EPFL - Fall 2024	Dr. Pablo Antolin
Analysis III - 202 (c) GM EL MX	Exercises
Series 6	October 15, 2024

Note: several exercises are extracted from [B.Dacorogna and C.Tanteri, *Analyse avancée pour ingénieurs* (2018)]. Their corrections can be found there.

Reminder: In order to compute an integral over a surface (like in Exercise 2 and parts 4 and 5 of Exercise 3), proceed as follows:

- 1. Sketch the surface Σ .
- 2. Provide a parameterization $\sigma: \bar{A} \to \Sigma$ of the surface Σ . Then, define the parametric domain \bar{A} and the function σ .
- 3. Provide a normal vector and add it to your sketch.
- 4. Use this parameterization to express the integral as a multiple integral where the bounds and the function that need to integrated are indicated explicitly.
- 5. Compute the integral.

Exercise 1 (Ex 4.8 page 43 and Ex 4.7 page 42).

Let $\Omega \subset \mathbb{R}^2$ be a regular set whose border $\partial\Omega$ is oriented positively. Let ν be a field of external unit normals to $\partial\Omega$. Let F be a vector field such that $F \in C^1(\bar{\Omega}, \mathbb{R}^2)$ and f a scalar field such that $f \in C^2(\bar{\Omega})$. Prove that:

1.
$$\iint_{\Omega} \operatorname{div} F(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_{\partial \Omega} (F \cdot \nu) \, \mathrm{d}l$$

Indication: Write $F = (F_1, F_2)$ and apply Green's theorem to the vector field $\Phi = (-F_2, F_1)$.

$$2. \iint_{\Omega} \Delta f(x, y) \, \mathrm{d}x \mathrm{d}y = \int_{\partial \Omega} \left(\operatorname{grad} f \cdot \nu \right) \mathrm{d}l.$$

Exercise 2 (Ex 5.1 page 56).

Let
$$f(x, y, z) = xy + z^2$$
 and

$$\Sigma = \big\{ (x,y,z) \in \mathbb{R}^3 \ : \ x^2 + y^2 = z^2 \text{ and } 0 \le z \le 1 \big\}.$$

Compute $\iint_{\Sigma} f ds$.

Exercise 3 (Ex 5.6 page 57).

Let 0 < a < R. In \mathbb{R}^3 we consider the torus Ω obtained with the rotation of the disk $(x - R)^2 + z^2 \le a^2$ around the Oz axis and its parameterization is:

$$x = (R + r\cos\varphi)\cos\theta, \qquad y = (R + r\cos\varphi)\sin\theta, \qquad z = r\sin\varphi,$$

with 0 < r < a, $0 \le \theta < 2\pi$, $0 \le \varphi < 2\pi$.

- 1. Sketch Ω and indicate what does r, θ , and φ represent.
- 2. Compute the Jacobian of the transformation that describes Ω in terms of the variables r, θ , and φ .
- 3. Compute the volume of Ω .
- 4. Write a regular parameterization of the surface of the torus (noted $\partial\Omega$) and compute a normal to $\partial\Omega$.
- 5. Compute the area of $\partial\Omega$.
- 6. Compute $\iiint_{\Omega} z^2 dx dy dz$.

The exercises below are a recap of Analysis II

Exercise 4.

1. Let
$$D = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0 \text{ and } x + y \le 1\}$$
. Compute $\iint_D \sqrt{1 - x - y} \, \mathrm{d}x \mathrm{d}y$.

2. Let
$$D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2(x + \sqrt{x^2 + y^2})\}.$$

Compute $\iint_D \frac{\mathrm{d}x\mathrm{d}y}{(x^2 + y^2)^{\frac{3}{4}}}.$

3. Let
$$D=\left\{(x,y,z)\in\mathbb{R}^3:\,x\geq0,\,y\geq0,\,z\geq0,\,z\leq1-y^2\text{ and }x+y\leq1\right\}.$$
 Compute
$$\iiint_Dz\,\mathrm{d}x\mathrm{d}y\mathrm{d}z.$$

Exercise 5.

Compute the volume of:

1.
$$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1 \text{ and } x^2 + y^2 \le z\}.$$

$$2. \ D=\{(x,y,z)\in \mathbb{R}^3: x+y+z\leq \sqrt{2}, \ x^2+y^2\leq 1, \ x\geq 0, \ y\geq 0 \ \text{and} \ z\geq 0\}.$$