EPFL – Automne 2024	Pr. M. Picasso
Analyse III – PH	Exercices
Série 7	31 octobre 2024

Exercice 1.

Soit $F: \mathbb{R}^3 \to \mathbb{R}^3 \in C^1$ telle que rot F = 0. Soit $P = (x_1, x_2, x_3) \in \mathbb{R}^3$ et soit $\Gamma = \overrightarrow{OP}$ paramétrée par $\gamma(t) = (tx_1, tx_2, tx_3)$. Montrer que f définie par

$$f(x_1, x_2, x_3) = \int_0^1 F(\gamma(t)) \cdot \gamma'(t) dt$$

est telle que $F(x_1, x_2, x_3) = \text{grad} f(x_1, x_2, x_3)$.

Exercice 2.

Soient $Q_1,Q_2,Q_3 \in \mathbb{R}^3$ non alignés et soit Σ le parallélogramme formé à partir de ces trois points. On note $\sigma(u,v) = \overrightarrow{OQ_1} + u\overrightarrow{Q_1Q_2} + v\overrightarrow{Q_2Q_3}$, $0 \le u,v \le 1$ une paramétrisation de Σ . Pour $u_i = i/N$, $i=1,\ldots,N,\ v_j=j/N,\ j=1,\ldots,N,$ on note $P_{i,j}=\sigma(u_i,v_j)$. Soit $f:\Sigma\to\mathbb{R}$ constante par morceaux sur chaque parallélogramme formé des quatre points $P_{i,j},P_{i+1,j},P_{i,j+1},P_{i+1,j+1}$. On dénote par $P_{i+1/2,j+1/2}$ le barycentre du parallélogramme et $f(P_{i+1/2,j+1/2})$ la valeur de f correspondante. Montrer que

$$\iint_{\Sigma} f ds = \sum_{i,j=1}^{N} f(P_{i+1/2,j+1/2}) || \overrightarrow{P_{i,j}P_{i+1,j}} \wedge \overrightarrow{P_{i,j}P_{i,j+1}} ||.$$

Exercice 3.

Montrer que si $f, g : \Omega \subset \mathbb{C} \to \mathbb{C}$ sont continues en $z_0 \in \Omega$, alors fg l'est aussi (utiliser la définition de continuité avec les ϵ et δ).

Exercice 4.

Soit $f: \Omega \subset \mathbb{C} \to \mathbb{C}$ et soient u et v ses parties réelles et imaginaires. Montrer que f est continue en $z_0 = x_0 + iy_0$ si et seulement si u et v sont continues en (x_0, y_0) .

Exercice 5.

Soient $f, g : \Omega \subset \mathbb{C} \to \mathbb{C}$ holomorphes en $z_0 \in \Omega$. Montrer que fg est holomorphe en z_0 et (fg)' = f'g + fg'.

Exercice 6.

Exercice 9.13 du livre