Analysis III - 203(d)

Winter Semester 2024

Session 13: December 12, 2024

Exercise 1 The Fourier transform of

$$f(x) = e^{-5x^2}$$

is the function

$$\hat{f}(\alpha) = \frac{1}{\sqrt{10}} e^{-\frac{\alpha^2}{20}}.$$

Find the Fourier transforms of

$$f'$$
, f'' , f''' , f'''' , $g(x) = f(2x)$, $h(x) = f(x-3)$.

Exercise 2 Find $f: \mathbb{R} \to \mathbb{R}$ such that

$$\hat{f}(\alpha) = \frac{3}{1+\alpha^2} + \frac{-1}{1+4\alpha^2} + \frac{\sin(4\alpha+3)}{4\alpha+3}$$

Exercise 3 We consider the Poisson problem with Dirichlet boundary conditions over the interval [0, L]:

$$-\Delta u(x) = x^2, \quad 0 < x < L,$$

 $u(0) = 1, \quad u(L) = 2$

- Solve this problem directly. The solution is a polynomial of order 4.
- Extend the right-hand side $f(x) = x^2$ to an odd function with period 2L and compute its Fourier coefficients.
- Using these coefficients, find the Fourier series of the solution u^f , which solves

$$-\Delta u^f(x) = x^2, \quad 0 < x < L,$$

 $u^f(0) = 0, \quad u^f(L) = 0.$

How do you use the superposition principle to solve the full problem?

Exercise 4 Directly compute the solution of the problem

$$-\Delta u(x) = x^2, \quad 0 < x < L,$$

 $u(0) = 0, \quad u(L) = 0.$

using elementary analysis. Then find the Fourier coefficients of its odd extension to the interval [-L, L]. Compare this with the function u^f from the previous exercise.

Exercise 5 We solve the Poisson problem with homogeneous Dirichlet boundary conditions over [0, 1]:

$$-\Delta u(x) = \begin{cases} x & \text{if } 0 < x \le 0.5 \\ 0 & \text{if } 0.5 < x \le 1 \end{cases}, \qquad 0 < x < 1,$$
$$u(0) = 0, \quad u(1) = 0$$

- Extend the right-hand side f(x) to an odd function with period 2 and compute its Fourier coefficients.
- Using these coefficients, find the solution u. Verify that the boundary condition u(0) = u(1) = 0 is satisfied.

Exercise 6 Consider the following Fourier sine series for two functions $u, f : \mathbb{R} \to \mathbb{R}$ with period T:

$$u(x) = \sum_{n=1}^{\infty} b_n^u \sin\left(\frac{2\pi n}{T}x\right), \quad f(x) = \sum_{n=1}^{\infty} b_n^f \sin\left(\frac{2\pi n}{T}x\right).$$

Express the Fourier coefficients of f by the Fourier coefficients of u, and vice-versa, express the Fourier coefficients of u by the Fourier coefficients of f, if u and f are related by the following differential equations:

- (a) -u''(x) = f(x).
- (b) u''''(x) = f(x).
- (c) -u''(x) + 25u(x) = f(x).
- (d) u''''(x) u''(x) = f(x).
- (e) $-u''(x) + \gamma \cdot u''(x) = f(x)$.

In the last item, $\gamma \in \mathbb{R}$ is a constant. For which values of γ can you always find a solution?

Exercise 7 Recall the definition of the Fourier transform:

$$\mathfrak{F}[f](\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t)e^{-it\alpha} dt \tag{1}$$

Let $a, b, c \in \mathbb{R}$ be real parameters with $a \neq 0$. Compute the Fourier transforms of the following:

$$g(t) = f(at), (2)$$

$$h(t) = e^{-itb} f(t), (3)$$

$$m(t) = f(t - c). (4)$$

Hint: you have the first two in the lecture and in textbook. You can compute them using results from the lecture or via some standard integral manipulations.