Analysis III - 203(d)

Winter Semester 2024

Session 14: December 19, 2024

Exercise 1 Given the following functions over an interval [0,1),

(a)
$$f(x) = x$$

(b)
$$g(x) = x^2$$

(c)
$$h(x) = e^x$$

(d)
$$s(x) = sin(\pi x)$$

sketch their extension to

- a periodic function with period 1,
- an even periodic function with period 2,
- an odd periodic function with period 2.

State the formulas for the even and odd 2-periodic extensions over the interval [-1,1].

Exercise 2 Consider the function

$$f:[0,1]\to\mathbb{R},\quad x\mapsto x^3.$$

Extend this to an odd function with period T=2. Sketch the graph of that function from -2 to 2. Compute its Fourier coefficients in standard form. Compute the complex Fourier coefficients.

Exercise 3 Suppose that

$$f(x) = \begin{cases} x+1 & if -1 < x < 0 \\ 1-x & if 0 < x < 1 \\ 0 & otherwise. \end{cases}$$

$$g(x) = \begin{cases} \frac{1}{2} & if -1 < x < 1 \\ 0 & otherwise. \end{cases}$$

$$h(x) = |x|.$$

Compute the convolutions $u(x) = (f \star g)(x)$ and $v(x) = (g \star g)(x)$ and $w(x) = (g \star h)(x)$.

Exercise 4 Suppose that $f(x) = x^2$ and that

$$g(x) = \left\{ \begin{array}{ll} \frac{1}{2} & \textit{if} \; -1 < x < 1 \; , \\ 0 & \textit{otherwise}. \end{array} \right. \qquad h(x) = \left\{ \begin{array}{ll} e^{-x} & \textit{if} \; x > 0 \; , \\ 0 & \textit{otherwise}. \end{array} \right.$$

Compute the convolutions $u(x) = (f \star g)(x)$ and $v(x) = (f \star h)(x)$.

Exercise 5 We have discussed solutions to the differential equation

$$-\Delta u(x) + k^2 u(x) = e^{-|x|}, \quad x \in \mathbb{R}.$$

• Verify that, in the case k = 1, we have a solution

$$u(x) = \frac{1}{2}(1+|x|)e^{-|x|}$$

Verify that every function of the form

$$v(x) = \frac{1}{2}(1+|x|)e^{-|x|} + c_1e^{-x} + c_2e^x$$

is a solution. For which values of c_1 and c_2 does the function decay towards zero as x goes to $\pm \infty$?

• Verify that, in the case $k \neq 1$, we have a solution

$$u(x) = -\frac{e^{-k|x|}}{k(k^2 - 1)} + \frac{e^{-|x|}}{k^2 - 1}$$

Verify that every function of the form

$$v(x) = -\frac{e^{-k|x|}}{k(k^2 - 1)} + \frac{e^{-|x|}}{k^2 - 1} + c_1 e^{-kx} + c_2 e^{kx}$$

is a solution.

Exercise 6 We want to find a solution to the boundary value problem

$$-\Delta u(x) + k^2 u(x) = x, \quad 0 < x < L,$$

 $u(0) = 0, \quad u(L) = 0.$

- Extend the right-hand side f(x) = x to an odd function with period 2L and compute its Fourier coefficients.
- Using these coefficients, find the Fourier series of the solution u. Verify that the boundary condition u(0) = u(L) = 0 is satisfied.

Exercise 7 (Fun with Neumann boundary conditions) Consider the Poisson problem with Neumann boundary conditions over the interval [a, b] = [0, 1]:

$$-u''(x) + k^2 u(x) = x - \frac{1}{2}, \quad a < x < b,$$

$$u'(a) = 0, \quad u'(b) = 0,$$

for some $k \geq 0$.

- (a) Extend $f(x) = x \frac{1}{2}$ to an even function over the real line with period 2.
- (b) Compute the Fourier coefficients of that even extension of f.
- (c) Find the Fourier series of a function that satisfies the above differential equation.

Exercise 8 (Fun with periodic boundary conditions) Consider the Poisson problem with periodic boundary conditions over the interval [a, b] = [0, 1]:

$$-u''(x) + k^2 u(x) = x - \frac{1}{2}, \quad a < x < b,$$

 $u(a) = u(b),$

for some $k \geq 0$.

- (a) Extend $f(x) = x \frac{1}{2}$ to a 1-periodic function over the real line.
- (b) Compute the Fourier coefficients of that extension of f.
- (c) Find the Fourier series of a function that satisfies the above differential equation.