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Green'stheorem

All the reults of this section are for # (n=2).
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Meaning of the positive (or regatives mentation :

Fora parameterization U : [a .b) -> 22

t +> UCE) = (U .
(t)

, UzCE))

of an , the rore rector of 22 at x given by



~ (x) = (Ui(t) ,

- Viet)) is an extend normal of re

s

->
T atte↑

r'

De



2) We say that a
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2.4 . 2 Green's theorem
-

Theorem :

let A che be a regular domain whose boundary &A is

positively oriented. Let F :- H
(x

, y)+- F(x, y) = (F,
(X

, y) ,
Ez(X ,y)



be a rector field st. FEC'(A , #3) · Then

1) areFixudxdy =- y dx

= See
Remark :

· If F derives from a potential=> crlF = 0 => /F . de=0

some results as in Theorem 2 of potential fields).
A
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4 .3 Exemples :

-

Exemple 1 : Verify Green's Theorem for A = / (x ,4) E2 : X +y
:
< 1)

and F(x .n) = (y 2 ,x)

IA positively oriented

· 1) ()cre F(x,> dxdy

CreF(x ,n)= (x) - G(y) = 1 - 2y

Jac-2ysdxdy = J
.
'

*

je-ersinos roodr

X = rCO

= 1) jdo-sindo) doYersing () sino do = 0
dydy = rarde



= fr 2n = + r)!=X
2)1Fode ,

Ult = Cat , nut) ,
to

U'(t) =E sint , costs

SF de=F (U)UtdtJsint , -C-sintctd

=_
Sintet it dt

Note: Let rest t to
# E

sinst

MKsinst=o



·
sinitdt =/

*

sint (tdt-ut-ntcot
2πoutdate

= m +0 =/ N



Example 2 : Verify Green's theorem for B = S(X, 1) -HE :

1 < x tyi < b) end F(x,) = (x y ,
2x )

1) /ScoreFX , y) dx dry

crlF(x ,y) = zy - X
2

&3. x(-x2dxdy= ino-mola
ror do
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