EPFL - Fall 2024	Dr. Pablo Antolin
Analysis III - 202 (c) GM EL MX	Exercises
Series 5	October 8, 2024

Note: several exercises are extracted from [B.Dacorogna and C.Tanteri, *Analyse avancée pour ingénieurs* (2018)]. Their corrections can be found there.

Hint: In order to verify Green's theorem (e.g., exercises 1 and 2), apply the following steps:

- 1. Try to sketch the domain Ω and its boundary $\partial\Omega$. Indicate the direction of the curve $\partial\Omega$ so that it is positively oriented.
- 2. Compute $\operatorname{curl} F(x, y)$.
- 3. Parameterize the domain Ω , and use this parameterization to compute

$$\iint_{\Omega} \operatorname{curl} F \, \mathrm{d}x \mathrm{d}y.$$

4. Parametrize the boundary $\partial\Omega$ of $\Omega,$ and use this parameterization to compute

$$\int_{\partial\Omega} F \cdot \, \mathrm{d}l.$$

5. To verify the Green's theorem, check that both integrals are equal.

Exercise 1 (Ex 4.1 and Ex 4.2 page 41). Verify Green's theorem in the following cases:

- 1. $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ and $F(x, y) = (xy, y^2)$.
- 2. $A = \{(x,y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}$ and $F(x,y) = (x+y,y^2)$.

Exercise 2 (Ex 4.4i and Ex 4.5 page 42).

Verify Green's theorem in the following cases:

1.
$$A = \{(x,y) \in \mathbb{R}^2 : x^2 + (y-1)^2 < 1\}$$
 and $F(x,y) = (-x^2y, xy^2)$.

2.
$$A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 > 1 \text{ and } x^2 - 4 < y < 2\}$$
 and $F(x,y) = (xy,y)$.

Exercise 3 (Ex 4.3 page 42).

Let $\Omega \subset \mathbb{R}^2$ be a triangle whose vertices are (0,0), (0,1), and (1,0). Let be $f(x,y)=y+e^x.$ Compute:

1.
$$\int_{\Omega} \Delta f(x, y) \, \mathrm{d}x \mathrm{d}y.$$

2.
$$\int_{\partial\Omega} \left(\frac{\partial f}{\partial x} \nu_1 + \frac{\partial f}{\partial y} \nu_2 \right) dl, \text{ where } \nu = (\nu_1, \nu_2) \text{ is the outer unit vector normal of the boundary } \partial\Omega.$$

Exercise 4 (Ex 4.9i page 43).

Let $\Omega \subset \mathbb{R}^2$ be a regular domain which has a positively oriented boundary $\partial\Omega$. Let F, G_1 , and G_2 be the vector fields defined as

$$F(x,y) = (-y,x), \quad G_1(x,y) = (0,x) \text{ and } G_2(x,y) = (-y,0).$$

Prove that:

1. Area(
$$\Omega$$
) = $\frac{1}{2} \int_{\partial \Omega} F \cdot dl$.

2. Area(
$$\Omega$$
) = $\int_{\partial\Omega} G_1 \cdot dl$..

3. Area(
$$\Omega$$
) = $\int_{\partial\Omega} G_2 \cdot dl$.