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Yet another look at radial coorchnates

①

·
O ↑4

we observe : - right side is what we want : parameterization of dish boundary
- The integrals alay the lines corresponding opper and lawer

put of the rectangle cancel out

on the physical disk , it's the same line hot in

different directions
- The integral along the left-side is zero



Hence only the put corresponding to the physical bound remains

If J : (0 . 1) -> IP2 purameterices the bondy of
the parameter domain

2 = (0 , 1) = (0, 2π)

Then oy mups
the 4 burly pieces into the dirk

SFl = SER + SEre + SER + SEM
Gog FoP Gotz Got Gore

j ↑ jphysical boonday
integral -

=o

cancel out
,

= O



Summary of 3D rector analysis

- Divergence theorem in 3D

- Stokes' theorem in 3D

While the divergence theorem and Green's theorem

in ID are similar, the divegence theorem and

Stokes' theorem in 3D are quite different.



Divergenceinsurfaces without boundary
,

For excuple : soap bubble
The surface splits
3D space into

inside and outside
- -

Hence
, we can

determine which

unit normal points
outside
-



->

Stokes' therem in 3D

For surfaces in 3D with boundary.
No inside and outside.

Whatever orientation (surface normal) we choose for the surface,

the orientation of the bounday (tungent direction) most match.

&



Coda : change of variables,
revisited

suppose that X
, Y : IR2 are two domains and

that : X- > Y is differentiable and injective

I F : - > ID is a scalar function
,
then

SJF() dydyc = [F(())
· IdaD)/dxiden

[(x)

/Integral transformulation formula



Here,
IdD(x)) = (det)))

This formula is simelm to the formula for surface integrals

SFdo = [f(sti) llGl dad
S y

conceptually , the factor measures how

& "stretches" the area

Suppose that I : 2 - > IR3 maps into X
, x5-plane :

sit) = ([ , 1.t)· Existi. 0



Let S := (2) be the surface in the zix-plane. Then

SSf(x)do = [f(t),st ,o lldA↑ m

① =
Xz= 0
over S

o = () : 1) = 16 ,
-G

2 ,
6tE2-GE Il

using definition of cross product I
62 , 6+

and that the third coordinate of lat wave/
& is constant zero



Moral of the story :
The formula for surface integrals

generalizes the change of variables formula

(changement de variable)



Second part-f
AnalysisI

FourierAnalysis&

Applications



· Extension of Analysis 1
· Preparation for signal processing

- representation of signals
by their frequencies

- Application : ardio, image processing
· Solution of ODEs & PDEs

y ↑
ordinary differential partial differential
equations equations



-Distributiontheentizefunction
1

.
1. Instead of point evaluations, we can "probe"

functionswin integration against other functions.

If 4 : R-IR is a function
,
for example , we can "probe" it

with an integral against some function : R-IR

Interpretation :

SY()g(x) d How does I react with the

signal g
?



For example , consider the Gaussian bump
- x

ga(x) :=
E is a parameter

E= /.-
T

- ⑳ 6 +o

First
,
we show that ga(x) has integral one :

substitute U=*
=See I = I



-Sad
IR

Exercise - 1

Interpretation Since ga(x) has integral 1
, Sp4()gg() dx

is an average of function values of I

with some "weight"gs

As E -> 0
,

the weight will be more concentrated around X = 0.

We think of it as an averaged point evaluation.

If Y is continuos , thenlim S4()gg()dx = Y (0)
5-8



I many practical applications, we don't have access to point values
of a signal, but any to "averages" like this or similar

Q : Does there exist a function go : /RBID with

integral 1 such that Ggo()Y(x)dx = Y() 3

A : No
,
but there exists a generalizedfunction

with that property

specifically, the Dirac-Delta at zero is the functional

So :(OCR) -> I
,
f -> f(0)

This is a functional
,

i

. e., a real-valued function of functions,

mapping each function to its value at X = 0.



Moreover
,

its "integral" is the value of the construct function

f(x) = 1
,

which is Golf) = 1.

[S , 50dx = 980 - 2dx =limg2d-=
IR

Frely heuristic

Putting this on a more rigorous footing , we introduce

distributions.

2.Definitions

In what follows
,
the support supp of a function f:IR-> I

is the closure of EX + /R / f(x) 03



- -M
- -b)

a

suppf = [arb) suppf = (a , b] o (c d]

Example : Consider the function

4(x) = 3 ek
-<x2)

othermise
O

The support of Y is the interval [1 . 13
,

obviously,
What is not as obvious : the function y has derivatives

of all orders
, that is , Ye COCIR)



AsX -> 11

1 - x - 0

-Y-x - - 0#
O

- I I

We check Y is differentiable : 41 = 0 outside (1 . 17

4'(x) = e
+x

. (1)(1 - xz)
-2

. (2))

= e-Tx over (-1 , 1)
( - x2)2

As X-> 11
,

etx goes
to zero

,
faster

, then2

blows up

(goes to of

Hence



y'(x) = 3
e-Y-x·x2)2 if x e ( - 1 , 1)

if x & (- 1 , 1)
O

Similar arguments apply fr the higher derivatives ...

