EPFL – Automne 2024	Pr. M. Picasso
Analyse III – PH	Exercices
Série 8	7 novembre 2024

Exercice 1.

Exercice 9.1 du livre

Exercice 2.

Exercice 9.4 du livre

Exercice 3.

Exercice 9.10 du livre

Remarque: On admet le résultat suivant: Si f = u + iv est holomorphe, u et v sont \mathcal{C}^2 .

Exercice 4.

Exercice 9.6 du livre.

Remarque: Pour le point (i), on admet le résultat suivant: Si f = u + iv est holomorphe, u et v sont C^2 .

Exercice 5.

• Soit D un domaine simplement connexe et soit $F:D\to\mathbb{C}$ une fonction holomorphe. Soit $\gamma:[a,b]\to D$ une courbe régulière. Montrer que

$$\int_{\gamma} F'(z) \ dz = F(\gamma(b)) - F(\gamma(a)).$$

• En déduire que, si γ est une courbe régulière et fermée, alors

$$\int_{\gamma} z^2 \ dz = 0.$$

Indication : Si z = x + iy, F(z) = u(x, y) + iv(x, y) et $\gamma(t) = \alpha(t) + i\beta(t)$, montrer que

$$\int_{\gamma} F'(z) \ dz = \int_{a}^{b} \frac{\partial u}{\partial x}(\alpha(t), \beta(t))\alpha'(t) + \frac{\partial u}{\partial y}(\alpha(t), \beta(t))\beta'(t) \ dt$$
$$+i \int_{a}^{b} \frac{\partial v}{\partial x}(\alpha(t), \beta(t))\alpha'(t) + \frac{\partial v}{\partial y}(\alpha(t), \beta(t))\beta'(t) \ dt$$

et calculer $\frac{d}{dt}(u(\alpha(t), \beta(t))), \frac{d}{dt}(v(\alpha(t), \beta(t))).$