EPFL – Automne 2024	Pr. M. Picasso
Analyse III – PH	Exercices
Série 3	26 septembre 2024

Exercice 1.

Exercice 4.7 du livre.

Exercice 2.

Exercice 4.10 du livre.

Exercice 3.

Soient $\Omega \subset \mathbb{R}^2$ un domaine régulier dont ν est la normale extérieure unité, et soit $f \in \mathcal{C}^0(\overline{\Omega})$. Montrer que le problème

$$\Delta u(x,y) - u(x,y) = f(x,y) \qquad (x,y) \in \Omega,$$

$$\operatorname{grad}(u(x,y)) \cdot \nu(x,y) = 0 \qquad (x,y) \in \partial\Omega$$

admet au plus une solution $u \in \mathcal{C}^2(\overline{\Omega})$.

Exercice 4.

Exercice 4.4 du livre.

Exercice 5.

Soit $F(x_1, x_2) = \frac{1}{x_1^2 + x_2^2}(-x_2, x_1)$ pour tout $(x_1, x_2) \in \Omega = \mathbb{R}^2 \setminus (0, 0)$ et soit Γ le cercle de centre 0 et de rayon 1 (orienté dans le sens trigonométrique). Déterminez lesquelles des affirmations suivantes sont correctes.

1.
$$\int_{\Gamma} F \cdot dl = 0.$$

$$2. \int_{\Gamma} F \cdot dl = 2\pi.$$

3. S'il existe
$$f: \Omega \to \mathbb{R} \in \mathcal{C}^1$$
 telle que $F = \operatorname{grad}(f)$, alors $\int_{\Gamma} F \cdot dl = 0$.

4. Il n'existe pas de
$$f: \Omega \to \mathbb{R} \in \mathcal{C}^1$$
 telle que $F = \operatorname{grad}(f)$.

5.
$$rot(F) = 0$$
.