EPFL - Fall 2024	Dr. Pablo Antolin
Analysis III - 202 (c) GM EL MX	Exercises
Series 7	October 29, 2024

Note: several exercises are extracted from [B.Dacorogna and C.Tanteri, Analyse avancée pour ingénieurs (2018)]. Their corrections can be found there.

Exercise 1.

Let $\Sigma \subset \mathbb{R}^3$ be a regular orientable surface with a field of unit normal vectors ν . Let $F: \Sigma \mapsto \mathbb{R}^3$ be a continuous vector field. Prove that the flux of F through the surface Σ in the direction ν is equal to the integral of the scalar field $F \cdot \nu$ on Σ .

Exercise 2 (Ex 5.1 page 56). Let $f(x, y, z) = xy + z^2$ and

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2 \text{ and } 0 \le z \le 1\}.$$

Compute $\iint_{\Sigma} f ds$.

Exercise 3 (Ex 5.3 page 57). Let $\Sigma = \{(x,y,z) \in \mathbb{R}^3: \ x^2+y^2-z^2=0 \ \text{and} \ 0 \leq z \leq 1\}$. Compute the mass of the surface Σ knowing that the density is $\rho(x,y,z) = \sqrt{x^2 + y^2}$.

Exercise 4 (Ex 5.5 page 57). Let $\Omega=\left\{(x,y,z)\in\mathbb{R}^3: x^2+y^2\leq z\leq 1\right\}$. Compute the area of $\partial\Omega$.

Exercise 5 (Ex 5.2 page 57). Let $F(x, y, z) = (x^2, y^2, z^2)$ and

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z^2 = x^2 + y^2 \text{ and } 0 \le z \le 1\}.$$

Compute the flux through Σ in the upward direction (i.e., in the direction of z > 0).

Exercise 6 (Ex 5.4 page 57).

Let F(x, y, z) = (0, z, z) and

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 6 - 3x - 2y \text{ and } x \ge 0, y \ge 0, z \ge 0\}.$$

Compute the flux that passes through the surface and away from the origin.

Exercise 7 (Ex 5.7 page 57).

Let $\Omega \subset \mathbb{R}^2$ be an open set and $f: \overline{\Omega} \to \mathbb{R}$ be a continuous scalar field such that f(x,y) > 0 for all $(x,y) \in \overline{\Omega}$. Consider a simple and regular curve $\Gamma \subset \Omega$ and the surface $\Sigma \subset \mathbb{R}^3$ defined by

$$\Sigma = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in \Gamma \text{ and } 0 \le z \le f(x, y) \right\}.$$

Prove that Area $(\Sigma) = \int_{\Gamma} f dl$.

Exercise 8.

Let $\alpha, \beta > 0$ and $F_{\alpha,\beta} \colon \mathbb{R}^3 \to \mathbb{R}^3$ defined by:

$$F_{\alpha,\beta}(x,y,z) = \left(\frac{x}{(y^2 + z^2)^{\alpha}}, y, \frac{z}{|x|^{\beta}}\right).$$

Identify for which values of α and β , the following integral is well-defined:

$$\left| \iint_{S} F_{\alpha,\beta} \cdot dS \right| < +\infty,$$

being S the unit sphere centered at the origin, *i.e.*:

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$$