Analysis III - 203(d)

Winter Semester 2024

Session 10: November 21, 2024

Exercise 1

$$ReLU(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x \end{cases}$$

$$ReLU^{k}(x) = \begin{cases} 0 & \text{if } x < 0 \\ x^{k} & \text{if } 0 \le x \end{cases} \text{ where } k \in \mathbb{N}_{0}$$

$$f(x) = \begin{cases} -x - 2 & \text{if } -2 < x < -1 \\ -x^{2} - 2x - 1 & \text{if } -1 < x < 0 \\ x^{2} - 2x + 1 & \text{if } 0 < x < 1 \\ 2 - x & \text{if } 1 < x < 2 \\ 0 & \text{otherwise} \end{cases}$$

$$j(x) = \begin{cases} x & \text{if } x < 0 \\ 1 + x & \text{if } 0 \le x \end{cases}.$$

Here, employ the definition of distributional derivatives and check against the formula for piecewise differentiable functions as obtained during lecture.

Exercise 2 Let $f: \mathbb{R} \to \mathbb{R}$ be a function with period 1 and

$$f(x) = x,$$
 $0 < x < 1.$

Find the distributional derivative.

Exercise 3 Compute the Fourier coefficients of the function f that has period $T=2\pi$ and satisfies

$$f(x) = \begin{cases} 1 & 0 \le x < \pi \\ 0 & \pi < x \le 2\pi \end{cases}$$

Exercise 4 Compute the Fourier coefficients of the following functions, which have period T = 1 and have the given values over the interval [0, 1):

$$f(x) = x^2$$

•

$$g(x) = (1 - x)x$$

•

$$h(x) = |\sin(2\pi x)|$$