Notations

MATH-203(b) - Analyse III pour CGC, GC, SIE

autmone 2024

- On note \mathbb{N} l'ensemble des nombres entiers $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$ et on notera parfois $\mathbb{N}_{\geq k} = \{n \in \mathbb{N} : n \geq k\}$.
- On note \mathbb{Z} l'ensemble des nombres entiers relatifs $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$.
- On note \mathbb{Q} l'ensemble des nombres rationnels $\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\}$
- \bullet On note $\mathbb R$ l'ensemble des nombres réels.
- On note $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\}$ l'ensemble des nombres complexes.
- Pour $n \ge 2$, on note $\mathbb{R}^n = \underbrace{\mathbb{R} \times ... \times \mathbb{R}}_{n \text{ fois}} = \{(x_1, ..., x_n) : \forall 1 \le i \le n, x_i \in \mathbb{R}\}.$

Si n = 2, on écrit $(x_1, x_2) = (x, y)$ et si n = 3, on écrit $(x_1, x_2, x_3) = (x, y, z)$, c'est-à-dire, x n'est pas le vecteur, mais sa première composante.

- Si $\Omega \subset \mathbb{R}^n$, une fonction de Ω à valeur dans \mathbb{R} , $f \colon \Omega \to \mathbb{R}$ est appelée un champ scalaire. Ω est le domaine de f, \mathbb{R} son codomaine. L'image de f notée $\mathrm{Im}\,(f)$ est l'ensemble $\mathrm{Im}\,(f) = \{y \in \mathbb{R} : \exists x \in \Omega \text{ tel que } f(x) = y\} = f(\Omega)$.
 - Si Ω est ouvert, on écrit $f \in C^0(\Omega)$ si f est continue sur Ω , c'est-à-dire, f est continue en chaque point de Ω , et pour $k \geq 1$, on écrit $f \in C^k(\Omega)$ si toutes les dérivées d'ordre plus petit ou àgal à k existent et sont continues.
- Si $\Omega \subset \mathbb{R}^n$, une fonction de Ω à valeur dans \mathbb{R}^n , $F \colon \Omega \to \mathbb{R}^n$ est appelé un champ vectoriel. On écrit alors $F = (F_1, ..., F_n)$ avec $F_i \colon \Omega \to \mathbb{R}$. Ω est le domaine de F, \mathbb{R}^n son le codomaine. L'image de F noté $\mathrm{Im}(F)$ est l'ensemble $\mathrm{Im}(f) = \{y = (y_1, ..., y_n) \in \mathbb{R}^n : \exists x = (x_1, ..., x_n) \in \mathbb{R}^n \text{ tel que } F(x) = y\} = F(\Omega)$.
 - Si Ω est ouvert, et $k \in \mathbb{N}$, on écrit $F \in C^k(\Omega, \mathbb{R}^n)$ si $F_i \in C^k(\Omega)$ pour tout $1 \le i \le n$.
- Pour $x = (x_1, ..., x_n) \in \mathbb{R}^n$, |x| dénote la norme euclidienne standard : $|x| = \sqrt{\sum_{i=1}^n x_i^2}$.