two curves?

Solution 3 ∫
Γ
f(x1, x2)dℓ =

∫ π

0
(1 + cos(t)2 + sin(t)2)|γ̇(t)|dt
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=

∫ π

0
(1 + cos(t)2 + sin(t)2)

√
cos(t)2 + sin(t)2dt

=

∫ π

0
(1 + 1)

√
1dt

=

∫ π

0
2dt

= 2π.

The endpoints of the first curve are: γ(0) = (−1, 0) and γ(π) = (1, 0).
Let us now compute the second integral. We see∫

Γ
f(x1, x2)dℓ =

∫ 1

−1
(f ◦ δ)(t)|δ̇(t)|dt

=

∫ 1

−1
(1 + t2)

∣∣∣∣(10
)∣∣∣∣ dt

=

∫ 1

−1
(1 + t2)dt

= 2

∫ 1

0
(1 + t2)dt

= 2

[
t+

t3

3

]1
0

=
8

3
.

Note that from the third to fourth line, we have used that the integrand was even. The endpoints
of the second curve are: δ(−1) = (−1, 0) and δ(1) = (1, 0).
The exercise also shows that integrating a function f along different curves may give different
results, even if the curves share the same starting and endpoints.

Exercise 4 Compute the line integral of f : R2 → R along the circle C with radius 3 centered at
the origin, where

f : R2 → R, (x1, x2) 7→ 3x22 + x32

Hint: you must first find a parameterization of C.

Solution 4 We may choose the following parameterization for the circle C:

γ : [−π, π] → R2, t 7→ (3 cos(t), 3 sin(t))

∫
Γ
f(x1, x2)dℓ =

∫ π

−π
(f ◦ γ)(t)|γ̇(t)|dt
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=

∫ π

−π

[
3(3 sin(t))2 + (3 sin(t))3)

] ∥∥∥∥(−3 sin(t)
3 cos(t)

)∥∥∥∥ dt
=

∫ π

−π
3
[
27 sin2(t) + 27 sin3(t))

]
dt

= 81

∫ π

−π
sin2(t)dt+ 81

∫ π

−π
sin3(t))dt

The second integral is 0 since the integrand is uneven. For the first integral we use the cosine
half-angle formula (1− 2 sin2(α) = cos(2α)).

81

∫ π

−π
sin2(t)dt = 81

∫ π

−π

1

2
− 1

2
cos(2t)dt = 81

[
1

2
t− 1

4
sin(2t)

]π
−π

= 81π

Exercise 5 You are excavating a tunnel deep beneath surface through rock from a point A =
(−1, 0) to a point B = (1, 1) along a curve Γ. Geological observations show that the rock mass
density of the region can be modeled by

f(x1, x2) = exp(x1 + x2).

The costs and abbrasion of the tools are therefore proportional to the curve integral∫
Γ
f dl

Compute the integral along the straight line

γ : [0, 1] → R2, t 7→ (−1 + 2t, t)

Solution 5 We set up the first curve integral and compute:∫
Γ
f · dl =

∫ 1

0
exp(−1 + 2t+ t)∥(2, 1)∥dt

=

∫ 1

0
exp(−1 + 2t+ t)

√
5dt

=
√
5

∫ 1

0
exp(3t− 1)dt

=

√
5

3

∫ 1

0
3 exp(3t− 1)dt

=

√
5

3

[
exp(3t− 1)

]1
0
=

√
5

3
(exp(2)− exp(−1)) =

√
5

3

(
e2 − 1

e

)
.

Exercise 6 A matrix A ∈ Rn×n is called symmetric if A = At and antisymmetric if A = −At.

1. Show that a matrix that is both symmetric and antisymmetric must be zero.
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2. Show that every matrix B ∈ Rn×n can be written as a sum A = A1 + A2 where A1 ∈ Rn×n

is symmetric and A2 ∈ Rn×n is antisymmetric.

3. Let f : Rn → R be a scalar field with continuous partial derivatives up to second order. Show
that its Hessian is a symmetric matrix.

4. The trace of a matrix is the sum of its diagonal elements. Find a scalar field in R2 whose
Hessian is not zero but has zero trace.

5. Let F : R2 → R2 be a differentiable vector field. What is the antisymmetric part of its
Jacobian?

6. Let G : R3 → R3 be a differentiable vector field. What is the antisymmetric part of its
Jacobian?

7. What do you notice in the answers to the last two questions?

Solution 6 1. Assume A = (aij)ij ∈ Rn×n is both symmetric and antisymmetric. From the
symmetry of A we deduce for an entry aij that aij = aji. From the antisymmetry of A we
deduce that aij = −aji. Therefore aij = −aij for all i, j and hence aij = 0 for all i, j.

2. We can set A1 :=
1
2(B +Bt) and A2 :=

1
2(B −Bt).

3. By Schwartz’ theorem, it holds that ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

for all i, j. Hence, the Hessian is
symmetric.

4. We can use f(x1, x2) = x1x2.

5. Writing F = [Fx, Fy]
⊤, we find that the antisymmetric part of the Jacobian is given by

1

2

(
0 ∂Fx

∂y − ∂Fy

∂x
∂Fy

∂x − ∂Fx
∂y 0

)

6. Similarly to before, we find by writing G = [Gx, Gy, Gz]
⊤ that the antisymmetric part of the

Jacobian is given by

1

2

 0 ∂Gx
∂y − ∂Gy

∂x
∂Gx
∂z − ∂Gz

∂x
∂Gy

∂x − ∂Gx
∂y 0

∂Gy

∂z − ∂Gz
∂y

∂Gz
∂x − ∂Gx

∂z
∂Gz
∂y − ∂Gy

∂z 0

 .

7. We notice that the entries in the antisymmetric parts of the Jacobians contain already all
the information for the curl of the respective vector fields (in 2D and 3D). More generally,
the antisymmetric part of the Jacobian of a vector field F : Rn → Rn is sometimes identified
as the “curl” of that vector field in any dimension.
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