Analysis III - 203(d)

Winter Semester 2024

Session 7: October 31, 2024

Exercise 1 Verify the divergence theorem for the following vector field \vec{F} and volume V:

$$\vec{F}(x_1, x_2, x_3) := (x_1 x_3, x_2, x_2), \qquad V := \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 < 1 \}.$$

Note that V is just the three-dimensional unit ball.

Exercise 2 Consider the volume

$$V := \{ \vec{x} \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 < 5 \}, \tag{1}$$

- What is the surface S of this volume?
- Find the outward pointing unit normal \vec{n} along the surface S of this volume. Write \vec{n} in terms of (x_1, x_2, x_3) at any point on the surface S.
- Find a parameterization of the surface S.
- Find a vector field \vec{F} such that $\vec{F} \cdot \vec{n} = x_1^2 + x_2 + x_3$ along the surface S.
- Use the divergence theorem to compute

$$\iint_{S} x_1^2 + x_2 + x_3 dx_1 dx_2 dx_3. \tag{2}$$

Exercise 3 Consider the volume

$$V := \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 < x_3 < 1 \right\}$$

Find the the boundary S of this volume and compute its surface area.

Exercise 4 Find a regular parameterization $\Phi(s,t)$ of the surface

$$S := \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid 0 < x_3 < 1, \ x_1^2 + x_2^2 = 1 + x_3^2 \right\}$$

Compute cross product $\partial_s \Phi(s,t) \times \partial_t \Phi(s,t)$ and its norm.

Exercise 5 Consider the volume

$$V := \{ \vec{x} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 < 1, \ x_1, x_2, x_3 > 0 \},$$
(3)

Suppose we have a vector field

$$\vec{F}(x_1, x_2, x_3) = (x_1^2 x_2, 3x_2^2 x_3, 9x_3^2 x_1) \tag{4}$$

Use the divergence theorem to compute the surface integral

$$\iint_{S} \vec{F} d\sigma. \tag{5}$$

Exercise 6 Given the curve

$$\gamma: [0,\pi] \to \mathbb{R}^2, \quad t \mapsto (3\cos(2t),\sin(2t))$$

and a function

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x_1, x_2) \mapsto (x_1^2 + 81x_2^2)^{\frac{3}{2}},$$

 $compute\ the\ integrals$

$$\int_{\Gamma} f \ d\ell, \quad \int_{\Gamma} \nabla f \ d\ell.$$