EPFL - Fall 2024	Leonid Monin
Analysis III - 203 (a)	Exercises
Series 6	October 15, 2024

Note: several exercises are extracted from [B.Dacorogna and C.Tanteri, *Analyse avancée pour ingénieurs* (2018)]. Their corrections can be found there.

Reminder: In order to compute an integral of surface (Like in exercise 2 and parts 4-5. of exercise 3), proceed this way:

- 1. Sketch the surface Σ .
- 2. Give a parameterization $\sigma: \bar{A} \to \Sigma$ of the surface Σ . We will then define the domain \bar{A} and the function σ .
- 3. Give a normal vector and add it to your sketch.
- 4. Use this parameterization in order to express the integral in question as a multiple integral where the bounds and the function that we need to integrate are indicated explicitly.
- 5. Compute this integral.

Exercise 1 (Ex 4.8 page 43 and Ex 4.7 page 42).

Let $\Omega \subset \mathbb{R}^2$ be a regular set where the border $\partial\Omega$ is oriented positively. Let ν be a field of external normal units to Ω . Let F be a vector field such that $F \in C^1(\bar{\Omega}, \mathbb{R}^2)$ and f a scalar field such that $f \in C^2(\bar{\Omega})$. Show that:

- 1. $\iint_{\Omega} \operatorname{div} F(x,y) \, dx dy = \int_{\partial \Omega} (F \cdot \nu) \, dl$ Indication: Write $F = (F_1, F_2)$ and apply Green's theorem to the vector field $\Phi = (-F_2, F_1)$.
- 2. $\iint_{\Omega} \Delta f(x, y) dxdy = \int_{\partial \Omega} (\operatorname{grad} f \cdot \nu) dl.$

Exercise 2 (Ex 5.1 page 56).

Let
$$f(x, y, z) = xy + z^2$$
 and

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2 \text{ et } 0 \le z \le 1\}.$$

Compute $\iint_{\Sigma} f ds$

Exercise 3 (Ex 5.6 page 57).

Let 0 < a < R. In \mathbb{R}^3 we consider the torus Ω obtained with the rotation of the

disk $(x-R)^2 + z^2 \le a^2$ around the Oz axis and its representation described as:

$$x = (R + r\cos\varphi)\cos\theta, \qquad y = (R + r\cos\varphi)\sin\theta, \qquad z = r\sin\varphi$$

with 0 < r < a, $0 \le \theta < 2\pi$, $0 \le \varphi < 2\pi$.

- 1. Sketch Ω and indicate what does r, θ and φ represent.
- 2. Compute the Jacobian of the transformation that describes Ω in terms of the variables r, θ and φ .
- 3. Compute the volume of Ω .
- 4. Write a regular parameterization of the surface of the torus (noted $\partial\Omega$) and compute a normal to $\partial\Omega$.
- 5. Compute the area of $\partial\Omega$.
- 6. Compute $\iiint_{\Omega} z^2 dx dy dz$

The exercises below are a revision of analysis II

Exercise 4.

1. Let
$$D=\left\{(x,y)\in\mathbb{R}^2:\,x\geq0,\,y\geq0\,\text{ et }x+y\leq1\right\}.$$
 Compute $\iint_D\sqrt{1-x-y}\,dxdy.$

2. Let
$$D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2(x + \sqrt{x^2 + y^2})\}.$$

Compute $\iint_D \frac{dxdy}{(x^2 + y^2)^{\frac{3}{4}}}.$

3. Let
$$D=\left\{(x,y,z)\in\mathbb{R}^3:\,x\geq0,\,y\geq0,\,z\geq0,\,z\leq1-y^2\text{ et }x+y\leq1\right\}.$$
 Compute
$$\iiint_Dz\,dxdydz.$$

Exercise 5.

Compute the volume of:

1.
$$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1 \text{ et } x^2 + y^2 \le z\}.$$

$$2. \ D=\{(x,y,z)\in \mathbb{R}^3: x+y+z\leq \sqrt{2}, \ x^2+y^2\leq 1, \ x\geq 0, \ y\geq 0 \ \text{et} \ z\geq 0\}.$$