EPFL – Automne 2024	Pr. M. Picasso
Analyse III – PH	Exercices
Série 9	14 novembre 2024

Exercice 1.

Exercice 10.5 du livre

Exercice 2.

Exercice 10.6 du livre

Exercice 3.

Exercice 10.7 du livre

Exercice 4.

Exercice 10.9 du livre

Exercice 5.

Exercice 10.14 du livre

Exercice 6.

On veut montrer la formule intégrale de Cauchy par induction.

Soient $D \subset \mathbb{C}$ un domaine simplement connexe, $\gamma \subset D$ une courbe simple fermée, régulière, et $f: D \to \mathbb{C}$ une fonction holomorphe. Pour $n \geq 2$, on suppose

$$f^{(n-1)}(z_0) = \frac{(n-1)!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^n} dz \quad \forall z_0 \in \text{int} \gamma$$

et on veut montrer

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz \quad \forall z_0 \in \text{int} \gamma.$$

Indication: $f^{(n)}(z_0)$ existe si

$$\lim_{z \to z_0} \frac{f^{(n-1)}(z) - f^{(n-1)}(z_0)}{z - z_0} = \lim_{h \to 0} \frac{f^{(n-1)}(z_0 + h) - f^{(n-1)}(z_0)}{h}$$

existe.

Calculer

$$\frac{f^{(n-1)}(z_0+h)-f^{(n-1)}(z_0)}{h}$$

et prendre la limite lorsque h tend vers 0.

Exercice 7.

Calculer la série de Talyor de la fonction $\log:D:=\mathbb{C}\backslash\{z: \text{Im }z=0 \text{ et } \text{Re }z\leq 0\}\to\mathbb{C}.$