EPFL - Fall 2024	Leonid Monin
Analysis III - 203 (a)	Exercises
Series 4	October 1, 2024

Note: several exercises are extracted from [B.Dacorogna and C.Tanteri, *Analyse avancée pour ingénieurs* (2018)]. Their corrections can be found there.

Exercise 1 (Ex 3.1 page 27).

Let $F_i: \mathbb{R}^2 \to \mathbb{R}^2$ be the vector fields defined as:

$$F_1(x,y) = (y, xy - x), \quad F_2(x,y) = (3x^2y + 2x, x^3), \quad F_3(x,y) = (3x^2y, x^2).$$

Does the vector field F_i derive from a potential on \mathbb{R}^2 ?

If yes, find a potential function from which F_i is deriving. If not find a closed path Γ such that: $\int_{\Gamma} F_i \cdot dl \neq 0$.

Exercise 2 (Ex 3.3 page 28).

Let
$$F(x, y, z) = \left(2xy + \frac{z}{1 + x^2}, x^2 + 2yz, y^2 + \arctan x\right)$$
.

Does the vector field F derive from a potential on \mathbb{R}^3 ? If yes, find this potential.

Exercise 3 (Ex 3.8 page 29).

Let:

$$F(x,y) = \left(\frac{-x}{(x^2 + y^2)^2}, \ \frac{-y}{(x^2 + y^2)^2}\right),$$

and

$$G(x,y) = \left(\frac{y^3}{(x^2+y^2)^2}, \ \frac{-xy^2}{(x^2+y^2)^2}\right),$$

defined on $\Omega = \mathbb{R}^2 \setminus \{(0,0)\}.$

Do they derive from a potential on Ω ? (If yes find a potential function, if no justify your answer.)

Exercise 4 (Ex 3.6 page 28).

Let us define the differential equation :

$$F_2(t, u(t)) u'(t) + F_1(t, u(t)) = 0$$
 for $t \in \mathbb{R}$.

Let $F(x,y) = (F_1(x,y), F_2(x,y))$ be a vector field which derives from a potential f on \mathbb{R}^2 .

1. Show that a solution u(t), in implicit form, of this differential equation is given by:

$$f(t, u(t)) = \text{constant}$$
 for all $t \in \mathbb{R}$.

Indication: Calculate $\frac{d}{dt} f(t, u(t))$.

2. Deduce a solution of:

 $u^{2}(t)u'(t) + \sin t = 0$, for $t \in \mathbb{R}$ with the initial condition u(0) = 3.

Exercise 5 (Ex 3.2 page 27). Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be a vector field such that $F \in C^1(\mathbb{R}^2, \mathbb{R}^2)$, defined by F(u,v) = (f(u,v), g(u,v)).

$$\varphi(x,y) = \int_{0}^{1} \left[x f(tx,ty) + y g(tx,ty) \right] dt.$$

- 1. Show that if $\frac{\partial g}{\partial u} = \frac{\partial f}{\partial v}$, then $F(x, y) = \operatorname{grad} \varphi(x, y)$.
- 2. Deduce a potential for $F(x,y) = (2xy, x^2 + y)$.
- 3. Generalize the result shown in question 1 to \mathbb{R}^n , *i.e.* in the case that:

$$F: \mathbb{R}^n \to \mathbb{R}^n$$
; $u \mapsto F(u) = (F_1(u), \dots, F_n(u))$.