Notice : Y has compact support , that is, suppy is within a bounded

interval
,

but the function is smooth (differentiable infinitely often

We let

D : T CO(ID) = <Y + COD) / supply -
bounded interval



We let D' be the set of distributions over IR,

which is theeet of linear continuous functionals over &

Explicitly, - D 'means F : D -> I such that

of is finite

of is linear :

VageR ,
y ,

4 t8 : f(ae + Bu) = a f(x) + Rf(y)

· F is "continuous", that is, "f changes
little if the input changes little

"

Explicitly , for each (ab) = It there exist ChO and KE No such that

VY = D : supp(y) - (ab) If(y)( * C [max (6
: y(x)/

oik
=E

We will also write (f . x) : = F(y)



Examples

1) Let f be any integrable function over 1. Then

(f , 4) := Sf(x)Y(x) d
is a

distribution
.

Indeed :

· (f , 4) is always finite

· (f . 6) is linear in y

(f, ay + Bx) = x(f, a)
+ B(f,4)

· (f , 4) is continuous :

1) f , 4)) = (ScrF()@d) [ ISFA)(d) · max
I

num
=: C



Here
,
(f

,
e) is the preferable notation over f(4),

even though in practice there is no amhiquity what is meant

Distributions that are integrable functions are callederegular
[I fact , locally integrable functions work tool

but not all distribution are regular . In that sense
,

distributions are abo

called "generalized functions"

2) Dirac-Delta / Diruc pulse/point mass
9

6. : D + 1 ,

x 1> 4(0) - X

obviously, So is finite and linear. Moreover

FyeD : 160(y)) = 14(071 mix(0(x)
XEIR

Here, C=



3) Dirac comb

- (4) : = Fuz4in
- 2

· For each P ED ,

the value 11(4) is finite , because the

support of Y
is a

bounded interval
, say , (a ,b)

,
which can

only contain finitely many integers . Hence

In(4) := Enc24(n) =Gunone
n = (a -b]

is a som of only finitely many terms.

The interval Ca .b) will always depend on I

· S
,
(4) is linear because for all &

,
BEIR and 4, 4 =D .

we have 24 + Be =D (meming , D is a rector space],
so x4 + 14 has support within some

interval from [ab)



which also includes the support of 4 and It

A
,
194 + BP)= an+ suppy sup, , (a . b)

n = [a , b)

=4) + 1) = 1
,
(x) + B(

he 2
he (a .b] nE[a , b]

This shows that I
,

is linear.

o Lastly , we shar the continuity condition : for every
bounded closed internal

[a . b) - IR there exists be No and 220 and that

for all YED with Suppo [a , b)

15 .
(0)) -> CC makin

Indeed
, given (ab] = IR

,
there exist at most

, say , M integers

within [a . b). Hence



5(4) = Quez4(n) if YeD with suppo = (a , b)

he (a , b]

* only M terms

=> 10 ,1/C(Y( I M .m
triangle inequality

n = (a , b)

That means
,

for any
Cab) EIR

,
we can choose k = 0 and

C = M ,

the number of integers in Carb)·

The Dirac comb is a model for a periodic signal of pulses



4) We consider the distribution

(T , 4) := Soy()dx
O Given YED,

the integral is finite : if suppla Carb]
·

then

1ST . 4)) = /900()dx) < 901)/ actually own

from a to b

-
> (b - a) . max

Ix

So (T. e) is finite
,

and we have shown the continuity condition :

far all (a . b) - IR we have

V DED with supple (ab)
: ((T. 4)) - (b- a) maxx

· We finish with shaming that T is linear :

Let <, Be IR ,
and 4, 2 =D ,

then

(T , xy + 34) = 9ax() + 14()dx



= a So + B(84(x)dx
= x(T , e) + B(T, N)

Hence T is a distribution.

S) Consider T : D -> IR with (T. D) : = 4"(H)

Then (T , Y) is finite and satisfies the continuity condition

(T,
Y)) = 1x" (H) = max 14 "(x)/

X IR

Lastly ,
that T is linear is obvious

·



6) We have the shifted Dirac delta. Let at IR.

Sa : D -> 1
,

Y 1 Y (a)

The Divac Delta at zero
.

So
,

is a special case

If we interpret the Dirac Delta at zero as a "generalized function"

6
.
then Ga(x) : = S(x-a)

7) Scaled Dirac comb

Ac : D + 1
,

Y HY(n
where L>O is a period

Conceptually , this is a periodic signal of
Dirac Deltas

with period .

