EPFL - Fall 2024	Dr. Pablo Antolin
Analysis III - 202 (c) GM EL MX	Exercises
Series 10	November 19, 2024

Note: several exercises are extracted from [B.Dacorogna and C.Tanteri, *Analyse avancée pour ingénieurs* (2018)]. Their corrections can be found there.

Hint: For the following exercises, we suggest to:

- 1. Start by sketching the graphs of f and f', over at least two periods;
- 2. Check that the function f is (piecewise) C^1 ;

Exercise 1 (Ex 14.1 page 219).

Let $f: \mathbb{R} \to \mathbb{R}$ be a 2π -periodic function such that $f(x) = e^{(x-\pi)}$ over $[0, 2\pi]$.

- 1. Sketch the graph of f and the graph of f'.
- 2. Calculate the Fourier series Ff of the function f.
- 3. With the help of the Dirichlet theorem, compare Ff and f over $[0, 2\pi]$.
- 4. With the help of the two previous questions, show that

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{1+n^2} = \frac{\pi}{e^{\pi} - e^{-\pi}}.$$

Exercise 2 (Ex 14.2 page 220).

Let $f: \mathbb{R} \to \mathbb{R}$ be a 2π -periodic function such that $f(x) = (x - \pi)^2$ over $[0, 2\pi]$.

- 1. Sketch the graph of f and the graph of f'.
- 2. Calculate the Fourier series Ff of the function f.
- 3. With the help of the Dirichlet theorem, compare Ff and f over $[0, 2\pi]$.
- 4. Show that

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Exercise 3 (Ex 14.4 page 220).

Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by periodicity of period 2 such that

$$f(x) = x$$
 if $x \in [0, 2[$.

Calculate the complex Fourier series.

Exercise 4 (Ex 14.11 page 221).

1. Using complex notations, calculate the Fourier series of the 2π -periodic and odd function defined on $[0, \pi]$ by

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le \frac{\pi}{2}, \\ \pi - x & \text{if } \frac{\pi}{2} < x \le \pi. \end{cases}$$

2. Then deduce

$$\sum_{k=-\infty}^{\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{4}.$$

Exercise 5 (Ex 14.3 page 220).

Calculate the Fourier series of the function $f: \mathbb{R} \to \mathbb{R}$ 2π -periodic defined by

$$f(x) = \begin{cases} \sin(x) & \text{if} & 0 \le x \le \frac{\pi}{2}, \\ 0 & \text{if} & \frac{\pi}{2} < x < \frac{3\pi}{2}, \\ \sin(x) & \text{if} & \frac{3\pi}{2} \le x < 2\pi. \end{cases}$$

Exercise 6 (Ex 14.8 page 221).

1. Calculate the Fourier series of the 2π -periodic function defined by

$$f(x) = |\cos(x)|$$
 if $x \in [0, 2\pi[$.

2. Deduce the sum of the series

$$\sum_{k=1}^{\infty} \frac{1}{4k^2 - 1}.$$

Exercise 7 (Ex 14.10 page 221).

1. For $\alpha \in \mathbb{R} \setminus \mathbb{Z}$, calculate the Fourier series of the 2π -periodic function defined by

$$f(x) = \cos(\alpha x)$$
 if $x \in [-\pi, \pi[$.

2. Deduce the formula

$$\sum_{n=1}^{\infty} \frac{1}{n^2 - \alpha^2} = \frac{1}{2\alpha^2} - \frac{\pi}{2\alpha \tan(\alpha \pi)}.$$