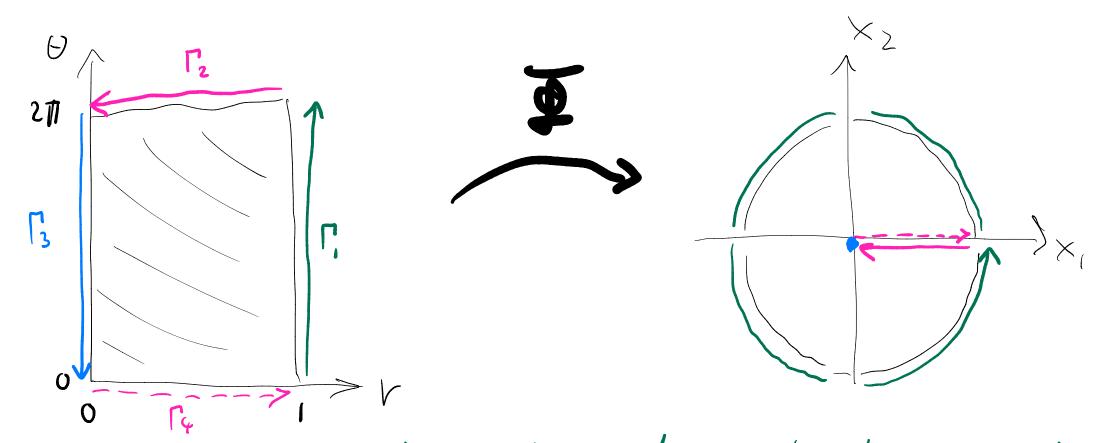
November 7

Stokes theorem

Fourier Analysis

Tet another look out vadial coordinates



we observe: - right side is what we want: parameterization of disk boundary

- The integrals along the lines corresponding upper and lower put of the vectoryle cancel out on the physical disk, it's the same line but in different directions
- The integral along the left-side is zero

Hence only the put corresponding to the physical boundary remains If $\gamma: [0,1] \to \mathbb{R}^2$ parametorices the boundy of the parameter domain $S_2 = (0,1) \times (0,2\pi)$ Then I of mys the 4 bundy preces into the dish $\int \vec{F} \, dl = \int \vec{F} \, dl + \int \vec{F} \, dl +$ physical boundary

integral

=0 Cancel out, = 0

Summary of 3D rector analysis

- Divergence theorem in 3D
- Stokes theorem in 3D

white the divergence theorem and Green's theorem in 2D are similar, the divergence theorem and Stokes' theorem in 3D are quite different.

Divorgence in 3D

ony for closed surfaces without boundary

For example: soup bubble

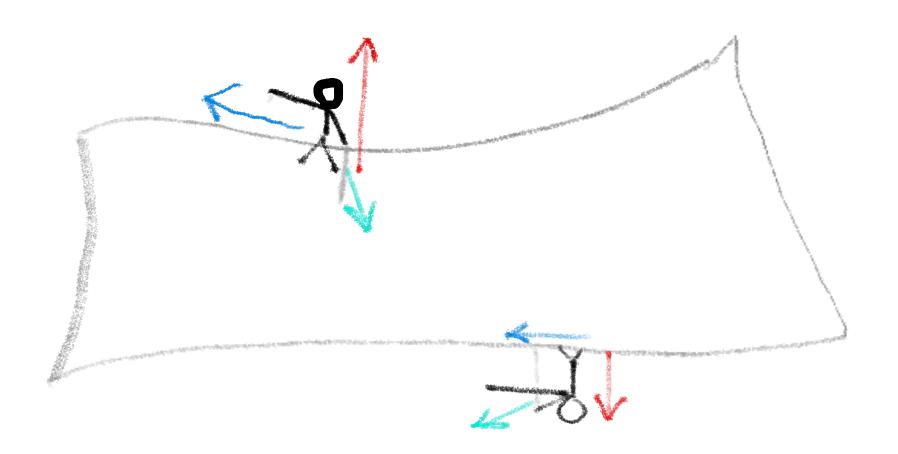
The surface sphits
3D space into
inside and outside

Hence, we can determine hich unit normal points outside

* in principle

Stokes theorem in 3D

For surfaces in 3D with boundary. No inside and outside. Whatover orientation (surface normal) we choose for the surface, the orientation of the boundary (tangent direction) must match.



Coda: change of variables, revisited

Suppose that X, Y = 1R2 are two domains and that I: X > Y is differentiable and ignortive If f: Y -> IR is a scalar function, then $\iint F(y) dy_1 dy_2 = \iint f(\mathbf{I}(x)) \cdot |\det D\mathbf{I}(x)| dx_1 dx_2$

(Integral transformulation formula)

Here,
$$|\det D \mathbf{I}(x)| = |\det \begin{pmatrix} \partial_1 \mathbf{I}_1 & \partial_2 \mathbf{I}_1 \\ \partial_1 \mathbf{I}_2 & \partial_2 \mathbf{I}_2 \end{pmatrix}|$$

This formula is sinclin to the formula for surface sitespuls

If
$$f de = \iint f(\mathbf{I}(s,t)) \| \partial_s \mathbf{I} \times \partial_t \mathbf{I} \| ds dt$$

