EPFL - Fall 2024	Leonid Monin
Analysis III - 203 (a)	Exercises
Series 11	November 20, 2024

Note: several exercises are extracted from [B.Dacorogna and C.Tanteri, *Analyse avancée pour ingénieurs* (2018)]. Their corrections can be found there.

Hint: For the following exercises, we suggest to:

- 1. Start by sketching the graph of f and the graph of f', over at least two periods
- 2. Verify that the function f is a piecewise C^1 function.

Exercise 1 (Ex 14.5 page 220).

- 1. Compute the Fourier series of the 2π -periodic and odd function f which is defined by $f(x) = x(\pi x)$ for $x \in [0, \pi]$.
- 2. With the help of question 1 and Parseval's identity, deduce the sum of the series :

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^6}.$$

Exercise 2 (Ex 14.6 page 220).

With the help of Parseval's identity, show that:

$$\int_{-\pi}^{\pi} \cos^4 x \ dx = \frac{3}{4}\pi.$$

Exercise 3 (Ex 14.7 page 220).

1. Compute the Fourier series of the following 2π -periodic function defined by :

$$f(x) = |x|$$
 for $x \in [-\pi, \pi[$.

2. Deduce the sums of the following series :

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} \quad \text{and} \quad \sum_{k=1}^{\infty} \frac{1}{k^4} \ .$$

Exercise 4.

Let $f:[0,\pi]\to\mathbb{R}$ be the function defined by f(x)=x.

- 1. Compute the Fourier sine and cosine series denoted here F_cf for the cosine form and F_sf for the sinus form.
- 2. Compare $F_c f$, $F_s f$, and f over $[0, \pi]$.
- 3. Deduce the values for the two following sums :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} \quad \text{and} \quad \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}.$$

4. With the help of Parseval's identity, determine the value of the following sum :

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4}.$$

Exercise 5.

Let f be the 2π -periodic function defined in the exercise 1 (14.5). Let's define

$$F(x) = \int_0^x f(y) \, dy, \quad x \in \mathbb{R}.$$

- 1. Is F a 2π -periodic function? Justify your answer.
- 2. Find the Fourier series of F with the use of the Fourier series of f (express also the constant term a_0 of the series of F explicitly).