EPFL - automne 2024	Leonid Monin
Analyse III	Exercices
Série 2	19 septembre 2024

Pour chaque exercice de la série, la numérotation indiquée entre parenthèses () se réfère à la quatrième édition PPUR 2018 du livre Analyse avancée pour ingénieurs de B.Dacorogna et C.Tanteri, qui contient les corrigés. Les exercices sans indication auront un corrigé disponible quelques jour après la session d'exercices.

Exercice 1 (Exercice 1.1, page 7).

$$F(x, y, z) = (y^2 \sin(xz), e^y \cos(x^2 + z), \ln(2 + \cos(xy))) = (F_1, F_2, F_3).$$

Calculer:

- (i) grad F_1 , grad F_2 , grad F_3
- (ii) div F
- (iii) rot F.

Exercice 2 (Exercice 1.2, page 7).

Si $f: \mathbb{R}^3 \to \mathbb{R}$ est $C^1(\mathbb{R}^3)$ et $F: \mathbb{R}^3 \to \mathbb{R}^3$ est $C^1(\mathbb{R}^3; \mathbb{R}^3)$, alors parmi les expressions suivantes lesquelles ont un sens?

- (i) grad f
- $(iv) \operatorname{div} f$
- (vii) rot f

- (ii) f grad f
- $(v) \operatorname{div}(fF)$ $(viii) f \operatorname{rot} F$

- (iii) $F \cdot \operatorname{grad} f$
- $(vi) \operatorname{rot}(fF)$
- (ix) rot div F

Exercice 3.

Soient $x = (x_1, \ldots, x_n), \ a = (a_1, \ldots, a_n) \in \mathbb{R}^n$ et f le champ scalaire défini

$$f(x) = \frac{1}{||x - a||}.$$

Calculer Δf .

Indication : utiliser un des résultats de l'exercice 4 de la série 1.

Exercice 4 (Exercices 1.6 et 1.7, page 8). Soit $\Omega \subset \mathbb{R}^3$ un ouvert. Montrer que :

$$(i) \mbox{ Si } f \in C^1(\Omega) \mbox{ et } g \in C^2(\Omega), \mbox{ alors} :$$

$$\operatorname{div}(f\operatorname{grad} g) = f\Delta g + \operatorname{grad} f \cdot \operatorname{grad} g$$

(ii) Si
$$f, g \in C^1(\Omega)$$
, alors :

$$\operatorname{grad}(fg) = f \operatorname{grad} g + g \operatorname{grad} f$$

(iii) Si
$$f \in C^1(\Omega)$$
 et $F \in C^1(\Omega, \mathbb{R}^3)$ alors :

$$\operatorname{div}(fF) = f \operatorname{div} F + F \cdot \operatorname{grad} f$$

(iv) Si
$$F \in C^2(\Omega, \mathbb{R}^3)$$
, alors :

$$rot rot F = -\Delta F + grad \operatorname{div} F,$$

où pour
$$F = (F_1, F_2, F_3)$$
 on note $\Delta F = (\Delta F_1, \Delta F_2, \Delta F_3)$.

(v) Si
$$f \in C^1(\Omega)$$
 et $F \in C^1(\Omega, \mathbb{R}^3)$, alors :

$$rot(fF) = grad f \wedge F + f rot F$$

Exercice 5.

Soit $f \in C^2(\Omega)$, où

$$\Omega = \left\{ (x, y) \in \mathbb{R}^2 : \ x, y > 0 \right\}.$$

(i) Montrer que, si

$$g(r, \theta) := f(r \cos \theta, r \sin \theta) = f(x, y),$$

alors

$$\frac{\partial^2 g(r,\theta)}{\partial r^2} + \frac{1}{r} \frac{\partial g(r,\theta)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 g(r,\theta)}{\partial \theta^2} = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2} = \Delta f(x,y).$$

(ii) Calculer Δf pour

$$f(x,y) := \sqrt{x^2 + y^2} + \left(\arctan\left(\frac{y}{x}\right)\right)^2.$$