S

conceptually, the fundor measures how

 \mathbf{I} "stretches" the area

Suppose that \$\overline{D}:52 \rightarrow 1123 maps into \time:

$$\underline{\underline{\mathcal{D}}}(s,t) = (\underline{\mathcal{D}}_{i}(s,t), \underline{\widehat{\mathcal{D}}}_{2}(s,t), 0)$$

Moral of the story:

The formula for surface integrals
generalizes the change of variables formula
(changement de variables)

Second part of Analysis III

Fourier Analysis & Applications

- · Extansion of Analysis 1
- · Preparation for signal processing
 - representation of signals by their frequencies
 - Application: audio, image processing
- . Solution of ODEs & PDEs

ordinary differential equations

partial differential equations

1. Distribution theory.

We develop a theory of Generalized Functions

2.1. Instead of point evaluations, we can "probe" functions via rute gration against other functions.

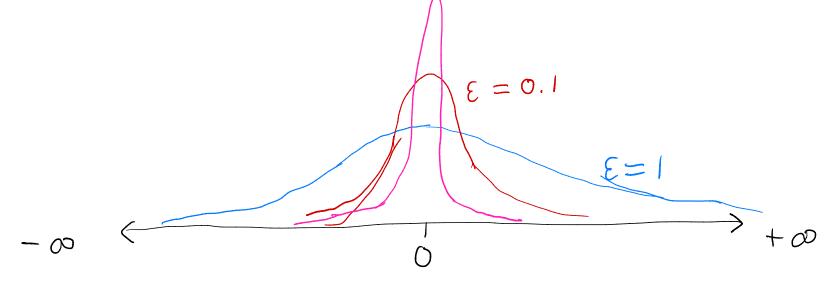
If $\psi: \mathbb{R} \to \mathbb{R}$ is a function, for example, we can "probe" it with an integral against some function $g: \mathbb{R} \to \mathbb{R}$

 $\int_{\mathbb{R}} \varphi(x) g(x) dx$

huterpretation:
How does 9 react with the
signal g?

$$g_{\epsilon}(x) := \frac{1}{\sqrt{2\pi'}\epsilon} e^{-\frac{x^2}{2\pi'}\epsilon}$$

E is a pavameter



First, we show that $g_{\epsilon}(x)$ has integral one:

$$\int_{\mathbb{R}} g(x) dx = \frac{1}{\sqrt{2\pi} \epsilon} \int_{\mathbb{R}} e^{-x^2/\epsilon^2}$$

 $\left(\text{substitute } u = \frac{\pi}{\epsilon}$ $du = dx/\epsilon \right)$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-u^2} \varepsilon du = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-u^2} du$$

Interpretation Since $g_{\epsilon}(x)$ has integral 1, $\int_{R} \varphi(x) g_{\epsilon}(x) dx$ is an average of function values of φ with some "weight" g_{ϵ}

As $E \rightarrow 0$, the weight will be more concentrated around x = 0. We think of it as an averaged point evaluation.

If φ is continuous, then $\lim_{E \rightarrow 0} \int_{\mathbb{R}} \varphi(x) g_{\epsilon}(x) dx = \varphi(0)$

In many practical applications, we don't have access to point values of a signal, but any to "averages" like this or similar

Q: Does there exist a function $g_0: \mathbb{R} \to \mathbb{R}$ with such that $\int_{\mathbb{R}} g_0(x) \, \varphi(x) \, dx = \varphi(0)$?

A: No, but there exists a generalized function with that property

Specifically, the Dirac-Delta at zero is the functional $So: C^o(\mathbb{R}) \to \mathbb{R}$, $f \to f(o)$

This is a functional, i.e., a real-valued function of functions, mapping each function to its value at x=0.

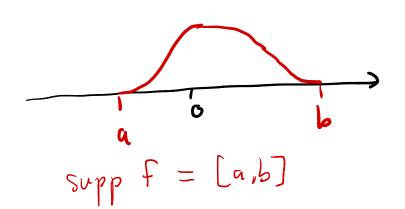
Moreover, its "integral" is the value of the constant function f(x) = 1, which is $S_0(f) = 1$.

$$\int_{\mathbb{R}} S_0 dx = \int_{\mathbb{R}} S_0 \cdot 1 dx = \lim_{\epsilon \to 0} \int_{\mathbb{R}} g_{\epsilon}(x) 1 dx = 1$$
purely heuristic

Putting this on a more rigorous footing, we introduce distributions.

2. Definitions

In what follows, the support supp f of a function $f: \mathbb{R} \to \mathbb{R}$ is the closure of $\{x \in \mathbb{R} \mid f(x) \neq 0\}$



$$supp f = [a,b] o [c,d]$$

Example: Consider the function
$$\varphi(x) = \begin{cases}
e^{-1/1-x^2} & -1 < x < 1 \\
e^{-1/1-x^2} & e^{-1/1-x^2}
\end{cases}$$
otherwise

The support of φ is the interval [-1, 1], obviously. What is not as obvious: the function φ has derivatives of all orders, that is, $\varphi \in C^{\infty}(\mathbb{R})$

