Analysis III - 203(d)

Winter Semester 2024

Session 5: October 10, 2024

Exercise 1 Consider a curve u in one-dimensional space with

$$u:[1,2]\to\mathbb{R}, \qquad t\mapsto t^2+t$$

Verify that the curve is simple, differentiable, and regular. Compute the curve integral $\int_u f \ dl$, where

$$f: \mathbb{R} \to \mathbb{R}, \qquad x \to 3x^3$$

is the scalar field.

Exercise 2 (vector analysis in 1D) Let $\Omega \subseteq (a,b)$ be an open interval in one-dimensional space.

- Explain why there cannot be a simple closed continuous curve in Ω .
- When $\Omega = (-10, 10)$, compute the integral of the scalar field

$$f(x) = \frac{x}{\sqrt{1+x^2}}$$

along the curves

$$\gamma_1: [0,1] \to \Omega, \quad t \mapsto (2t-1),$$

$$\gamma_2: [-1,1] \to \Omega, \quad t \mapsto (t),$$

$$\gamma_3: [0,1] \to \Omega, \quad t \mapsto (1-2t),$$

$$\gamma_4: [0,1] \to \Omega, \quad t \mapsto (-1+2t^5),$$

Compute the tangent vectors $\dot{\gamma}(t)$.

• Compute the integral of the vector field

$$F(x) = \left(xe^{x^2}\right) \tag{1}$$

along the curve γ_4 . Find a potential for this vector field, and write down the general form of all potentials.

Exercise 3 We review notions of potentials and conservative vector fields. Let $\Omega \subseteq \mathbb{R}^n$ be open. Suppose we have a vector field $F = (F_1, \dots, F_n) \in C^1(\Omega, \mathbb{R}^n)$. Recall that we have introduced the condition

$$\partial_i F_i = \partial_j F_i, \qquad 1 \le i, j \le n.$$
 (2)

- Suppose that n=2. Show that F satisfies (2) if and only if it is curl-free: $\operatorname{curl} F=0$.
- Suppose that n=3. Show that F satisfies (2) if and only if it is curl-free: $\operatorname{curl} F=0$.
- Suppose that n = 1. Show that F satisfies (2).
- Suppose that F admits a potential $f \in C^1(\Omega, \mathbb{R})$, so that $\nabla f = F$. Show that if $\gamma : [a, b] \to \Omega$ is a simple regular curve, then

$$\int_{\gamma} F \ dl = f(\gamma(b)) - f(\gamma(a)). \tag{3}$$

Show that if γ is closed, then

$$\int_{\gamma} F \, dl = 0. \tag{4}$$

Exercise 4 We introduce the following curves:

$$\gamma: [0,1] \to \mathbb{R}^3, \qquad t \mapsto \left(3, t^2, 4t\right),$$
$$\delta: [1, \infty) \to \mathbb{R}^2, \qquad t \mapsto \left(5, e^{-t}\right)$$

For each curve

- compute the tangent vector
- compute the speed of the curve
- find the unit tangent vector
- for δ , find the unit normal along the curve that is the 90 degree clockwise rotation of unit tangent
- argue why it is a regular curve
- and compute the length of the curve.

Exercise 5 We consider the vector field

$$F: \mathbb{R}^2 \to \mathbb{R}^2, \quad (x,y) \mapsto (x^3, y^3)$$

We want to find a potential over the domain $\Omega = \mathbb{R}^2$. Fix a constant of integration at (0,0) and define a potential via the integral of the vector field F along a simple regular curve going from (0,0) to (x,y).

Exercise 6 The closed curve

$$\gamma(t) = (\sin(t)(1 + 0.5\sin(2t)), \cos(t)(1 + 0.5\sin(2t)))$$

encircles a domain Ω in counterclockwise direction. Find the tangent $\dot{\gamma}(t)$, the unit tangent $\tau(t)$ and the outward pointing unit normal $\vec{n}(t)$. Only simplify as much as reasonable.

Exercise 7 We work over the quadratic domain

$$\Omega := \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid -1 < x_1 < 1, \ -1 < x_2 < 1 \right\}.$$

Compute the integral $\iint_{\Omega} \operatorname{div} \vec{F} \ dx_1 dx_2$, where

$$\vec{F}(x_1, x_2) = \left(\sin(x_1)x_2, \left(x_1^2 + x_2\right)^5\right)$$