EPFL – Automne 2024	D. Strütt
Analyse III – GC IN	Exercices
Série 4	3 octobre 2024

Remarque.

Les exercices avec références entre parenthèses proviennent du livre Analyse Avancée pour Ingénieurs, par B. Dacorogna et C. Tanteri. Les corrigés sont à consulter dans le livre, même si parfois certaines étapes sont développées dans le corrigé publié sur moodle.

Exercice 1 (ex 3.1, p. 27, corrigé p. 30).

Soient les champs vectoriels $F_i: \mathbb{R}^2 \to \mathbb{R}^2$ définis par

$$F_1(x,y) = (y, xy - x), \quad F_2(x,y) = (3x^2y + 2x, x^3), \quad F_3(x,y) = (3x^2y, x^2).$$

Le champ F_i dérive-t-il d'un potentiel sur \mathbb{R}^2 ?

Si oui, trouver un potentiel duquel dérive F_i , si non trouver un chemin fermé Γ tel que $\int_{\Gamma} F_i \cdot dl \neq 0$.

Exercice 2 (ex 3.3, p. 28, corrigé p. 32).

Soit
$$F(x, y, z) = \left(2xy + \frac{z}{1+x^2}, x^2 + 2yz, y^2 + \arctan x\right)$$
.

Le champ F dérive-t-il d'un potentiel sur \mathbb{R}^3 ? Si oui, trouver ce potentiel.

Exercice 3 (ex 3.8, p. 29, corrigé p. 36).

Soient les champs

$$F(x,y) = \left(\frac{-x}{(x^2 + y^2)^2}, \frac{-y}{(x^2 + y^2)^2}\right)$$

et

$$G(x,y) = \left(\frac{y^3}{(x^2+y^2)^2}, \frac{-xy^2}{(x^2+y^2)^2}\right)$$

définis sur $\Omega = \mathbb{R}^2 \setminus \{(0,0)\}.$

Dérivent-ils d'un potentiel sur Ω ? (Si oui trouver un potentiel, si non justifier votre réponse.)

Exercice 4 (ex 3.6, p. 28, corrigé p. 34).

Soit l'équation différentielle

$$F_2(t, u(t)) u'(t) + F_1(t, u(t)) = 0$$
 pour $t \in \mathbb{R}$.

Soit $F(x,y) = (F_1(x,y), F_2(x,y))$ un champ vectoriel qui dérive d'un potentiel f sur \mathbb{R}^2 .

1. Montrer qu'une solution u(t) de l'équation différentielle est donnée, sous forme implicite, par

$$f(t, u(t)) = \text{constante}$$
 pour tout $t \in \mathbb{R}$.

Indication: Calculer $\frac{d}{dt} f(t, u(t))$.

2. En déduire une solution de

$$u^2(t)u'(t) + \sin t = 0$$
 pour $t \in \mathbb{R}$ avec la condition initiale $u(0) = 3$.

Exercice 5 (ex 3.2, p. 27, corrigé p. 31). Soit $F: \mathbb{R}^2 \to \mathbb{R}^2$ un champ tel que $F \in C^1(\mathbb{R}^2, \mathbb{R}^2)$ défini par F(u, v) = (f(u, v), g(u, v)). Soit

$$\varphi(x,y) = \int_{0}^{1} \left[x f(tx,ty) + y g(tx,ty) \right] dt.$$

- 1. Montrer que si $\frac{\partial g}{\partial u} = \frac{\partial f}{\partial v}$, alors $F(x,y) = \operatorname{grad} \varphi(x,y)$.

 Indication: Calculer $\frac{d}{dt}[tf(tx,ty)]$ et $\frac{d}{dt}[tg(tx,ty)]$
- 2. En déduire un potentiel pour $F(x,y) = (2xy, x^2 + y)$.
- 3. Comparer l'expression pour φ ci-dessus avec la formule donnée dans l'esquisse de la démonstration du Théorème 2.10 du cours.