EPFL – Automne 2024	D. Strütt
Analyse III – GC IN	Exercices
Série 8	7 novembre 2024

Remarque.

Les exercices avec références entre parenthèses proviennent du livre Analyse Avancée pour Ingénieurs, par B. Dacorogna et C. Tanteri. Les corrigés sont à consulter dans le livre, même si parfois certaines étapes sont développées dans le corrigé publié sur moodle.

Pour vérifier le théorème de la divergence dans \mathbb{R}^3 , procéder de la manière suivante :

- (i) Esquisser le domaine Ω , puis calculer $\operatorname{div} F(x, y, z)$.
- (ii) Paramétrer le domaine Ω . Utiliser cette paramétrisation pour exprimer

$$\iiint_{\Omega} \operatorname{div} F(x, y, z) \, dx dy dz$$

comme une intégrale triple où les bornes et la fonction à intégrer sont indiquées explicitement.

- (iii) Ecrire $\partial\Omega$ comme réunion de surfaces régulières; pour chacune d'elles, donner une paramétrisation et un champ de normales extérieures. Ajouter ce dernier à votre esquisse.
- (iv) Exprimer

$$\iint_{\partial\Omega} F \cdot \nu \, ds$$

comme somme d'intégrales doubles où les bornes et les fonctions à intégrer sont indiquées explicitement.

(v) Vérifier la conclusion du théorème de la divergence pour Ω et F.

Exercice 1 (ex 6.3 p. 66, corrigé p. 71).

Vérifier le théorème de la divergence pour F(x,y,z) = (xy,yz,xz) et $\Omega = \{(x,y,z) \in \mathbb{R}^3 : 0 < z < 1 - x - y, \ 0 < y < 1 - x, \ 0 < x < 1\}.$

Exercice 2 (ex 6.6 p. 66, corrigé p. 74).

Vérifier le théorème de la divergence pour F(x,y,z)=(x,y,z) et $\Omega=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2<4 \text{ et } x^2+y^2<3z\}.$

Exercice 3 (ex 6.9 p. 67, corrigé p. 76).

Vérifier le théorème de la divergence pour $F\left(x,y,z\right) = \left(2,0,xy^2+z^2\right)$ et $\Omega = \left\{(x,y,z) \in \mathbb{R}^3 : x>0, \, 0 < z < 2 \text{ et } 4\left(x^2+y^2\right) < (z-4)^2\right\}.$

Exercice 4 (ex 6.11 p. 67, corrigé p. 81).

Soient $\Omega \subset \mathbb{R}^3$ un domaine régulier et ν un champ de normales unités extérieures à Ω . Soient les champs vectoriels F, G_1 , G_2 et G_3 définis par

$$F(x, y, z) = (x, y, z), \quad G_1(x, y, z) = (x, 0, 0), \quad G_2(x, y, z) = (0, y, 0), \quad G_3(x, y, z) = (0, 0, z).$$

Montrer que:

(i) Volume
$$(\Omega) = \frac{1}{3} \iint_{\partial \Omega} (F \cdot \nu) ds$$

(ii) Volume
$$(\Omega) = \iint_{\partial\Omega} (G_i \cdot \nu) ds$$
 pour $i = 1, 2, 3$.

Pour les exercices suivants, procéder de la manière suivante :

(i) Esquisser Σ .

- (ii) Donner une paramétrisation $\sigma:\overline{A}\to\Sigma$ de la surface Σ et donner son vecteur normal. Ajouter ce vecteur à votre esquisse.
- (iii) Calculer rot F(x, y, z).
- (iv) Exprimer

$$\iint_{\Sigma} \operatorname{rot} F \cdot ds$$

comme intégrale double où les bornes et la fonction à intégrer sont indiquées explicitement.

- (v) Ecrire $\partial \Sigma$ comme réunion de courbes simples régulières; pour chacune d'elles, donner une paramétrisation et préciser le sens de parcours induit par la paramétrisation de Σ et l'orientation positive de ∂A .
- (vi) Exprimer

$$\int_{\partial \Sigma} F \cdot dl$$

comme somme d'intégrales où les bornes et les fonctions à intégrer sont indiquées explicitement.

(vii) Vérifier la conclusion du théorème de Stokes pour Σ et F.

Exercice 5 (ex 7.2 page 89, corrigé p. 91).

Vérifier le théorème de Stokes pour

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^4, \ 0 \le z \le 1\} \text{ et } F(x, y, z) = (x^2y, z, x).$$

Exercice 6 (Ex 7.5 page 89, corrigé p. 94).

Vérifier le théorème de Stokes pour

$$\Sigma = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, \ x \ge 0, \ y \ge 0, \ 1 \le z \le \sqrt{3} \right\}$$
 et $F(x, y, z) = (0, z^2, 0)$.

Solution des exercices calculatoires

Exercice 1 $\frac{1}{8}$ Exercice 2 $\frac{19\pi}{2}$ Exercice 3 $\frac{11\pi}{3}$ Exercice 5 $\pm \frac{\pi}{4}$ Exercice 6 $\pm \left(2\sqrt{3} - \frac{2}{3}\right)$