2.4.5 Grolleries of Green's theorem

· Corollary 1: Divergence theorem in the plane.

let A CTR2 be a regular domain whose boundary 2A is positively oriented. Let $\nu: 2A \rightarrow TR^2$ the field of orter unit normal rectors defined as $\nu = (\nu_1, \nu_2)$.

let F: A - 122 be a rector field s.t. FEC'CA, 122)

defined on F = (Fi, F2). Then:

If a div F(x,v) dxdy = f F. V dl

In other words:

$$\iint_{A} \left(\frac{\partial F_{1}}{\partial x} + \frac{\partial F_{2}}{\partial y} \right) dxdy = \iint_{\partial A} \left(F_{1} \nu_{1} + F_{2} \nu_{2} \right) dl$$

o Corollary 2:

corollary 2:
let
$$A \subset \mathbb{R}^2$$
 a regular domain s.t. ∂A is positively oriented
let's consider the reeter fields $F, G_1, and G_2 : \overline{A} \rightarrow \mathbb{R}^2$
defined $F(x,y) = (-y,x)$, $G_1(x,y) = (0,x)$,

defined F(x,y) = (-y,x), $G_1(x,y) = (0,x)$,

G2(x,v) = (-9,0)
Then Area (A) =
$$\frac{1}{2}\int_{\partial A} \pm \cdot db = \int_{\partial A} G_1 \cdot db = \int_{\partial A} G_2 \cdot db$$

- Corollary 3: let ACTE² be a regulor domain whose boundary 2A is positively oriented, let $\nu: \partial A \to TE^2$ the field of outer onit normal and let f: A-The be a scolor frold s.t. $f \in C^2(\bar{A})$. Then: SSA (Af) (xv) dxdy = f grodf. rdl Proof: []A (Af) (x,y) dxdy = []A div (grad f) (x,y) dxdy Af = div(grad f) = Sadir F (x,v) dx dy = SF(x,n). v(x,y) db = Sgrod f.vdl Div. thun _____ DA Proof of Diregence theorem.

T=(Tr,Tz) リーリーし 1- 11VII=1 $V = (V_1 | V_2) = (T_2 | - T_1)$ If $r(t) = (r_1(t), r_2(t))$ for t GCa, b] is a parameterization of DA, Thom we have $T = \frac{\chi'(t)}{||\chi(t)||} = \frac{(\chi'(t), \chi_{S}'(t))}{||\chi(t)||} = (\chi_{S}'(t))$ V= (Tz,-T1) is the outer unit normal rector (possiting out $F = (F_1, F_2)$ of A). \$= (-F2, F1) two:

where
$$\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial$$

Then:
$$C(x,y) dxdy = \begin{cases} 2x + 3y \\ 3x + 3y \end{cases}$$

Then:
$$\begin{cases}
\frac{\partial y}{\partial x} = \frac{\partial y}{\partial y} = \frac{\partial x}{\partial y} = \frac{\partial y}{\partial y} = \frac{\partial y$$

Then:
$$\iint_{A} \operatorname{div} F(x,y) dxdy = \iint_{A} \operatorname{core} \phi(x,y) dxdy = \iint_{\partial A} \phi \cdot dt$$

$$= \iint_{A} \phi(x(t)) \cdot x'(t) dt = \int_{A} \phi(x(t)) \cdot \frac{x'(t)}{\|x'(t)\|} \|x'(t)\| dt$$

$$= \int_{0}^{b} \phi(r(t)) \cdot r'(t) dt = \int_{0}^{b} \phi(r(t)) \cdot \frac{g'(t)}{||r'(t)||} dt$$

$$= \int_{0}^{b} \phi(r(t)) \cdot \tau(t) ||r'(t)|| dt$$

$$= \int_{a}^{b} \varphi(r(t)) \cdot r'(t) dt = \int_{a}^{b} \varphi(r(t)) \cdot \frac{1}{||r'(t)||} dt$$

$$= \int_{a}^{b} \varphi(r(t)) \cdot \tau(t) ||r'(t)|| dt$$

$$= \int_{a}^{b} (\varphi_{1}(r(t))) \tau_{1}(t) + \varphi_{2}(r(t)) \tau_{2}(t) ||r'(t)|| dt$$

$$= \int_{a}^{b} (\varphi_{1}(r(t))) \tau_{1}(t) + \varphi_{2}(r(t)) \tau_{2}(t) ||r'(t)|| dt$$

$$= \int_{a}^{b} (r(t)) \tau_{1}(t) + \varphi_{2}(r(t)) \tau_{2}(t) = \mu_{1}(t)$$

$$=\int_{a}^{b}\left(F_{2}(r(t)) V_{2}(t) + F_{1}(r(t)) V_{1}(t)\right) || s'(t)|| dt$$

$$=\int_{a}^{b}\left(F_{2}(r(t)) V_{2}(t) + F_{1}(r(t)) V_{1}(t)\right) || s'(t)|| dt$$

$$=\int_{a}^{b} (F \cdot V)(r(t)) || r'(t)|| dt = \int_{\partial A} F \cdot V dl$$

For the same of enyplicity, we prove it for the core that A

For the sake of amplicatly, me prove that is a rectangle:
$$A = (a,b) \times (c,d)$$

by $A = (a,b) \times (c,d)$

Let $F : A \to IF^2$ be

 $A = (a,b) \times (c,d)$

Let
$$F: \overline{A} \rightarrow IF^2$$
 be

a rector field

$$F(x,y) = (F_1(x,y), F_2(x,y))$$

$$F \in C^1(A, IF^2)$$

• $\iint_A \operatorname{curl} F(x,y) dxdy = \int_C^d \int_A^b \left(\frac{2F_2}{ax}(x,y) - \frac{\partial F_1}{ay}(x,y)\right) dxdy$

$$= \int_{C}^{d} \left(\int_{a}^{b} \frac{\partial F_{2}}{\partial x} dx \right) dy - \int_{a}^{b} \left(\int_{c}^{d} \frac{\partial F_{1}}{\partial y} dy \right) dx$$

$$\int_{\partial A} F \cdot dl = \int_{C_1} F \cdot dl + \int_{C_2} F \cdot dl + \int_{C_3} F \cdot dl$$

$$C_1 = \int_{C_1} Y \cdot dt = (t_1 c) \in \mathbb{R}^2 : t \in tabis G$$

$$C_2 = \int_{C_2} Y \cdot dt = (b_1 t) \in \mathbb{R}^2 : t \in tcd G$$

$$C_3 = \int_{C_3} Y \cdot dt = (t_1 d) \in \mathbb{R}^2 : t \in tabis G$$

$$C_4 = \int_{C_4} Y \cdot dt = (a_1 t) \in \mathbb{R}^2 : t \in tcd G$$
Note: the green - signs in G and G where a mistake, and I replaced them by positive eigns (t).

C3 and C4 do not follow the positive orientation of the boundary.

 $= \int_{a}^{c} \left(F_{2}(b, y) - F_{2}(a, y) \right) dy - \int_{a}^{b} \left(F_{1}(x, d) - F_{1}(x, c) \right) dx$

A possible way of overamming this is to just change the are of orientation by permiting the integration limits as: $\int_{C_3} F \cdot dl = F(Y_3 \mid t) \cdot Y_3'(t) dt \cdot The same applies to C_4.$