EPFL - Fall 2024	Leonid Monin
Analysis III - 203 (a)	Exercises
Series 8	October 30, 2024

Note: several exercises are extracted from [B.Dacorogna and C.Tanteri, *Analyse avancée pour ingénieurs* (2018)]. Their corrections can be found there.

Aide-memoire: To verify the divergence theorem in \mathbb{R}^3 , proceed as follows:

- 1. Sketch the domain Ω , then calculate div F(x, y, z).
- 2. Parameterize the domain Ω . Use this parameterization to express

$$\iiint_{\Omega} \operatorname{div} F(x, y, z) \, dx dy dz$$

as a triple integral where the bounds and the function to be integrated are explicitly indicated.

- 3. Write $\partial\Omega$ as a union of regular surfaces; for each, give a parameterization and a field of exterior normals. Add this to your sketch.
- 4. Express

$$\iint_{\partial\Omega} F \cdot \nu \, ds$$

as a sum of double integrals where the bounds and the functions to be integrated are explicitly indicated.

5. Check the conclusion of the divergence theorem for Ω and F.

Exercise 1 (Ex 6.4 page 66).

Verify the divergence theorem for
$$F(x,y,z) = (x^2,y^2,z^2)$$
 and $\Omega = \left\{ (x,y,z) \in \mathbb{R}^3 : b^2 \left(x^2 + y^2 \right) < a^2 z^2 \text{ and } 0 < z < b \right\}.$

Exercise 2 (Ex 6.3 page 66).

Verify the divergence theorem for
$$F(x,y,z) = (xy,yz,xz)$$
 and $\Omega = \{(x,y,z) \in \mathbb{R}^3 : 0 < z < 1 - x - y, \ 0 < y < 1 - x, \ 0 < x < 1\}.$

Exercise 3 (Ex 6.6 page 66).

Verify the divergence theorem for
$$F\left(x,y,z\right)=\left(x,y,z\right)$$
 and $\Omega=\left\{\left(x,y,z\right)\in\mathbb{R}^{3}:x^{2}+y^{2}+z^{2}<4\text{ et }x^{2}+y^{2}<3z\right\}.$

Exercise 4 (Ex 6.9 page 67).

Verify the divergence theorem for $F\left(x,y,z\right) = \left(2,0,xy^2+z^2\right)$ and $\Omega = \left\{(x,y,z) \in \mathbb{R}^3 : x > 0, \, 0 < z < 2 \text{ et } 4\left(x^2+y^2\right) < \left(z-4\right)^2\right\}.$

Exercise 5 (Ex 6.11 page 67).

Let $\Omega \subset \mathbb{R}^3$ a regular domain and ν a field of unit normals exterior to Ω . Let the vector fields F, G_1 , G_2 and G_3 defined by

$$F(x, y, z) = (x, y, z),$$
 $G_1(x, y, z) = (x, 0, 0),$ $G_2(x, y, z) = (0, y, 0),$ $G_3(x, y, z) = (0, 0, z).$

Show that:

1. Volume
$$(\Omega) = \frac{1}{3} \iint_{\partial \Omega} (F \cdot \nu) ds$$

2. Volume
$$(\Omega) = \iint_{\partial\Omega} (G_i \cdot \nu) ds$$
 for $i = 1, 2, 3$.