Analysis III - 203(d)

Winter Semester 2024

Session 3: September 26, 2024

Exercise 1 Consider the scalar field $f(x_1, x_2) = x_1x_2$.

- Describe its level sets for the values -2, -1, 0, 1, 2.
- Draw the gradient at a few points, such as

$$(1,0),(0,1),(1,1),(-1,-1),(\sqrt{2},\sqrt{2}),(\sqrt{2},-\sqrt{2})$$
 (1)

• Recall the hyperbolic sine and hyperbolic cosine functions $\sinh(t)$ and $\cosh(t)$. Sketch the curve

$$\gamma: (-\infty, \infty) \to \mathbb{R}^2, \quad t \mapsto (\cosh(t), \sinh(t))$$
 (2)

and compute its tangent vector $\dot{\gamma}$.

Exercise 2 Consider the curves

$$\gamma: [-1,1] \to \mathbb{R}^2, \quad t \mapsto (t^3, t^2)$$

$$\delta: [-1,1] \to \mathbb{R}^2, \quad t \mapsto (\cos(t), \sin(2t))$$

Draw them. Are they simple, closed, differentiable, or regular? What are their tangents? Show that γ is the graph of a function in the first coordinate.

Exercise 3 Compute the line integral of

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x_1, x_2) \mapsto 1 + x_1^2 + x_2^2$$

along the two curves γ and δ , given by

$$\gamma: [0,\pi] \to \mathbb{R}^2, \quad t \mapsto (-\cos(t), \sin(t))$$

$$\delta: [-1,1] \to \mathbb{R}^2, \quad t \mapsto (t,0)$$

Compare the results. What are the endpoints of the two curves?

Exercise 4 Compute the line integral of $f: \mathbb{R}^2 \to \mathbb{R}$ along the circle C with radius 3 centered at the origin, where

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x_1, x_2) \mapsto 3x_2^2 + x_2^3$$

Hint: you must first find a parameterization of C.

Exercise 5 You are excavating a tunnel deep beneath surface through rock from a point A = (-1,0) to a point B = (1,1) along a curve Γ . Geological observations show that the rock mass density of the region can be modeled by

$$f(x_1, x_2) = \exp(x_1 + x_2).$$

The costs and abbrasion of the tools are therefore proportional to the curve integral

$$\int_{\Gamma} f \ dl$$

Compute the integral along the straight line

$$\gamma: [0,1] \to \mathbb{R}^2, \quad t \mapsto (-1+2t,t)$$

Exercise 6 A matrix $A \in \mathbb{R}^{n \times n}$ is called symmetric if $A = A^t$ and antisymmetric if $A = -A^t$.

- 1. Show that a matrix that is both symmetric and antisymmetric must be zero.
- 2. Show that every matrix $B \in \mathbb{R}^{n \times n}$ can be written as a sum $A = A_1 + A_2$ where $A_1 \in \mathbb{R}^{n \times n}$ is symmetric and $A_2 \in \mathbb{R}^{n \times n}$ is antisymmetric.
- 3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a scalar field with continuous partial derivatives up to second order. Show that its Hessian is a symmetric matrix.
- 4. The trace of a matrix is the sum of its diagonal elements. Find a scalar field in \mathbb{R}^2 whose Hessian is not zero but has zero trace.
- 5. Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be a differentiable vector field. What is the antisymmetric part of its Jacobian?
- 6. Let $G: \mathbb{R}^3 \to \mathbb{R}^3$ be a differentiable vector field. What is the antisymmetric part of its Jacobian?
- 7. What do you notice in the answers to the last two questions?