Analysis III - 203(d)

Winter Semester 2024

Session 11: November 28, 2024

Exercise 1 Compute the Fourier coefficients of the following functions, which have period $T = 2\pi$ and have the given values over the interval $[0, 2\pi)$:

•

$$f(x) = e^{x-\pi}$$

•

$$g(x) = (x - \pi)^3$$

•

$$h(x) = \begin{cases} \sin(x) & 0 \le x < \frac{\pi}{2} \\ 0 & \frac{\pi}{2} \le x < \frac{3\pi}{2} \\ \sin(x) & \frac{3\pi}{2} \le x < 2\pi \end{cases}$$

Hint: Recall that $\cos(\frac{\pi}{2} - \theta) = \sin \theta$ and $\cos(\frac{3\pi}{2} - \theta) = -\sin \theta$.

Exercise 2 Compute the Fourier coefficients of the function f with period $T=2\pi$ and which satisfies

$$f(x) = \sin(x) \text{ if } 0 \le x < \pi,$$

and

$$f(x) = f(-x)$$
 for all $x \in \mathbb{R}$.

Exercise 3 Use Dirichlet's theorem to explain whether the Fourier series converges at $x \in [0, T]$ and to which value:

•

$$f(x) = \left\{ \begin{array}{ll} x & \text{if } 0 \leq x < 1 \\ 2-x & \text{if } 1 \leq x < 2 \end{array} \right., \qquad T = 2.$$

•

$$f(x) = \begin{cases} \pi & \text{if } 0 \le x < 1\\ e^{x-1} & \text{if } 1 \le x < 2\\ \sin(x) & \text{if } 2 \le x < 3 \end{cases}, \qquad T = 3.$$

Here, the functions have the given period T.

Exercise 4 Give the Fourier series in complex notation, when f has period T=2 and

$$f(x) = x \text{ for } 0 \le x < 2.$$

Exercise 5 Find the Fourier coefficients of $\cos(x)^8$ with period $T=2\pi$. Use Parseval's identity to compute $\int_0^{2\pi} \cos(x)^{16} dx$.

Exercise 6 Give the Fourier series of the function f with period T=2 and

$$f(x) = \cos(x) \text{ for } -1 \le x < 1.$$

Give the Fourier series in standard form and in complex notation. Compare F_3f at the points $x = -\pi/4, 0, \pi/4$ with the original function f.