I



4 Derivativesofdistributions

Let fe COCI) and YED with supp ? (a . b]. Then

5 +' (x)y(x)dx = gf'()y(x)dx
-D

(integration by parts)
= f(b)4(b) - f(a)y(a) -g()y()d

zu
un

= O
= O

Inspiredly this
,
for any

feD'we define

(f' · Y) = - (f , y1)

This defines a distribution F , which is theAstributionalderivative of f.

Conceptually , we define the distributional derivative of my
distribution -

ly rolling over the derivative onto the argument o, as if we and performed

an integrationly parts



Examples
-

1) Let Fe CI) .

Then f is a distribution , and its distributional

derivative is just its regular derivative.

that means that
the distributive derivative generalizes the classical

derivative .
We also call it a "generalized derivative".

2) Let T : D -> I be

<T, Y) = 904() dx Fundamental theorem of calculus

↓
Then

(Tiy) = - giy'(x) = y(0) = So(d)

Another perspective : we have

(T.
3) = 90H()e()d ,

where H =E

The distributional derivative of H(x)
,
interpreted

as a distribution , is the Dirac Delta at X =0, Feaviside
--

I
corresponding to the jump of If at X = 0.
-



3) The distribution T : D -> IR

(T.
x) = S : 4)dx Fundamental Theorem of culculus

has derivative ↓

(Tix) =
- 9 % y()dx =

- y() + x()

=

- (5 ,, 4) + (80 , 47

Another perspective : X0

(T .
xX = 9

+*

g(x)y()dxg(x)= 02X)

- a

E
O 1 < X

The distributional denivative of g ,
when interpreted

as distribution , corresponds to the upward/positive
jump at X = 0 and the downward/negative jomp at X

=/

servation : Every
function that is locally) integrable M

has a distributional derivative, but that distributional

-
derivative may

not be a function. -



4) Let F : /R- > I is piecewise continuous and differentiable over

the segments

1-8
,

90)
,

(do .
9 . ) , (a , da), ...

. ,
Can and

,
(am , wo)

-i
-

--an an
do a

,
92

This function describes a distribution

(f , y)i = S f(x)y(x)dX
We study the distributional derivativef' in

more detail

(f,y) = - (f , y)

=

- (
+

of(x)



We split the integral

(f(4) = --
We use integration ly purts on each interval

, utilizing that t is differentiable
over each of the subintervals :

=

-+)4(90) +(x)y(x)dx

limf(x)
X90

-
ba-

↑ lim f(x)
XX9i- 1

X 9;

+ f(an -)y(an) + g) ex-

↑
lim f(x)
XX9n



=+F +If

+ [Da- f(ai
+)

jump off
at the point a:

This is the formula fr the distributional derivative of piecewise

differentiable functions with finitely many
intervals

that F is continuous over IR. Then f has no jumps.
Suppose
Hence , in

that special case,

&o

(f' , y) =(4)+4
In particular, the distributional derivative is then a regular function !



If F is continuous and piecewise differentiable, then its distributional

derivative can be represented as

g f'(x)y(x)dx
- piecewise

derivative over each subinterval

defined everywhere except at
the interval boundaries.

This function f is called weak derivative off
-

-

-
Distributional

T classical derivatives C
Weak derivatives & Derivative I-

piecewise derivative

#Analyse
I&

fatinouspiecia

Refinition : Let f : -I be continuous and let T- &

(T ,
b) == f f(x)y(x)dx

If the distributional derivative of T has the form



(T' , 4) = fg(x)x(x)dx
for some function g(x) , then we call of

the

weak derivative of f.

5) Consider the continuous piecewise differentiable function

go xc - 1

f(x) = S X + 1 + X0

-x+ 1 o = X/

g 1 < X

"hat function"

+



Since the function is continuous
,

its distributional

derivative his the form

i --2

I

↑

↑

- I

I
Hence

f'(x) = Sio<x
1 < X

O

This distributional is also the weak derivativee.



Let's compute thesecond distributional derivative :

fl = G - 28 + G

↳



6) Consider again the Heaviside function

H(x) = 0xS X = 8

-
Correspondingly,

H'(x) = Go



7) Consider the staircase function

f(x) = Snif x (n - 1
, n)

Its distributional derivative is

f= #
the Dirac comb

· ilii ...



Let F : M- > I be piecewise differentiable in the fulloring sense :

-

There exists a sequence

... (ay(a< do < a
,
)az) ...

such that F is continuous
and differentiable over (di , d+1)

Then its distributional derivative equals

(fiy) = Enez Safe de

+ Enez P(an) [f(an -) - f(an
+)

(generalizes the discussion for infinitely many intervals)



8) Consider the distributional derivatives of the Dirac Delta :

(50 , 4) = y(0)

(80 ,
y) = - y'()

(80" , 9) = 4"(0)

(85 ,
y) = - 4 (0)

8

·

(g, 4) = ( 1)
" y((0)


