EPFL - Fall 2024	Dr. Pablo Antolin
Analysis III - 202 (c) GM EL MX	Exercises
Series 1	September 10, 2024

Note: several exercises are extracted from [B.Dacorogna and C.Tanteri, *Analyse avancée pour ingénieurs* (2018)]. Their corrections can be found there.

Remark.

The theorems introduced in this Series were studied in Analysis II.

Definition 1.

Let $\Omega \subset \mathbb{R}^m$ be an open set, $\mathbf{F} = (F_1, \dots, F_n) : \Omega \to \mathbb{R}^n$, such that $\mathbf{F} \in C^1(\Omega, \mathbb{R}^n)$ and $1 \le i \le m$. We define:

$$\frac{\partial \mathbf{F}}{\partial x_i} = \left(\frac{\partial F_1}{\partial x_i}, \dots, \frac{\partial F_n}{\partial x_i}\right).$$

Exercise 1.

Let $\Omega \subset \mathbb{R}^m$ be an open set, $\mathbf{F}, \mathbf{G} \in C^1(\Omega, \mathbb{R}^n)$ and $1 \leq i \leq m$. Show that:

1.

$$\frac{\partial}{\partial x_i}[\langle \boldsymbol{F}, \boldsymbol{G} \rangle] = \left\langle \frac{\partial \boldsymbol{F}}{\partial x_i}, \boldsymbol{G} \right\rangle + \left\langle \boldsymbol{F}, \frac{\partial \boldsymbol{G}}{\partial x_i} \right\rangle,$$

where for any $a, b \in \mathbb{R}^n$, $\langle a, b \rangle$ denotes the dot product of these two Euclidean vectors a and b, and is defined by:

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \sum_{i=1}^{n} a_i b_i,$$

2. In three-dimensional space (n=3),

$$\frac{\partial}{\partial x_i} [\boldsymbol{F} \wedge \boldsymbol{G}] = \frac{\partial \boldsymbol{F}}{\partial x_i} \wedge \boldsymbol{G} + \boldsymbol{F} \wedge \frac{\partial \boldsymbol{G}}{\partial x_i},$$

where for any $a, b \in \mathbb{R}^3$, $a \wedge b \in \mathbb{R}^3$ denotes the cross product of a and b, and is defined by:

$$m{a} \wedge m{b} = \left(egin{array}{c} a_2b_3 - a_3b_2 \ a_3b_1 - a_1b_3 \ a_1b_2 - a_2b_1 \end{array}
ight).$$

Definition 2 (Jacobian matrix and determinant).

Let $\mathbf{u} = (u_1, \dots, u_n) : \Omega \subset \mathbb{R}^n \to \Omega' \subset \mathbb{R}^n, \mathbf{u} = \mathbf{u}(\mathbf{x})$ such that:

- $\boldsymbol{u} \in C^{\infty}(\Omega; \Omega')$,
- u is invertible and $u^{-1} \in C^{\infty}(\Omega'; \Omega)$.

The Jacobian matrix of the vector-valued function \boldsymbol{u} , represented by $\nabla \boldsymbol{u}$, is a square matrix whose entries are:

$$(\nabla \boldsymbol{u})_{i,j} = \frac{\partial \boldsymbol{u}_i}{\partial x_j}.$$

The Jacobian determinant, or simply the Jacobian, denoted by $\operatorname{Jac} u(x)$ is defined as:

$$\operatorname{Jac} \boldsymbol{u}(\boldsymbol{x}) = \det \nabla \boldsymbol{u}(\boldsymbol{x}).$$

Exercise 2 (§8.5 pages 119-121).

Compute the Jacobian for the following mapping functions:

1. Polar coordinates:

$$u(r,\theta) = (r\cos\theta, r\sin\theta),$$

2. Spherical coordinates:

$$u(r, \theta, \varphi) = (r \cos \theta \sin \varphi, r \sin \theta \sin \varphi, r \cos \varphi),$$

3. Cylindrical coordinates:

$$u(r, \theta, z) = (r \cos \theta, r \sin \theta, z),$$

4. Cartesian coordinates:

$$\boldsymbol{u}(x,y,z) = (x,y,z).$$

Theorem 3 (§8.5 page 119).

Let $f: \Omega' \to \mathbb{R}$ be an continuous function, $\mathbf{u}: \Omega \to \Omega'$ be a function as the one involved in Definition 2, and $A \subset \Omega'$ be a closed and bounded set. Then:

$$\int_A f(\boldsymbol{x}) d\boldsymbol{x} = \int_{\boldsymbol{u}^{-1}(A)} f(\boldsymbol{u}(\tilde{\boldsymbol{x}})) |\operatorname{Jac} \boldsymbol{u}(\tilde{\boldsymbol{x}})| d\tilde{\boldsymbol{x}}.$$

Exercise 3.

Sketch the set A, and compute the integral $\int_A f(x) dx$ in the following cases:

1.
$$A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4\}$$
, and $f(x,y) = (x^2 + y^2)^{-\frac{1}{2}}$,

2.
$$A = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 3, x-3 \le y \le 3-x\},$$

and $f(x,y) = x^2 + \sin^3(y),$

3.
$$A = \{(x,y) \in \mathbb{R}^2 \mid -1 \le x \le 1, 0 \le y \le \sqrt{1-x^2} \}$$
, and $f(x,y) = y (1+x^2)$,

4.
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 9\}$$
, and $f(x, y, z) = \sqrt{x^2 + y^2}$,

5.
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 4\},\$$
 and $f(x, y, z) = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}}.$

Theorem 4.

Let $\Omega \subset \mathbb{R}^n, \Omega' \subset \mathbb{R}^m, f \in C^1(\Omega')$ and $g = (g_1, \ldots, g_m) \in C^1(\Omega, \mathbb{R}^m)$ such that $g(\Omega) \subset \Omega'$. Then, the chain rule expresses the derivatives of the composition function $f \circ g \in C^1(\Omega)$ as:

$$\frac{\partial f \circ g}{\partial x_i}(x) = \sum_{j=1}^m \frac{\partial f}{\partial x_j}(g(x)) \frac{\partial g_j}{\partial x_i}(x), \quad \text{for } i = 1 \dots n.$$

Exercise 4.

1. Let $p \ge 1$ and the function:

$$h_p(x) := |x|^p = \left(\sqrt{x_1^2 + \dots + x_n^2}\right)^p, \quad \forall x = (x_1, \dots, x_n) \in \mathbb{R}^n \setminus \{0\}.$$

Compute $\nabla h_p(x)$.

2. Let $G \in C^1(\mathbb{R}^n; \mathbb{R}^n)$ be a map that never reaches zero, and f_p the function defined by:

$$f_p(t) := \frac{1}{p} |\boldsymbol{G}(tx)|^p, \quad \forall t \in \mathbb{R}.$$

Compute $\frac{\mathrm{d}}{\mathrm{d}t}f_p(t)$.